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Fractional iteration of differentiable functions

by M. KuczmA (Katowice)

§ 1. In the present paper we shall be concerned with differentiable
solutions ¢ of the functional equation

(1) ¢*(@) = g(2) ,

where g is a given function and ¢? denotes the second functional iterate
of ¢. (More generally, for a given function f we denote by f" its »-th iterate:
fla) =2, "P(@) =ffY=)], »=0,1,2,..) These investigations have
been originated by the following problem of Moszner [4]:

Let D}, 1 <r< 400, denote the class of all mappings

f: R* > R*

that are of class ¢” in the whole R* and have a positive Jacobian in the
whole R®. Does there exist, for every g e D}, a solution ¢ of equation (1)
belonging to the class Dj?

As we shall see, the answer to this question is negative,

§ 2. In the present section we exhibit an example of a function
¢ € D for which equation (1) has no solution at all. We start with
a lemma ().

LeMMA 1. Let E be an arbitrary set and g arbitrary function on E
taking values in E. Further suppose that there exist in E points a +# b such
that g(a) = b, g(b) = a, and g*(x) = x implies that either x = a, or x = b,
or g(x) = x. Then equation (1) has no solution in H.

Proof. Suppose that a function ¢, defined in E, satisfies equation (1)
in £, and put ¢ = ¢(a), d = ¢(b). Then ¢*¢c) =c¢ and g*d) =d. If ¢ = a,
1e. ¢(a) =a, then b = g(a) = ¢*a) = a, contrary to the assumption.
If ¢ = b, i.e. p(a) = b, then ¢(b) = ¢*(a) =g(a) =b and a = g(b) = ¢¥b)
= b, contrary to the assumption. Lastly, ¢(c) = ¢ implies ¢(b) = ¢[g(a)]
= ¢*a) = glp(a)] =g(c) =¢, ie. g(a)=p(b), whence g(a)=g(b) and
b = a, again a contradiction.

(*) This lemma is implied by the general considerations of Isaacs [1]. (Cf. also [3],
theorem 15.6.) But we sketch here a proof because of its simplicity.
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Now we proceed to give the example announced.
ExAmMpLE I. We consider the transform ¢: R®--R? given by

2) g:{ - i(m+y2+1)(w+y),

(@*+9y*+1)y

Let us write shortly « = u(z,y) = }(a* + ¥*+1). Then u, = z,
uy =y and

ow oy |—o@+y)—u —yl@t+y)—u
o oy |—ay —y—u
or oy

= (@ +oy+u) (¥ +u)—ay(zy +y*+u) = w(@®+y2+u) > §.
Consequently g ¢D;. For a=(1,0) and b =(—1,0) we have
g(a) =b and g(b) = a. The equation ¢*z,y) = («,y) has the form
(3) —vw'(@' +y)=2, —uy =y,
where

’

u o'y y’) = 3@V + ¥ +1] = § + du¥(a? + 20y + 297) .
Thus (3) may be written as
(4) wu(@x+2y)y=x, wuy=y.

If w'w # 1, then from the second equation of (4) we obtain y = 0,
and if 4« =1, then y = 0 results from the first equation of (4). Con-
sequently ¥ must be zero, u'u reduces to

(1 @@+l @l
wu = (1*2(2 )) 2

and system (4) to

6@+ﬂﬁ+1ﬂﬁ+n,

wur =x.

If v # 1, then ¥ = 0; and consequently we get the solution (z, y)
= (0, 0), which is a fixed point of g: ¢(0, 0) =.(0, 0). To solve the equation
'y =1 we put { = 2*+1 and thus the equation becomes

1 4t—16 =0,
i.e. _
(5) (t—2)(®+t*+2t+8) =0.
~ But, since t=2*41>1, we have t*+¢*+2¢{+8>12 and con-
sequently ¢t = 2 is the only admissible solution of (5). It leads us to r =1
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and z =—1, i.e. a=(1,0) and b =(—1,0) are the only fixed points
of g% that are not fixed points of g.

