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1. Introduction

In this lecture a new numerical approach for solving some classes of linear
complementarity problems and of discretized variational problems with side
conditions is described. These problems have the common property that they
can be formulated as optimization problems which, in the simplest case, are of
the special structure

Z F(u;.-{, u) > Min!

(1.1)
St (g, WeW, i=1(0n;

the functions F,, ..., F,; R* >R are supposed to be strictly convex and the
sets W, = R?,..., W, < R? to be closed and convex.

Problem (1.1) can be dualized so that the result is the unconstrained
concave program

(12)  HwY= -7 H @', —uf)»Max! with ug =u; =0;
i=

here H; denotes the Fenchel conjugate to F; with the domain W,
(1.3) H(Z, ) = sup{&x+ny—Fi(x, y): (x, y)e W}.
In several cases the two-dimensional programs (1.3) can be solved explicitly.
Moreover, under additional assumptions the following return-formulas are
valid:

U—y =0, H?(”?‘—l’ —‘U?‘),

1.4
( ) uXZOZH?‘(u?‘—li -_u:'k)5 lzl(l)n

[165]
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Thus, the general strategy is to solve the unconstrained program (1.2)
numerically, and then to determine the solution of the constrained program
(1.1) by means of (1.4).

This new technique was developed by Burmeister, Hel and Schmidt [1],
and Dietze and Schmidt [3] for solving shape preserving spline problems and
then extended by Schmidt [8], [9] and Kridtzschmar [6] to complementarity
and variational problems. Now, the main results of these papers are outlined.
In addition, some further extensions are presented; see especially Sections 6, 8.2
and 9. Of course, there are several other methods for solving variational
problems computionally, e.g. relaxation methods, methods of gradient type,
penalty methods. The reader is referred to the books of Glowinski, Lions and
Trémoliéres [5], and Glowinski [4]. There are also given numerous examples
from mechanics, elasticity, hydrodynamics and other areas which adequately
can be modeled as constrained variational problems.

2. First examples for complementarity and variational problems

2.1. Tridiagonal linear complementarity problems. Let 4gR"*D*(+1) pe
a given symmetric positive definite and tridiagonal matrix and b, ce R"*? be
given vectors. The complementarity problem is that of finding a vector
u=(ug, Uy, ..., u,)€R"! such that

(2.1) Au+b>=20, uz=c, (u—c)T(Au+b)=0.

In view of the Kuhn—Tucker theory this problem is seen to be equivalent to the
constrained optimization problem

(2.2) Fw) = uT Au+2bTu—-Min! st uzc.

Now, it is always possible to pass from (2.2) to a problem (1.1). One way is
as follows; see [8]. Let ¢ >0 be such that 4—el is positive definite; here
I denotes the unit matrix. E.g,, take £€(0, A,;,) where A, is the smallest
eigenvalue of A.

Computationally such an ¢ can be determined by searching using
Cholesky’s algorithm. For a fixed ¢ having the desired property let

mn ln

be the Cholesky factor to A—e¢l, ie. LLT = A—¢l. Then
(23) Fuw=uvw" LLTu+eu"u+2bTu

=(lpug+mu) +euf+ieul+2byu,
n—1
+ Z [Ui- v wio +myu)® +de(ud | +ud)+2b; - u;— ]

i=2
+(1n—l un—l+mnun)2+%8u3—l +(3+l:?)ur?+2bn—1 Uy—1 +2bn U,
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and an objective function (1.1) is obtained by setting
Filx, ) =Upx+myy)*+ex?+ey*+2b, x,
(24) Fx, p)=U-1x+myP+ie(x>+y)+2b_yx, i=2()n—1,
F,(x, ) =(p-1x+m,y)* +Fex®+(e+13)y*+2b,_  x+2b,y.

Because of & >0 the Hessians Fj,..., F, are positive definite. Thus, the
functions F,, ..., F, are strictly convex. The sets W,, ..., W, describing the

constraints may be now, e.g.,
(2.5) W,={(x,»eR* x2c¢_y,y2¢}, i=11)n.

