ANNALES POLONICI MATHEMATICI XXII (1969)

Fractional iteration of differentiable functions

by M. Kuczma (Katowice)

§ 1. In the present paper we shall be concerned with differentiable solutions φ of the functional equation

$$\varphi^2(x) = g(x) ,$$

where g is a given function and φ^2 denotes the second functional iterate of φ . (More generally, for a given function f we denote by f^n its n-th iterate: $f^0(x) = x$, $f^{n+1}(x) = f[f^n(x)]$, n = 0, 1, 2, ...) These investigations have been originated by the following problem of Moszner [4]:

Let D_k^r , $1 \le r \le +\infty$, denote the class of all mappings

$$f: R^k \to R^k$$

that are of class C^r in the whole R^k and have a positive Jacobian in the whole R^k . Does there exist, for every $g \in D_k^r$, a solution φ of equation (1) belonging to the class D_k^r ?

As we shall see, the answer to this question is negative.

§ 2. In the present section we exhibit an example of a function $g \in D_2^{\infty}$ for which equation (1) has no solution at all. We start with a lemma (1).

LEMMA 1. Let E be an arbitrary set and g arbitrary function on E taking values in E. Further suppose that there exist in E points $a \neq b$ such that g(a) = b, g(b) = a, and $g^2(x) = x$ implies that either x = a, or x = b, or g(x) = x. Then equation (1) has no solution in E.

Proof. Suppose that a function φ , defined in E, satisfies equation (1) in E, and put $c = \varphi(a)$, $d = \varphi(b)$. Then $g^2(c) = c$ and $g^2(d) = d$. If c = a, i.e. $\varphi(a) = a$, then $b = g(a) = \varphi^2(a) = a$, contrary to the assumption. If c = b, i.e. $\varphi(a) = b$, then $\varphi(b) = \varphi^2(a) = g(a) = b$ and $a = g(b) = \varphi^2(b) = b$, contrary to the assumption. Lastly, g(c) = c implies $\varphi(b) = \varphi[g(a)] = \varphi^3(a) = g[\varphi(a)] = g(c) = c$, i.e. $\varphi(a) = \varphi(b)$, whence g(a) = g(b) and b = a, again a contradiction.

⁽¹⁾ This lemma is implied by the general considerations of Isaacs [1]. (Cf. also [3], theorem 15.6.) But we sketch here a proof because of its simplicity.

Now we proceed to give the example announced.

Example I. We consider the transform $g: R^2 \to R^2$ given by

(2)
$$g: \begin{cases} x' = -\frac{1}{2}(x^2 + y^2 + 1)(x + y), \\ y' = -\frac{1}{2}(x^2 + y^2 + 1)y. \end{cases}$$

Let us write shortly $u = u(x, y) = \frac{1}{2}(x^2 + y^2 + 1)$. Then $u_x = x$, $u_y = y$ and

$$\begin{vmatrix} \frac{\partial x'}{\partial x} & \frac{\partial x'}{\partial y} \\ \frac{\partial y'}{\partial x} & \frac{\partial y'}{\partial y} \end{vmatrix} = \begin{vmatrix} -x(x+y) - u & -y(x+y) - u \\ -xy & -y^2 - u \end{vmatrix}$$
$$= (x^2 + xy + u)(y^2 + u) - xy(xy + y^2 + u) = u(x^2 + y^2 + u) \geqslant \frac{1}{4}.$$

Consequently $g \in D_2^{\infty}$. For a = (1, 0) and b = (-1, 0) we have g(a) = b and g(b) = a. The equation $g^2(x, y) = (x, y)$ has the form

(3)
$$-u'(x'+y') = x, \quad -u'y' = y,$$

where

$$u' = u(x', y') = \frac{1}{2}[(x')^2 + (y')^2 + 1] = \frac{1}{2} + \frac{1}{2}u^2(x^2 + 2xy + 2y^2)$$
.

Thus (3) may be written as

$$(4) u'u(x+2y) = x, u'uy = y.$$

If $u'u \neq 1$, then from the second equation of (4) we obtain y = 0, and if u'u = 1, then y = 0 results from the first equation of (4). Consequently y must be zero, u'u reduces to

$$u'u = \left(\frac{1}{2} + \frac{x^2}{2} \left(\frac{x^2+1}{2}\right)^2\right) \frac{x^2+1}{2} = \frac{1}{16} \left(4 + x^2(x^2+1)^2\right) (x^2+1) ,$$

and system (4) to

$$u'ux = x$$
.

