ON COVERING OF BOUNDED SETS
BY SETS WITH THE TWICE LESS DIAMETER

BY

KAROL BORSUK AND RIMAS VAINA (WARSZAWA)

It is proved that every bounded plane set A is the union of 7 sets with diameters less than or equal to $\frac{1}{4} \delta(A)$ and that there exist bounded plane sets A which are not unions of 6 sets with diameters less than or equal to $\frac{1}{4} \delta(A)$.

1. For every $n = 1, 2, \ldots$ and for $0 < a \leq 1$ denote by $D_n(a)$ the smallest natural number q such that every bounded set A lying in the n-dimensional Euclidean space E^n is covered by q sets A_1, \ldots, A_q with diameters $\delta(A_i) \leq a \delta(A)$ for $i = 1, \ldots, q$ (cf. [2]).

Since the geometric sphere $S^{n-1} \subset E^n$ with radius r cannot be covered by less than n sets with diameters less than $2r$ ([3], p. 178; see also [4]), we infer that

\[(1) \quad D_n(a) > n \quad \text{for every } 0 < a < 1 \text{ and } n = 1, 2, \ldots\]

On the other hand, one shows easily ([2], p. 249) that

\[(2) \quad D_n(a) \geq m_1 m_2 \ldots m_n,\]

where m_1, \ldots, m_n are natural numbers such that

\[m_1^{-2} + m_2^{-2} + \ldots + m_n^{-2} \leq a^2.\]

Formulas (1) and (2) give an evaluation of $D_n(a)$. However, this evaluation is far from being satisfactory and the problem to compute the exact value of $D_n(a)$ remains open and seems to be hard.

The aim of the present note is to establish the following

Theorem. The number $D_2(\frac{1}{4})$ is equal to 7.

2. First let us show that

\[(3) \quad D_2\left(\frac{1}{2}\right) \leq 7.\]
It is evident that inequality (3) will be established if we show that every compact set $A \subset E^2$ with diameter 1 can be covered by 7 compact sets A_1, \ldots, A_7 such that $\delta(A_i) \leq \frac{1}{3}$ for $i = 1, \ldots, 7$.

It is known (see [1], p. 9) that in E^2 there exists a regular hexagon P_6 with diameter $\delta(P_6) = \frac{2}{3}\sqrt{3}$ containing A. Let a_1, \ldots, a_6 be vertices of P_6 (in a cyclic order) (see Fig. 1) and let c denote the center of P_6, and c_i — the center of the segment a_ia_{i+1} for $i = 1, \ldots, 6$ (where $a_7 = a_1$). Moreover, let c_i' denote the center of the segment cc_i. Let T_i denote the regular triangle with vertices c_i, c_i', c_{i+1}, and T_i' — the triangle with vertices c_i, a_{i+1}, a_{i+1} (where $a_7 = a_1$). Denote by A_7 the circular disk with center c and radius $g(c, c_i') = \frac{1}{3}$ and let

$$A_i = (T_i \cup T_i') \setminus A_7 \quad \text{for } i = 1, \ldots, 6.$$

Then $A \subset P_6 = A_1 \cup \ldots \cup A_7$ and one sees easily that $\delta(A_i) = \frac{1}{3}$ for $i = 1, \ldots, 7$. Thus inequality (3) is proved.

![Fig. 1](image)

3. In order to complete the proof of the Theorem, it remains to show that

$$D_6\left(\frac{1}{2}\right) \geq 7,$$

that is to show that there exists a set $A \subset E^2$ with diameter 1, for which every covering consisting of 6 sets contains at least one set with diameter greater than $\frac{1}{3}$.

Consider a regular heptagon $P_7 \subset E^2$ with diameter 1 and let c denote its barycenter, and B — its boundary. Let a_1, \ldots, a_7 be vertices of P_7 in a cyclic order (see Fig. 2) and let us set, for every integer k,

$$a_{i+7k} = a_i \quad \text{for } i = 1, \ldots, 7.$$
Then
\[1 = \delta(P_i) = \varrho(a_i, a_{i+1}) < 2\varrho(a_i, c) \quad \text{for every } i. \]

If \(c' \) denotes the center of the segment \(a_1a_4 \), then
\[\varrho(a_1, c) > \varrho(a_1, c') = \frac{1}{2}. \]

The segments \(a_ia_{i+1} \) are called sides of \(P_i \). Let \(c_i \) denote the center of \(a_ia_{i+1} \). Two distinct sides of \(P_i \) are said to be adjacent one to the other if they have a common vertex. They are said to be opposite one to the other if there exists no side adjacent to each of them.

Let \(a'_i \) denote the point of \(a_ia_{i+1} \) such that \(\varrho(a'_i, a_{i-1}) = \frac{1}{2} \), and \(a''_i \) — the point of \(a_ia_{i-1} \) such that \(\varrho(a''_i, a_{i+1}) = \frac{1}{2} \).

If \(x, y \) are two distinct points of \(B \), then \(B \) is the union of two arcs with endpoints \(x, y \). If the lengths of those arcs are not equal, then we denote by \((x, y) \) the shorter of those arcs.