2.2. Discretized ordinary variational problems. Let be Q = [0, I],and g 2 0
on Q. A model problem is to find a function ue H! () such that

(2.6) [ {v ' +guu—2fu} d2 —~ Min!.
Q

The side condition may be

(2.7) csu<d ong,

or

(2.8) W] < lae. on Q.

Let h > 0 be the step size, x; = ih the nodes (i = O(1)n, nh = 1), and u, an
approximation to u(x;) while g,=g(x), fi=S(x) and so on. Then
a well-known finite difference approximation reads

(29 Fw= _il {W*‘%(Qiﬂ ”i2~1+g;uiz)—h(ﬁ'—1ui—1+fiui)}
— Min!

subject to

(2.10) c; <u; <d;, i=0(1)n,

or to

(2.11) lu;—u;— | < h,  i=1(1)n.

Here, e.g. in the case of pointwise obstacles, some of the bounds ¢,, d; may be
infinite.
For g, +g; >0, i = 1(1)n, the functions

) h
(2.12) Filx, yy === i(gi-xx2+g,-yz)-h(f.--1X+f;J’)

are strictly convex. However, if g;—; = ¢g; = O for at least one i some of these
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functions may be only convex. In this case one can proceed as follows; see {8].
If, in addition, the boundary u, = f is prescribed, set

X
(2.13) F(x,y) = o= — A At T (gl 1 X34y —e 1 X4y —h(fio 1 x+fy)
with g, = ,-, = ¢, = 0. Now, choose &,-3, ..., &, &, according to
(2.14) gi-1€(0, e/(1+he)), i=n—-1-1)2,

starting with the value ¢,-, = 1/h. Then, by this e-procedure the functions
F,,..,F,_,, F,_1+F, defined by (2.13) become strictly convex.

For making the functions (2.12) strictly convex also the approach of 2.1
ustng Cholesky factorization applies.

In the case (2.10) the sets W, may be, e.g.,

(2.15) W,={(x,)eR* cioy Sx<di_y, ¢, Sy < dy}
while in the case (2.11) they are
(2.16) W= {(x, y)e R* ly—x| < h}.

3. Description of the dualization technique for a model problem

3.1. Results from Fenchel’s theory. In Fenchel's theory to the primal
convex program

(3.1) inf{f(w+g(m): ueR™}
corresponds the dual concave program
(3.2) sup { —f *(u*)—g*(—u*): u*eR"};

here f, g: R" >R =Ru{+w, —oo} are assumed to be proper convex and
closed while f*, g* are the conjugate functions defined by

(3.3) S*w*) = sup{u” u*—f(u): ueR"},

and analogously for g*. The following essential duality statements are valid, see
[13] and [7].

THEOREM. Assume that the optimal value of program (3.1) is finite and that
there exists a vector

(3.4) zedomfn domg,

such that f and g are z-stable. Then, program (3.2) has an optimal solution, and
the optimal valyes are equal,

(3.5)  inf{f(w)+g(u): ueR™ = max{—f*(u*)—g*(—u*): u*eR"}.
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In addition, if u* denotes an optimal solution of (3.2) then u is optimal for (3.1) if
and only if u belongs to both subgradients of* (u*) and dg* (—u*),

(3.6) uedf *(u*) N og*(—u*).

For the definitions of proper convexity, z-stability and so on the reader is
referred to [13].

3.2. Application to problem (1.1). An application of Fenchel’s theory to
program (1.1), which turned out to be numerically very interesting, has been
elaborated in paper [3]. This work, in turn, was stimulated by the concrete
example of a pair of dual programs given in [1].

Introducing the new variables U,, ..., U,—y, program (l.1) can be
reformulated as a separable one, ‘

Y Fyu-1, U)—Min!
i=1

(3.7 : .
st(ui—q, UpeW,i=1()n, U, =u, i = 1(1)n—1.

Next define H;: R?—R by

Fi(x,y) for(x,yeW,
3.8 H.(x, y)= : ‘
(3:8) i, 7) {+oo otherwise.
Then for u = (uy, Uy, tg, ..., Uy—y, Up-y, U,JER®" set
3.9 fwy=Y Hu_,, U,

i=1
0 forU,=u,i=1(1)n—1,

3.10 = Lo
( ) g(u) { +oo  otherwise.