If $u'u \neq 1$, then x = 0, and consequently we get the solution (x, y) = (0, 0), which is a fixed point of g: g(0, 0) = (0, 0). To solve the equation u'u = 1 we put $t = x^2 + 1$ and thus the equation becomes

$$t^4 - t^3 + 4t - 16 = 0$$

i.e.

(5)
$$(t-2)(t^3+t^2+2t+8)=0.$$

But, since $t = x^2 + 1 \ge 1$, we have $t^3 + t^2 + 2t + 8 \ge 12$ and consequently t = 2 is the only admissible solution of (5). It leads us to x = 1

and x = -1, i.e. a = (1, 0) and b = (-1, 0) are the only fixed points of g^2 that are not fixed points of g.

As we see, the function g given by (2) fulfils the assumptions of Lemma 1, and thus equation (1) has no solution in \mathbb{R}^2 .

§ 3. A similar situation cannot happen if k = 1. Equation (1) with a continuous and strictly increasing function g on $(-\infty, +\infty)$ always has a continuous and strictly increasing solution φ (cf. [3], corollary to theorem 15.7). In particular, we have the following

LEMMA 2 ([2], [3]). Let g(x) be continuous and strictly increasing in an interval (a, b), $-\infty \le a < b \le +\infty$, moreover, let a < g(x) < x in (a, b).

Further let x_0 , y_0 be arbitrary two points of (a,b) such that $g(x_0) < y_0 < x_0$, and let $\varphi_0(x)$ be an arbitrary continuous and strictly increasing function on $\langle y_0, x_0 \rangle$ such that

(6)
$$\varphi_0(x_0) = y_0, \quad \varphi_0(y_0) = g(x_0).$$

Then there exists a unique continuous and strictly increasing function $\varphi(x)$ on (a, b) satisfying equation (1) in (a, b) and such that

(7)
$$\varphi(x) = \varphi_0(x) \quad \text{for } x \in \langle y_0, x_0 \rangle.$$

As an immediate consequence of Lemma 2 we obtain the following

LEMMA 3. If the function g(x) fulfils the conditions of Lemma 2, then every continuous and strictly increasing solution $\varphi(x)$ of equation (1) in (a,b) is completely determined by its values in an arbitrary right neighbourhood $(a,a+\delta)$ of the point a.

Now we shall prove an analogue of Lemma 2 for differentiable functions.

THEOREM 1. Under conditions of Lemma 2, if, moreover, g(x) is of class C^1 in (a, b) with g'(x) > 0 in (a, b), and $\varphi_0(x)$ is of class C^1 in $\langle y_0, x_0 \rangle$ with $\varphi'_0(x) > 0$ in $\langle y_0, x_0 \rangle$, and if (2)

(8)
$$\varphi_0'(y_0) = \frac{g'(x_0)}{\varphi_0'(x_0)},$$

then the continuous and strictly increasing solution $\varphi(x)$ of equation (1) fulfilling (7) is of class C^1 in (a, b).

⁽²⁾ $\varphi'_0(x_0)$ and $\varphi'_0(y_0)$ denote here the left derivative and the right derivative of φ_0 at the points x_0 and y_0 , respectively.

Proof. Let the sequence x_n be defined for integral n (3) by

$$(9) x_n = \varphi^n(x_0).$$

It is readily seen that the sequence x_n is strictly decreasing and

$$(a,b) = \bigcup_{n=n}^{\infty} \langle x_{n+1}, x_n \rangle,$$

where $n_0 = -\infty$ if $\lim_{x \to b^{-0}} g(x) = b$, and if $\lim_{x \to b^{-0}} g(x) = b' < b$, then n_0 is determined by the condition $x_{n_0+1} \in \langle b', b \rangle$ and we put $x_{n_0} \stackrel{\text{df}}{=} b$. At any case $n_0 < 0$.

By (6) and (9)

$$\varphi_0^{-1}(x) \in (y_0, x_0)$$
 for $x \in (x_2, x_1) = (g(x_0), y_0)$.

