A JACOBSON-SEMISIMPLE BANACH ALGEBRA WITH A DENSE NIL SUBALGEBRA

BY

P. G. DIXON (SHEFFIELD)

In this note we give an example of an algebra as described in the title. This answers a question of Grabiner [1].

Let A be the free Banach algebra on generators X_n $(n \in \mathbb{Z}^+)$ of norm 1, with the relations: M=0 for every monomial $M=X_{i_1}\ldots X_{i_r}$ containing more than n occurrences of X_n , where $n=\max\{i_1,\ldots,i_r\}$. (The Banach algebra A is obtained by taking the algebra A_0 generated algebraically by $\{X_n\colon n\in \mathbb{Z}^+\}$ with these relations, giving it the norm

$$\left\|\sum_{i=0}^n \lambda_i M_i\right\| = \sum_{i=0}^n |\lambda_i|$$

 $(\lambda_i \text{ scalars}, M_i \text{ monomials}), \text{ and completing.})$

The dense subalgebra A_0 (the algebra of polynomials) is clearly nil, since if $P \in A_0$, we can find

$$N = \max\{n : X_n \text{ occurs in } P\}$$

and then $P^{(N+1)!} = 0$.

We show that A is Jacobson-semisimple by proving that it has no non-zero ideals of topologically nilpotent elements (see [2], Chapter II, Section 3). We show that, given a non-zero $T \in A$, there is a $Y \in A$ with TY not topologically nilpotent. Now T is a linear combination of monomials M_i ,

$$T=\sum_{i=0}^{\infty}\lambda_i\,M_i \quad ext{ with } \ \|T\|=\sum_{i=0}^{\infty}|\dot{\lambda}_i|<\infty \ ext{ and } \ \lambda_0
eq 0\,.$$

Let $N > \max\{n \colon X_n \text{ occurs in } M_0\}$, and write

$$Y=\sum_{i=0}^\infty 2^{-i}X_{N+i}.$$

We consider $(TY)^n$. This will be a linear combination of monomials; each monomial being of the form

$$(1) M_{k_1} X_{N+j_1} M_{k_2} X_{N+j_2} \dots M_{k_n} X_{N+j_n},$$

where $j_1, \ldots, j_n, k_1, \ldots, k_n \in \{0, 1, 2, 3, \ldots\}$. We fix attention on those monomials of the form

$$M_0 X_{N+j_1} M_0 X_{N+j_2} \dots M_0 X_{N+j_n}$$

and we are worried lest, in computing $(TY)^n$, cancellation should occur between these and other monomials of form (1). However, if, in (1), any of the M_k should contain an X_r with $r \ge N$, then the total number of such X_r in (1) would exceed n, and so (1) could not equal (2), where the total number of such X_r is precisely n. If, on the other hand,

$$N > \max\{m: X_m \text{ occurs in } M_k\}$$

for every M_k occurring in (1), then (1) and (2) can only be equal if $M_{k_i} = M_0$ ($1 \le i \le n$). Thus monomials (2) are distinct from all other monomials in $(TY)^n$; and, of course, different sequences (j_1, \ldots, j_n) give distinct monomials (2). Thus $||(TY)^n||$ is not less than the modulus of the coefficient of one of the monomials of form (2), provided that the sequence (j_1, \ldots, j_n) be chosen so that (2) does not vanish. Such a sequence is given by

$$j_r = \max\{i: N^i \text{ divides } r\},$$

and this yields

$$||(TY)^n|| \geqslant 2^{-t} |\lambda_0|^n$$

where, if

$$n = a_s N^s + \ldots + a_1 N + a_0 \quad (0 \leqslant a_0, a_1, \ldots, a_s < N),$$

then

$$t=rac{a_s(N^s-1)+\ldots+a_1(N-1)}{N-1}\leqslant rac{n}{N-1}.$$

Thus

$$\|(TY)^n\|^{1/n} \geqslant 2^{-1/(N-1)} |\lambda_0|,$$

so TY is not topologically nilpotent. This completes the proof.

REFERENCES

- [1] S. Grabiner, Nilpotents in Banach algebras, The Journal of the London Mathematical Society 14 (2) (1976), p. 7-12.
- [2] C. E. Rickart, General theory of Banach algebras, Princeton, N. J., 1960.

Reçu par la Rédaction le 19. 11. 1975