By these definitions program (1.1) becomes a program (3.1). The occurring
functions f and g are proper convex and closed.

For stating the corresponding dual program (3.2) the conjugate functions
f* and ¢g* have to be determined. Using the vector u* = (u,, Ut ul, ...,
UF_ ., ur-,, UNeR?, in view of the separability of f one gets immediately

B3.11) £ = 3 HE@1, U,
i=1

where H is the Fenchel conjugate (1.3). Note that HY, ..., H, are defined by
programs which are only of the dimension 2. Further, it follows that

(3.12) g*u*=sup{u’u*: U, =u,i=1(1)n—1}

{0 foruf =0, Uf+uf =0,i=1(1)n—1, U’ =0,
“ |+o  otherwise,
= g*(—u*).

Thus, the dual program (3.2) reduces to (1.2).
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If, e.g., Hi (£, 1) < +oo for all (¢, n)e R? program (1.2) is unconstrained.

Further, let (1.1) be, e.g., a quadratic program with nonempty feasible
domain. Then, a vector z having property (3.4) exists such that f and g are
z-stable; see [3]. Hence, if (1.1) is solvable in addition, the mentioned duality
theorem applies.

3.3. Return-formula (1.4). In addition, it is assumed that the auxiliary
programs (1.3) are solvable for all (¢, n)e R%. Tn the above examples this
assumption holds since there (1.3) are quadratic programs and the Hessians of
the objective functions are positive definite. Because of the strict convexity of F,
the maximizer (X;(&, 1), 7;(&, n))eR? in (1.3) is unique for fixed (£, n)e R2.
Hence, since (x, y)e dH; (¢, ) holds if and only if (x, y) is a maximizer of (1.3),
the differentiability of H; follows, and

(313)  x¢&m=0HCn, FC&n=0,HEn i=1Dn
In addition, the partial derivatives are continuous.

Further, let u* be optimal for (3.2). Then g*(—u*) = 0 follows, and the
Kuhn-Tucker conditions for (3.2), i.e. for

inf {/*@*): ug =0, Ul +u =0,i=1(1)n—1, U} =0}
yield
8 Hiv (i, Uliy) =08, Hi (ui—y, UY),  i=1()n—1.
Now, define the vector u by
ui—1=a1H;k(u:k~1,U?=), UizazH?:(”;k—l:U*), i=1(1)n.

Then one gets g(u) = 0, u"u* = 0, and thus g* (—u*)+g(u) = —u” u*. Hence
uedg*(—u*) follows. Further, because of u = d/*(u*), relation (3.6) is valid,
and u solves (3.1). Thus, the present assumptions imply the

ProposITION. Let (uy, uy, ..., u; ). be a solution of the dual program (1.2).
Then the vector (uy, uy, ..., u,) determined by return-formula (1.4) is the unique
solution of the primal program (1.1).

4. Examples for conjugate functions

Here some examples for Fenchel conjugates (1.3) are given; see [8]. With
regard to (2.4), (2.5) let F, and W, be

(4.1) Fi(x, yy = (Ix+my)* +ex®+8y* + px+qy,
(4.2) W ={(x, eR* xza,y= B
Using the abbreviations

4.3) . ¢=¢{~p, VY=n-—g,

44) c=8P+em?+e6 >0, d=m*+8>0, e=P+e>0, b=Im,
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the Fenche! conjugate (1.3) to (4.1), (4.2) reads

@45  H'¢ )
_ dp®—2boy +ey?

fordp—by = 2uc, ey —bo = 2fc;

4c
2,4 — b —
- v+ a(dzd W — ac) fordp—byr < 2ac, W > 2Pd + 2ab;
2,4 —bp—
_et ﬂ(e‘ﬁe ¢—Fo) forey—bo < 2fc, ¢ = 20e +2pb;

= ap+py—a’e~2afb—p*d  for o < 20e+28b; ¥ < 2pd +20b.

This is easily verified. In the discretized variational problem (2.9) with lower
bounds only, substitute

(4.6) l=—1//h m=1//h

in (4.4), (4.5) in order to get H; . For two-sided obstacles the Fenchel conjugate
is computed in [8].
In view of (2.9), (2.11) the conjugate corresponding to

(y—x)?
h
(4.8) W, = {(x, y)eR*: |y—x| < h}

is of interest:
4.9) H; & n)
_ de? —2boy + ef?