As we see, the function g given by (2) fulfils the assumptions of
Lemma 1, and thus equation (1) has no solution in R%

§ 3. A similar situation cannot happen if ¥ = 1. Equation (1) with
a continuous and strictly increasing function ¢ on (— oo, +o00) always
has a continuous and strictly increasing solution ¢ (cf. [3], corollary to
theorem 15.7). In particular, we have the following

LeMmMA 2 ([2), [3]). Let g(x) be continuous and strictly increasing
in an interval (a,d), — co < a < b < + oo, Mmoreover, let a< g(x) <
wm (a,b).

Further let w,,y, be arbitrary two poinis of (a,b) such that g(x,)
< Yo < Xy, and let po(x) be an arbitrary continuous and strictly increasing
Sfunction on {y,, ®,> such that

(6) PolTo) = Yoy  Po(Yo) = 9(Xo) -

Then there exists a unique continuous and strictly increasing function
@(x) on (a,b) satisfying equation (1) in (a, b) and such that

(7) P(®) = @o(®)  for @ e (Yo, %o -

As an immediate consequence of Lemma 2 we obtain the following

LeEMMA 3. If the function g(x) fulfils the conditions of Lemma 2, then
every continuous and strictly increasing solution ¢(x) of equation (1) in
(a, b) is completely determined by its values in an arbitrary right neigh-
bourhood (a, a+ ) of the point a.

Now we shall prove an analogue of Lemma 2 for differentiable
functions.

THEOREM 1. Under conditions of Lemma 2, if, moreover, g(x) is of
class C* in (a, b) with ¢'(x) > 0 in (a, b), and @|(x) is of class C* in (Yo, o>
with @o(z) > 0 in (Yo, Ty, and if (2)

8 : =g'(wo)
®) olve) = L2

then the continuous and strictly imcreasing solution @(x) of equation (1)
fulfilling (7) is of class C" in (a,b).

(*) @5(@,) and @j(y,) denote here the left derivative and the right derivative of g,
at the points z, and y,, respectively.

15*
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Proof. Let the sequence x, be defined for integral » (3) by
(9) (Dn = (Pn(xo) .

It is readily seen that the sequence x, is strictly decreasing and

(10) (a,b) = U {n+1y Tn) »

where 7, =— oo if lim g(z) =b, and if lim g(x) =b" < b, then n, is
z—b—0 z—>b—0

determined by the condition @, 4, € <b’, b) and we put z,, & b. At any
case my < 0.
By (6) and (9)

‘Po—l(w) € (Yo, Zy) for ze(my, 1) = (g(“’o)a yo) .
In virtue of (1) and (7) we get hence for & ¢ (g(x), %,
(%) = p(polgs (@))) = ¢ (¢ (9o (@) = glgo" (@)1,

which shows that ¢ is of class C* in (g(2,), ¥o) = (%2, 4,). Now

lim ¢'(x) = lim @i(z) = @5(Yo) ,

Z—Yo+0 T—yYo+0

since ¢, is of class C' in {(y,, %>, and

: , . , . g'(x) . g'(®)  g'(m)
]. = llm == ]. —_— = l m 7 f— 7
. :;g R (z) Jim g [p(x)] z_g.rlw,( 7). J% L @) = ol

= @o(¥%o)

since ¢ satisfies equation (1) and ¢, is of class C* in (y,, z,> and fulfils (8).
This proves, in view of the continuity of ¢, that ¢’ exists and is continuous
at ¢ = x,. Consequently ¢ is of class C' in (=,, x,).

Now suppose that ¢ is of class C' in (2, x,) for an # > 2. According
0 (9) @(®:) = ;41 for all ¢ > ny, and consequently

P71 x) € (Lny Tn-2) for @ € (Tp41y Tn—1) .