In virtue of (1) and (7) we get hence for $x \in (g(x_0), y_0)$

$$\varphi(x) = \varphi\left(\varphi_0\left(\varphi_0^{-1}(x)\right)\right) = \varphi\left(\varphi\left(\varphi_0^{-1}(x)\right)\right) = g\left[\varphi_0^{-1}(x)\right],$$

which shows that φ is of class C^1 in $(g(x_0), y_0) = (x_2, x_1)$. Now

$$\lim_{x \to y_0 + 0} \varphi'(x) = \lim_{x \to y_0 + 0} \varphi'_0(x) = \varphi'_0(y_0) ,$$

since φ_0 is of class C^1 in $\langle y_0, x_0 \rangle$, and

$$\lim_{x \to y_0 \to 0} \varphi'(x) = \lim_{x \to x_0 \to 0} \varphi'[\varphi(x)] = \lim_{x \to x_0 \to 0} \frac{g'(x)}{\varphi'(x)} = \lim_{x \to x_0 \to 0} \frac{g'(x)}{\varphi'_0(x)} = \frac{g'(x_0)}{\varphi'_0(x_0)} = \varphi'_0(y_0) ,$$

since φ satisfies equation (1) and φ_0 is of class C^1 in $\langle y_0, x_0 \rangle$ and fulfils (8). This proves, in view of the continuity of φ , that φ' exists and is continuous at $x = x_0$. Consequently φ is of class C^1 in (x_2, x_0) .

Now suppose that φ is of class C^1 in (x_n, x_0) for an $n \ge 2$. According to (9) $\varphi(x_i) = x_{i+1}$ for all $i > n_0$, and consequently

$$\varphi^{-1}(x) \in (x_n, x_{n-2})$$
 for $x \in (x_{n+1}, x_{n-1})$.

Furthermore, φ^{-1} is of class C^1 in (x_{n+1}, x_{n-1}) , since differentiating (1) we get $\varphi'(x) \neq 0$ for $x \in (x_n, x_{n-2})$. Thus, for $x \in (x_{n+1}, x_{n-1})$,

$$\varphi(x) = \varphi(\varphi(\varphi^{-1}(x))) = g[\varphi^{-1}(x)]$$

is of class C^1 , and consequently φ is of class C^1 in (x_{n+1}, x_0) . Induction now yields that φ is of class C^1 in (x_{n+1}, x_0) for every $n \ge 0$, and quite similarly one can prove that φ is of class C^1 in (x_1, x_{-n}) for every $n \le -n_0$. By (10) φ is of class C^1 in (a, b), which was to be proved.

^(*) Positive and negative. For negative n, φ^n denotes the inverse function to φ^{-n} .

The following lemma is easily established by induction.

LEMMA 4. If a function φ is of class C^r in (a, b) and takes values in (a, b), then

$$rac{d^{j}}{dx^{j}}arphi^{2}(x) = \sum_{i=1}^{j} P_{ij} ig(arphi'(x), \, ..., \, arphi^{(j)}(x) ig) arphi^{(i)} [arphi(x)] \, , \, \, \, \, \, \, j = 1 \, , \, ..., \, r \, ,$$

where $P_{ij}(t_1, ..., t_j)$ are polynomials.

By almost the same argument as in the proof of Theorem 1 one can prove the following

THEOREM 2. Under conditions of Lemma 2, if, moreover, g(x) is of class C^r in (a, b), $1 \le r \le \infty$, with g'(x) > 0 in (a, b), and $\varphi_0(x)$ is of class C^r in $\langle y_0, x_0 \rangle$ with $\varphi'_0(x) > 0$ in $\langle y_0, x_0 \rangle$, and if (4)

$$\sum_{i=1}^{j} P_{ij} \big(\varphi_0'(x_0), \ldots, \varphi_0^{(j)}(x_0) \big) \varphi_0^{(i)}(y_0) = g^{(j)}(x_0), \quad j = 1, \ldots, r,$$

where P_{ij} are the polynomials occurring in Lemma 4, then the continuous and strictly increasing solution $\varphi(x)$ of equation (1) fulfilling (7) is of class C^r in (a, b).

The following result is now an easy consequence of Theorem 2.

THEOREM 3. If $g \in D_1^r$, $1 \le r \le \infty$, and $g(x) \ne x$ in $(-\infty, +\infty)$, then equation (1) has a solution $\varphi \in D_1^r$.

Proof. The condition $g(x) \neq x$ implies that either g(x) < x in $(-\infty, +\infty)$, or g(x) > x in $(-\infty, +\infty)$. In the former case Theorem 2 with $(a, b) = (-\infty, +\infty)$ shows that equation (1) has a strictly increasing solution φ of class C^r in $(-\infty, +\infty)$. Since $\varphi'[\varphi(x)]\varphi'(x) = g'(x) \neq 0$, φ must belong to D_1^r .