4.7 Fi(x, y) = 4 ex?+ 6y  +px+qy,

for —2hec < dp—eyf < 2he;

4c
(0 + )2 + dhd — dheyy — 4h(e+ 6)— 4h? &b N
4 +9) for ép —ey = 2he
2_ A2
_{@+Y)> —4hS¢ + 4hay) + dh(s + 8) — 4k’ 8 for 60— < —2he:
4(e+9)

here choose the quantities ! and m in (4.4) according to (4.6).

5. Numerical aspects

For solving problems (1.1) numerically the described results can be used as
follows:

Step 0. Transformation of a given problem into a program (1.1). For
complementarity problems see 2.1 where this step is performed via Cholesky.
factorization.



172 J. W. SCHMIDT

Step 1. Test whether the feasible domain of (1.1) is nonempty or not. This
can be done by an algorithm developed in [11] and independently in (2]

Step 2. Computation of a solution of the unconstrained dual program (1.2).
In computer tests Newton’s method proved here to be very effective.

Step 3. Determination of the solution of (1.1) via return-formula (1.4).

Implementations of this general procedure have been tested on several real
problems; see e.g. [1], [6], [8], [12]. In the treated spline problems this
approach leads to algorithms for which the arithmetical complexity is O (n).
This depends essentially on the facts that Newton’s method for (1.2)

(5.1) 0= =8, H (w1, —u)+0, Hixs (U7, —ui4))
— 8,0, H (- y, —u) (@G- —ui-1)
+1{0, 0, HY (=1, —ul)+ 2, 8y Hiv o (uf, —uis )} @ — )
—0, 0, His (], —uls (@51 —uiv ), i=1()n—1,

is a tridiagonal system for the new iterates 7, ..., &, and that (1.2) is solved
really by (5.1) in a very small number of steps. Theoretically, in the case of
quadratic programs (1.1), method (5.1) can be shown to terminate after a finite
number of steps by entering into a cycle of integer length.

In {8] the following variational problem with side conditions is used for
computational tests:

(W (t)* —2u(t)sin 4nt} dt — Min!

O ey

(5.2)
st u@)=u(l)=0,u(t)=20for0gLt <1,

The discretization (2.9) is, after applying an e-procedure, dualized in the sense
of (1.2). The behaviour of Newton’s method (5.1) applied to (1.2) depends on the
starting vector, of course, and even divergence may occur, In this case
a combination with the gradient method is recommended. In the present
example using the starting values u} = ... = u,., = 0 Newton’s method
always worked.

For some dimensions n = 1/h the numbers of Newton steps are given in
the following table:

n 8 16 32 64 128 256

L)

Newton steps 2 4 9 13 25 61

Indeed, the number of steps now increases rather rapidly with n. Notice for this
that the matrix 4, which describes the present program (2.9) becomes singular
as n tends to infinity.
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6. Linear complementarity problems with band matrices

6.1. 5-Diagonal matrices. Here, once more the complementarity problem
(2.1) is considered, but the matrix 4 should be now 5-diagonal. Again, A4 is
supposed to be symmetric and positive definite. Let € > O be such that 4 —el is
also positive definite, and let

L=1|nm I,

n, m, ln J

be the Cholesky factor to A—e¢l. Then one gets
6.1)
Fu)=uTAu+2bTu =u" LLT u+euTu+2b"u
= (lgug+m u; +n,u,)? +eud+%eul +eui+2bou,

+{ u +myuy +ngus) +5eul +Seus+eud +2b, u,
n—3

+ ) oy myu g v 1) el +uf +ufy )
i=3

+2b; gty gt ey Uy 3 F My g Uym g F Ry Up— )P 3 EUE . 5+ EuZ,
Rz AT MR TREPE o ( MEPE VRPN TP N T

+hewl (gt Emyu ) +Seulo | e+ Hul

+2(by-a Uy + by gty +b,u,).