Furthermore, ¢! is of class C* in (£,441, Zn-1), Since differentiating (1)
we get ¢'(xz) # 0 for x € (Tn, Tn_2). Thus, for x € (T,41y Tn-1),

(@) = p(p(p~'(x))) = glp~"(2)]

is of class (', and consequently ¢ is of class C' in (%541, %,). Induction
now yields that ¢ is of class C! in (T4, %,) for every » > 0, and quite
similarly one can prove that ¢ is of class C' in (2, _,) for every n < —n,.
By (10) ¢ is of class C' in (a, b), which was to be proved.

(®) Positive and negative. For negative =, ¢" denotes the inverse function
—n

to 7™,
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The following lemma is easily established by induction.

LeMMA 4. If a function ¢ is of class C" in (a, b) and takes values in
(a, b), then

& o 2 Py’ (@), vy 9 @) g @ (@], J=1,..,7,

=1

w?

where Pi;(ty, ..., t;) are polynomzials.

By almost the same argument as in the proof of Theorem 1 one can
prove the following

THEOREM 2. Under conditions of Lemma 2, if, moreover, g(z) is of class C"
in (a,b), 1 <7< oo, with g'(x) > 0 in (a, b), and o) is of class C" in
(Yo, ®o> with go(x) > 0 in (Yo, Zoy, and 'Lf (*)

7

2 Pij{@i(@o) s oer 08(@)) 90 (Wo) = §P(@e) y G =1, .y,

where P;; are the polynomials occurring itn Lemma 4, then the continuous
and strictly increasing solution ¢(x) of equation (1) fulfilling (7) is of class C”
in (a,b).

The following result is now an easy consequence of Theorem 2.

THEOREM 3. If geDi, 1 <7< oo, and g(z) # @ in (— oo, +oco),
then equation (1) has a solution ¢ e Dy.

Proof. The condition g(x) # = implies that either g(z) <z iIn
(— oo, +o0), OF g(@) > & in (— co, -+o0). In the former case Theorem 2
with (a, b) = (— oo, + oo) shows that equation (1) has a strictly increasing
solution ¢ of class C" in (— co, 4o0). Since ¢[p(x)l¢'(v) = ¢'(x) # 0,
¢ must belong to Dj.

If g(z) > » in (— oo, 4 o0), then f(z) = —g(— w)<min(—oo + o0)
and f belongs to Dj. Thus there exists a y e DI such that y*z) = f(2)
in (— oo, +cc). The function ¢(z) = —y(— z) belongs to D] and satlsfles
equation (1) in (— oo, 4 o).

§ 4. The conclusion of Theorem 3 fails to hold if g has fixed points
in (— oo, +o0), as may be seen from examples IV and V in § 5. In the
present section we shall consider equation (1) in an interval <a, b),
— oo < a<b< 400, under the condition that a< g(z) <& in (a,b),
g'(x) exists, is continuous and positive in {a, b), in particular (3)

(11) g'a) =8>0.
(*) The derivatives of ¢, at z, and y, denote the left and right derivatives,

respectively.
(%) g’(a) denotes the right derivative of g at a.
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Suppose that equation (1) has a strictly inecreasing solution ¢ that
is of class C! in {(a, b). Differentiating (1) we obtain

(12) ?'lp(@)]¢' () = g'(2) .
The function ¢(z) fulfils the condition (cf. [5])
g@)<eg(r)<z in (a,bd),

whence it follows in view of the continuity of ¢ and g at a that

(13) pla)=ua.
Thus we obtain by (12) and (11)
(14) ¢'(a) =Vs.