If g(x) > x in $(-\infty, +\infty)$, then f(x) = -g(-x) < x in $(-\infty, +\infty)$ and f belongs to D_1^r . Thus there exists a $\psi \in D_1^r$ such that $\psi^2(x) = f(x)$ in $(-\infty, +\infty)$. The function $\varphi(x) = -\psi(-x)$ belongs to D_1^r and satisfies equation (1) in $(-\infty, +\infty)$.

§ 4. The conclusion of Theorem 3 fails to hold if g has fixed points in $(-\infty, +\infty)$, as may be seen from examples IV and V in § 5. In the present section we shall consider equation (1) in an interval (a, b), $-\infty < a < b \le +\infty$, under the condition that a < g(x) < x in (a, b), g'(x) exists, is continuous and positive in (a, b), in particular (5)

$$g'(a)=s>0.$$

⁽⁴⁾ The derivatives of φ_0 at x_0 and y_0 denote the left and right derivatives, respectively.

⁽⁵⁾ g'(a) denotes the right derivative of g at a.

M. Kuczma

Suppose that equation (1) has a strictly increasing solution φ that is of class C^1 in (a, b). Differentiating (1) we obtain

(12)
$$\varphi'[\varphi(x)]\varphi'(x) = g'(x).$$

The function $\varphi(x)$ fulfils the condition (cf. [5])

$$g(x) < \varphi(x) < x$$
 in (a, b) ,

whence it follows in view of the continuity of φ and g at a that

$$\varphi(a)=a.$$

Thus we obtain by (12) and (11)

$$\varphi'(a) = \sqrt{s} .$$

Replacing in (12) x by $\varphi(x)$ we get in view of (1)

$$\varphi'[g(x)]\varphi'[\varphi(x)] = g'[\varphi(x)],$$

whence by (12)

(15)
$$\frac{\varphi'(x)}{\varphi'[g(x)]} = \frac{g'(x)}{g'[\varphi(x)]}.$$

By (1) $\varphi[g^i(x)] = \varphi^{2i+1}(x) = g^i[\varphi(x)]$. Consequently we obtain by (15)

$$rac{arphi'[g^i(x)]}{arphi'[g^{i+1}(x)]} = rac{g'[g^i(x)]}{g'[g^i(arphi(x))]}\,, \qquad i = 0\,,\,1\,,\,2\,,\,\dots\,,$$

whence

(16)
$$\frac{\varphi'(x)}{\varphi'[g^n(x)]} = \prod_{i=0}^{n-1} \frac{g'[g^i(x)]}{g'[g^i(\varphi(x))]}, \quad n = 1, 2, 3, \dots$$

As $n \to \infty$, we obtain from (16) and (14) for $x \in (a, b)$

(17)
$$\varphi'(x) = \sqrt{s} \prod_{i=0}^{\infty} \frac{g'[g^i(x)]}{g'[g^i(\varphi(x))]}.$$

(17) shows that for $y = \varphi(x)$ the infinite product

(18)
$$G(x, y) = \prod_{i=0}^{\infty} \frac{g'[g^{i}(x)]}{g'[g^{i}(y)]}$$

must converge and the function φ satisfies in (a,b) the differential equation

(19)
$$\varphi' = \sqrt{\bar{s}} G(x, \varphi) .$$

Thus we have proved the following

THEOREM 4. If g(x) is of class C^1 in (a, b), a < g(x) < x in (a, b) and g'(x) > 0 in (a, b), and if $\varphi(x)$ is a strictly increasing solution of equation (1) in (a, b), of class C^1 in (a, b), then φ satisfies in (a, b) the differential equation (19), where s and G are given by (11) and (18), respectively.

A more detailed discussion of equation (19) as well as of problems of the uniqueness and existence connected therewith is deferred to a future publication.

§ 5. We conclude the paper with a few examples.

EXAMPLE II. Let g(x) = s(x-a) + a, 0 < s < 1, $x \in (a, b)$. Then $g'(x) \equiv s$ and $G(x, y) \equiv 1$. Equation (19) becomes $\varphi' = \sqrt{s}$ which together with (13) implies that $\varphi(x) = \sqrt{s}(x-a) + a$.