Suppose now, contrary to (4), that there exists a covering of \(P_i \) consisting of 6 sets \(A_1, \ldots, A_6 \) with diameters less than or equal to \(\frac{1}{3} \). We may assume that the sets \(A_i \) (\(i = 1, \ldots, 6 \)) are closed and convex and that the center \(c \) of \(P_i \) belongs to \(A_4 \). Then (5) implies that \(A_4 \) does not contain any vertex \(a_i \) of \(P_i \). Now, let us distinguish two cases:
Case I. Each of the sets A_1, \ldots, A_5 contains at least one vertex of P_7.

Case II. One of the sets A_1, \ldots, A_5 (say A_i) does not contain any vertex of P_7.

It remains to show that in both cases our hypotheses lead to a contradiction.

Consider first the case I. Since $\varrho(a_i, a_{i+2}) > \frac{1}{2}$, none of the sets A_1, \ldots, A_5 contains three vertices. It follows that there exist two non-adjacent sides of P_7, each contained in one of the sets A_1, \ldots, A_5. We may assume that one of those sides lies in A_4 and the other in A_5. If those sides are adjacent to one side of P_7 (say to a_2a_5), then the center c_3 of a_2a_5 and the points a_3, a_4, a_5 belong to $A_1 \cup A_3 \cup A_4$. We may assume that $c_3 \in A_3$. Since $\varrho(c_3, a_i) > \frac{1}{2}$ for $i = 5, 6, 7$, we infer that three vertices a_5, a_6, a_7 belong to $A_1 \cup A_3$, whence one of the sets A_1, A_2 contains one of the sides a_3a_5, a_5a_7. But the sides a_1a_2 and a_4a_5 are opposite one to the other, as well the sides a_3a_4, a_5a_7 are opposite one to the other. Consequently, in the case I there exist two opposite sides of P_7 such that each of them is contained in one of the sets A_1, \ldots, A_5.

Thus we may assume that

\begin{equation}
(a_1a_2 \subset A_5, \quad a_4a_5 \subset A_4 \quad \text{and} \quad a_5 \in A_3)
\end{equation}

Now let us consider the points $a'_3 \in a_3a_5$ and $a''_3 \in a_5a_4$ and let us distinguish the following subcases:

1. **Subcase I.** $A_5 \cap (a'_3, a''_3) = \emptyset$.
2. **Subcase I.** $A_5 \cap (a'_3, a''_3) \neq \emptyset$.

In the subcase I, we infer by the inequality $\varrho(a'_3, a''_3) > \frac{1}{2}$ and by (6) that at least one of the sets A_1, A_2 (say A_2) intersects (a'_3, a''_3). Then the sets A_1, A_3, A_4, and A_5 do not intersect the interior of the arc (a'_3, a''_3) and we infer that this last arc is a subset of $A_1 \cup A_5$. But $a_6, a_7 \in (a'_3, a''_3) \setminus A_5$, whence $a_6, a_7 \in A_1$. It follows that $a_5, c_7 \in A_5$, which contradicts the inequality $\varrho(a_5, c_5) > \frac{1}{2}$. Thus the subcase I is impossible.

In the subcase II, the sets A_4 and (a'_3, a''_3) are disjoint. Then (6) implies that the arc (a'_3, a''_3) must be covered by A_1, A_2, A_3 and, since $a_5 \in A_5$, the arc (a'_3, a''_3) lies in $A_1 \cup A_2$. We may assume that $a'_3 \in A_1$ and $a''_3 \in A_2$. Since $\varrho(c_3, a''_3) > \frac{1}{2}$ and $\varrho(c_3, a'_3) > \frac{1}{2}$, we infer that the point $c_6 \in (a'_3, a''_3)$ does not belong to $A_1 \cup A_2$, which contradicts the inclusion $(a'_3, a''_3) \subset A_1 \cup A_2$. Thus the subcase II is also impossible.

In the case II, all vertices a_1, \ldots, a_7 belong to the set $A_1 \cup A_3 \cup A_4 \cup A_5$. Since none of the sets A_i contains three vertices, we infer that there
exist three sides of P_7 such that each of them lies in one of the sets A_1, \ldots, A_4 and no two of those sides are adjacent one to the other. We may assume that

$$a_1a_2 \subset A_4, \quad a_4a_5 \subset A_3 \quad \text{and} \quad a_4a_7 \subset A_4.$$

Consider the points a'_4 and a''_4 (see Fig. 2) and the arc (a'_4, a''_4). Then the vertex a_3 does not belong to $A_3 \cup A_4 \cup A_4$, whence $a_3 \in A_1$. Observe that both points c_3, c_3 do not belong to $A_3 \cup A_3 \cup A_4$ and that at least one of them does not belong to A_1. Denote this last point by d. Consequently, d belongs to one of the sets A_3, A_6, say to A_6. Then A_6 and the set $a_3a_6 \cup a_1a_7$ are disjoint and we infer that

$$a_3a_6 \cup a_1a_7 \subset A_3 \cup A_3 \cup A_4 \cup A_4.$$

But it is clear that the centers c_5 of a_3a_6 and c_7 of a_1a_7 do not belong to $A_3 \cup A_3 \cup A_4$. Consequently, $c_5, c_7 \in A_1$, which contradicts the inequality $\varrho(a_5, a_7) > \frac{1}{2}$. Thus the case II is also impossible and the proof of the Theorem is complete.

REFERENCES

Reçu par la Rédaction le 21. 2. 1978