Replacing in (12) ¢ by ¢(x) we get in view of (1)
¢'l9(@)]eTe(x)] = g'le(=)],
whenee by (12)
¢y gz
(15) P9~ 7le@]”

By (1) ¢lgi(x)] = ¢**+Y(a) = g¥[¢(x)]. Consequently we obtain by (15)

Plgiz)]  g'lg¥=)]

. = - ’ =0,1,2, ..,
¢'lg (@) g'[g'le ()]
whence
(16) ?'(@) [1 Ig@)] “")] n=1,2,3,..
¢'[g()] g'lg'(w

As n oo, we obtain from (16) and (14) for z € (a, b)

an (@) =Va | [ S
Y ” 7[5lp@)]
(17) shows that for y = ¢(z) the infinite product

_ 719
18 @0 =11 gigw)

must converge and the function ¢ satisfies in (a, b) the differential
equation

(19) ¢ =VsG(z,p).
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Thus we have proved the following

THEOREM 4. If g(x) is of class C* in (a,b), a < g(x) <z in (a,b)
and ¢'(x)>0 in <{a,b), and if @(x) is a strictly increasing solution
of equation (1) in (a,b), of class C* in <{a,b), then ¢ satisfies in (a,b)
the differential equation (19), where s and G are given by (11) and (18),
respectively.

A more detailed discussion of equation (19) as well as of problems

of the uniqueness and existence connected therewith is deferred to a future
publication.

§ 5. We conclude the paper with a few examples.

ExAMPLE II. Let ¢(x) =s(z—-a)+a, 0<s<1l, xela,b). Then
g'(x) = s and G(x, y) = 1. Equation (19) becomes ¢’ = }/s which together
with (13) implies that ¢(z) = Vs(z— a) +a.

If we have ¢g(x) =s(z—a)+a in an interval (c,a), — co<e < a
< +o0, and ¢ is a strictly increasing solution of equation (1), of class C*
in (¢, a>, then the function y(x) = 2a—¢(2a— ) is a strictly increasing
solution of the equation

Y (@) = 2a—g(2a—2),

of class C! in the interval {a, 2a— ¢). But, since 2a— g(2a— ) = s(z—a) + a,
we must have y(x) =)s(x—a)+a in <(a,2a—c), whence also ¢(z)
=ys(r—a)+a in (¢, a).

If s > 1 and ¢(z) is a solution of equation (1) with ¢g(2) = s(x—a) +a,
of class ¢! in an interval I containing a, then y(z) = ¢~(2) is a solution
of the equation

viz) = s z—a)ta,
of class (' in ¢(I). Consequently w(z) =()/s) (x—a)+a in ¢(I) and
@(®) = Vs(z—a)+a in I.
If s =1, then g(z) = 2 and ¢(2) = # is the only increasing solution

of equation (1) in any interval I ([3], theorem 15.2).
Thus we arrive at the following conclusion:

THEOREM 5. If
gx) =8(x—a)+a, s>0,
in an nterval I C (— oo, 4+ co), where a € I, then
¢(@) = Vs(@—a)+a

is the only strictly increasing solution of equation (1) of class C' in I.
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ExampLE ITII. Let <(a,b) =<0, o), ¢g(x) =z/(z+1). Then g'(z)
=1/(z+1)3 g*(z) = »/(nw+1), s =1, and

y 2
n—1 (1 + -
- Lﬂ) — im YL _ ¥
) _fltl—'lg L1 2 ﬁ‘}zi»oo (nz+1P@  a2°
=0 iz +1
Equation (19) becomes
¢’ = [pP|z?

and has the solutions ¢(x) = 0 and ¢(2) = /(cz +1). The former evidently
does not satisfy (1) and inserting the latter into (1) we see that ¢ must
be equal to 3. Thus finally we get

T
@(x) = m .

Note that in this case not every solution of equation (19) satisfies
equation (1).

ExAMPLE IV. Let us fix arbitrary s, s’ such that

I<s<l<ys,

and put _
u=1 8 —1_’ v:l—l—'/su
28— Vs s’
Then
1, , , 1 8—1
v—u=?[(s—1)—(s—]/s)u]——w—>0,
and thus

l<u<ov<l,

Let h(x) be an arbitrary (but fixed) convex function, of class C*
in {u,v), and fulfilling the following conditions:

h{u)=s8u, h@®) =Vsu, k) =s, ) =s.