If we have g(x) = s(x-a) + a in an interval (c, a), $-\infty \le c < a < +\infty$, and φ is a strictly increasing solution of equation (1), of class C^1 in (c, a), then the function $\psi(x) = 2a - \varphi(2a - x)$ is a strictly increasing solution of the equation

$$\psi^2(x) = 2a - g(2a - x),$$

of class C^1 in the interval $\langle a, 2a-c \rangle$. But, since 2a-g(2a-x)=s(x-a)+a, we must have $\psi(x)=\sqrt{s}(x-a)+a$ in $\langle a, 2a-c \rangle$, whence also $\varphi(x)=\sqrt{s}(x-a)+a$ in $\langle a, 2a-c \rangle$, whence also $\varphi(x)=\sqrt{s}(x-a)+a$ in $\langle a, 2a-c \rangle$.

If s > 1 and $\varphi(x)$ is a solution of equation (1) with g(x) = s(x-a) + a, of class C^1 in an interval I containing a, then $\psi(x) = \varphi^{-1}(x)$ is a solution of the equation

$$\psi^2(x) = s^{-1}(x-a) + a$$
,

of class C^1 in $\varphi(I)$. Consequently $\psi(x) = (\sqrt{s})^{-1}(x-a) + a$ in $\varphi(I)$ and $\varphi(x) = \sqrt{s}(x-a) + a$ in I.

If s = 1, then g(x) = x and $\varphi(x) = x$ is the only increasing solution of equation (1) in any interval I ([3], theorem 15.2).

Thus we arrive at the following conclusion:

THEOREM 5. If

$$g(x) = s(x-a) + a, \quad s > 0,$$

in an interval $I \subset (-\infty, +\infty)$, where $a \in I$, then

$$\varphi(x) = \sqrt{s}(x-a) + a$$

is the only strictly increasing solution of equation (1) of class C^1 in I.

EXAMPLE III. Let $(a, b) = (0, \infty)$, g(x) = x/(x+1). Then $g'(x) = 1/(x+1)^2$, $g^n(x) = x/(nx+1)$, s = 1, and

$$G(x,y) = \lim_{n \to \infty} \prod_{i=0}^{n-1} \frac{\left(1 + \frac{y}{iy+1}\right)^2}{\left(1 + \frac{x}{ix+1}\right)^2} = \lim_{n \to \infty} \frac{(ny+1)^2}{(nx+1)^2} = \frac{y^2}{x^2}.$$

Equation (19) becomes

$$\varphi' = [\varphi]^2/x^2$$

and has the solutions $\varphi(x) \equiv 0$ and $\varphi(x) = x/(cx+1)$. The former evidently does not satisfy (1) and inserting the latter into (1) we see that c must be equal to $\frac{1}{2}$. Thus finally we get

$$\varphi(x) = \frac{x}{\frac{1}{2}x+1}.$$

Note that in this case not every solution of equation (19) satisfies equation (1).

EXAMPLE IV. Let us fix arbitrary s, s' such that

and put

$$u = \frac{1}{2} \frac{s'-1}{s'-\sqrt{s}}, \quad v = 1 - \frac{1-\sqrt{s}u}{s'}.$$

Then

$$v-u=\frac{1}{s'}[(s'-1)-(s'-\sqrt{s})u]=\frac{s'-1}{2s'}>0$$

and thus

$$0 < u < v < 1$$
.

Let h(x) be an arbitrary (but fixed) convex function, of class C^1 in $\langle u, v \rangle$, and fulfilling the following conditions:

$$h(u) = su$$
, $h(v) = \sqrt{s}u$, $h'(u) = s$, $h'(v) = s'$.

Such a function surely exists, since

$$\begin{split} h(v) - h(u) &= \left(\sqrt{s} - s \right) u = \frac{1}{2} \left(s' - 1 \right) \frac{\sqrt{s} - s}{s' - \sqrt{s}} \\ &< \frac{1}{2} \left(s' - 1 \right) \frac{\sqrt{s} - s}{1 - \sqrt{s}} < \frac{s' - 1}{2} = s'(v - u) \; . \end{split}$$

We define the function g(x) in $(-\infty, +\infty)$ as follows (cf. Fig. 1):

$$g(x) = \begin{cases} sx & \text{for } x \in (-\infty, u), \\ h(x) & \text{for } x \in \langle u, v \rangle, \\ s'(x-1)+1 & \text{for } x \in (v, +\infty). \end{cases}$$

The function g thus defined belongs to the class D_1^1 , and if we choose h(x) more thoroughly we may make g to belong to D_1^r with any $r \ge 1$. Moreover, let us note that, since h is convex on $\langle u, v \rangle$, we have

$$(21) s \leqslant g'(x) \leqslant s'.$$

We shall show that equation (1) with g defined by (20) has not a solution $\varphi \in D_1^1$. Supposing the contrary, let φ be such a solution. By Theorem 5

(22)
$$\varphi(x) = \sqrt{s}x \quad \text{in } (-\infty, u).$$

Fig. 1

In virtue of Lemma 3 the function $\varphi(x)$ is completely determined by (22) in (0, 1). But it has been proved in [5] that $\lim_{x\to 1-0} \varphi'(x)$ does not exist. Consequently φ cannot be of class C^1 in $(-\infty, +\infty)$.

In the above example, though equation (1) has no solution of class C^1 in the whole $(-\infty, +\infty)$ (6), nevertheless every point of $(-\infty, +\infty)$ has a neighbourhood in which equation (1) has a local solution of class C^1 . (The function indicated on Fig. 1 is of class C^1 in $(-\infty, 1)$, and a similar construction can be carried out in the interval $(0, +\infty)$.) But we can

⁽⁶⁾ The argument presented shows that equation (1) has no strictly increasing solution of class C^1 in $(-\infty, +\infty)$; but every solution of (1) must be invertible ([3], lemma 15.1) and (1) cannot have strictly decreasing solutions, since function (20) has an even number of fixed points ([3], theorem 15.10).

modify this example as to obtain an equation that has not even a local solution of class C^1 in a neighbourhood of zero.

EXAMPLE V. Function (20) occurring in example IV depends on s and s'. (For given s and s' we consider the function h(x) as fixed.) To make this dependence more explicit we shall denote function (20) restricted to the interval $\langle 0, 1 \rangle$ by $g^*(s, s'; x)$.

Fig. 2

We put $x_n = 2^{-n}$, $s_n = 2^{-(2^{-n})}$, $n = 0, \pm 1, \pm 2, ...$ These sequences are strictly monotonic and

$$\lim_{n\to+\infty} x_n = 0$$
, $\lim_{n\to-\infty} x_n = +\infty$, $\lim_{n\to+\infty} s_n = 1$, $\lim_{n\to-\infty} s_n = 0$.

For every n we define the function $g_n(x)$ on $\langle x_{n+1}, x_n \rangle$ by

$$g_n(x) = x_{n+1} + (x_n - x_{n+1}) g^* \left(s_{n+1}, s_n^{-1}; \frac{x - x_{n+1}}{x_n - x_{n+1}} \right).$$

In view of (21) we have

$$(23) s_{n+1} \leqslant g'_n(x) \leqslant s_n^{-1} \text{for } x \in \langle x_{n+1}, x_n \rangle.$$

Now we define the function g(x) on $(0, +\infty)$ as follows:

(24)
$$g(x) = \begin{cases} g_n(x) & \text{for } x \in (x_{n+1}, x_n), \ n = 0, \pm 2, \pm 4, \dots, \\ g_n^{-1}(x) & \text{for } x \in (x_{n+1}, x_n), \ n = \pm 1, \pm 3, \dots, \\ 0 & \text{for } x = 0, \end{cases}$$

and we extend g(x) onto $(-\infty, +\infty)$ by the condition that it is odd:

$$(25) g(x) = -g(-x)$$

(cf. Fig. 2). Function (24) clearly is of class C^1 in $(-\infty, 0) \cup (0, +\infty)$. But condition (23) together with (25) show that

$$\lim_{n\to\infty}g'(x)=1.$$

Since g(x) is continuous, condition (26) implies that g'(0) exists and equals 1. Thus g is of class C^1 in $(-\infty, +\infty)$ and in fact $g \in D_1^1$ (cf. in particular (23) and (25)).

It follows from what has been shown in example IV that equation (1) with the function g given by (24) cannot have a strictly increasing solution φ of class C^1 in $\langle x_{n+1}, x_n \rangle$ (for any n). Consequently equation (1) cannot have a strictly increasing solution of class C^1 in any neighbourhood of the origin.

References

- [1] R. Isaacs, Iterates of fractional order, Canadian J. Math. 2 (1950), pp. 409-416.
- [2] M. Kuczma, On the functional equation $\varphi^n(x) = g(x)$, Ann. Polon. Math. 11 (1961), pp. 161-175.
- [3] Functional equations in a single variable, Warszawa 1968.
- [4] Z. Moszner, Problème P.2, Aequationes Math. 1 (1968), p. 150.
- [5] J. Wójcik-Ger, On convex solutions of the functional equation $\varphi^2(x) = g(x)$, Zeszyty Naukowe Uniw. Jagiell., Prace Mat. (to appear).

Reçu par la Rédaction le 6. 6. 1968