Such a function surely exists, since

h(v)—h(u) = (Vs—s)u == ~y! Vs V

1 ]/E—s s'—1
<=(8—1 = < =s8(v—u).
2( )1—]/s 2 ( )

We define the function g(x) in (— oo, 4 oco) as follows (cf. Fig. 1):

sz for x e (— oo, u),
(20) g(@) = {h(x) for z e (u,v>,
8'(x—1)+1 for ze (v, +00).
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The funection g thus defined belongs to the class D, and if we choose
h(xz) more thoroughly we may make g to belong to D] with any 7 > 1.
Moreover, let us note that, since % is convex on (%, v>, we have

(21) s<g(x)<s'.

We shall show that equation (1) with g defined by (20) has not
a solution ¢ € D;. Supposing the contrary, let ¢ be such a solution. By
Theorem 5

(22) @) = Vs in (—oo,u).

A

Fig. 1

In virtue of Lemma 3 the function ¢(x) is completely determined

by (22) in (0, 1). But it has been proved in [5] that lim ¢’(z) does not
T—1—-0

exist. Consequently ¢ cannot be of class C' in (— oo, 4+ 00).

In the above example, though equation (1) has no solution of clags C*
in the whole (— oo, +o0) (%), nevertheless every point of (— oo, + o0)
has a neighbourhood in which equation (1) has a local solution of class C'.
(The function indicated on Fig. 1 is of class C* in (— oo, 1), and a similar
construction can be carried out in the interval (0, 4+ oc).) But we can

(®) The argument presented shows that equation (1) has no strictly increasing
golution of class C!' in (—oo, +o0); but every solution of (1) must be invertible ([3],
lemma 15.1) and (1) cannot have strictly decreasing solutions, since function (20) has an
even number of fixed points ([3], theorem 15.10).
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modify this example as to obtain an equation’that has not even a local
solution of class C! in a neighbourhood of zero.

ExAMPLE V. Function (20) occurring in example IV depends on s
and s'. (For given s and s’ we consider the function h(x) as fixed.) To
make this dependence more explicit we shall denote function (20) re-
stricted to the interval (0, 1> by g*(s, s’; @).

A

1

X, Xy X,

)

Fig. 2

We put on =277, $s = 2'(2—"’, n =0, +1, +2,.. These sequences
are strictly monotonic and
lm z, =0, lim z, = 400,
n—>+00 n——00

lim s, =1, lim s, =0.
n—>+00 n——00

For every n we define the function ga(®) on {Zni1, > by

-1, T—Tnt1
gn(®) = Bpy1+ (@n— Zp1) 9‘(3n+1, Sp y ) -
Tn — Tp+1

In view of (21) we have

1

(23) Sprt < gn(®) < 8p  fOr € (Bps1, Tn) .
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Now we define the function g(x) on (0, +oo) as follows:

gn() for € (Zp41, 20>, n =0, £2, +4, ..,
(24) g(x) =1g"(x) for we(@Tpyr,®n>, n = +1, +3, ...,
0 for x =0,

and we extend g(x) onto (— oo, +oco) by the condition that it is odd:

{25) g(@) =—g(—x)

(ef. Fig. 2). Function (24) clearly is of class €' in (— oo, 0) v (0, + oco).
But condition (23) together with (25) show that
(26) lim ¢'(z) =1 .

n—>00

Since ¢g(x) is continuous, condition (26) implies that ¢'(0) exists
and equals 1. Thus ¢ is of class €' in (— oo, + o) and in fact g € Dj (cf. in
particular (23) and (25)).

It follows from what has been shown in example IV that equation (1)
with the function g given by (24) cannot have a strictly increasing solu-
tion ¢ of class C' in <{zp+1, »)> (for any ). Consequently equation (1)
cannot have a strictly increasing solution of class C' in any neighbourhood
-of the origin.
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