By means of this procedure the 5-diagonal complementarity problem (2.1) is
reformulated as a program of the special structure

n=1
F(u) = Z Fo(ui~q, 1, t4 1) = Min!
(6.2) =t
S.Lui— g, Uy, Uiy )EW, i = 1(1)n—1.
The functions F,,...,F,_;: R*=R' are strictly convex while the sets

W, <R ..., W,_, = R* are closed and convex.
In order to dualize this program it is written as a separable one by
introducing new variables,

n—-1
Z Fi(uf—li Ui» I/t"i-l)_’l\'llin!
i=1

(6.3) .
st(uiq, U, Visd)eW, i=1()n—1,U, =u,, V,=U;,=u,

i:2(l)n"2’ Vn—l = Un—l-
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Following the lines described in 3.2 an intermediate dual program is seen to be

n—1
— Y HY @, U, %iy)~ Max!

iI=1

(64 with uph =0, Ut+uf =0, V*+ U +uf =0,i=2(1)n-2,
Ve +UN., =0,V =0.
Setting ¥;* = o and UF = —u/ —v] a dual program corresponding to (6.2)
reads
H(u*, v*) = -")_jl Hfwl |, —uf —vf, v} ,)— Max!
6.5) i=1

with ug = v =ur_, =) =0.
Here H; denotes the Fenchel comjugate to F, and W,

(6.6) H} (& 1, Q) =sup{Ex+ny+L{z—F(x,y, 2): (x, y, 2)e W}.

In the present situation H; is also easily computed explicitly.

Newton’s method applied to (6.4) leads to linear systems which are now
block-tridiagonal with (2,2)-blocks.

The essential return-formula (1.4) also carries over. Following the lines of
3.3 one gets under the same assumptions

%, % T
Uy =0 H; (u—y, —u; —v;, Vit 1)s

*, K * k%
(6.7) wp =0, Hy (ui—y, —1; — 0, 0i+1),

“i+1=aaH?(u?—17 _“:F_'U:'k, U;k+l)7 i=1()n—1.

6.2. 7-Diagonal and general band matrices. As now is obvious, the
complementarity problem (2.1) with a 7-diagonal symmetric and positive
definite matrix A can be transformed into a program

n-2
Fu) = Fi(ui—y, 4, tivy, Ui42)— Min!
i=1

(6.8)
SL(Up- s Uy, U1y Ui ) €W, P=1(1)n—2,

and the functions F, ..., F,-,: R*— R! are strictly convex. Along the lines of
3.2 one is led to the dual program

n—2
H{u*, v*, 2%) = — Z Hi*(“;k—l, _“?‘_v?‘, U;k+1+z:'k+1, —Z?‘+2)_’MaX!
=
(6.9) '

* * *® *
2= Uy—3 =V =2, = Oy
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where

(6.10)
Hi (&, 5,0, w) =sup{éx+ny+Lz+ww—F(x, y, z, w): (x, y, z, w)e W}

The linear Newton systems for (6.9) here are block-tridiagonal with
(3,3)-blocks.
Under the usual assumptions the return-formula turns out to be

Ui~y = 0, H?(“f—l, ‘“?*U?, UI*+] +Z;k+1, —thz)a
u; = (72H?'(u?‘_,, _u?‘—')?" U;k+1+zi*+1, —Z;k+z),
Uy = 04 HY =y, —ui =], vy 1+ 2501, —2iea),
Uitr = 54H?‘(“:’k—1a _u?:_v;k, U;k+1 +Z;k+1, _Z?:+2): i=1{)n-2.

This approach likewise applies to complementarity problems with general
band matrices. In view of the previous explanations it seems to be not
necessary to give details.

7. Higher order finite elements in ordinary variational problems

Finite elements methods of highér order applied to (2.6) require to treat the
following generalization of program (1.1):

Fu, v) = Y F(ui-y, u;, v;)— Min!
i=1

(7.1)
sty u, 0)eW,  i=1(1)n.

Under the usual assumptions a dual program to (7.1) reads
(7.2)  H@* = - Hf(u,, —uf,0)>Max! with ug =u, =0,
i=1

where
(13)  HIE 0.0 =sup{Extny+lz—Flx, y, 2 (x, y, DE W),
and the return-formula turns out to be now
U = c"rlH,fk(uT_l, —u;-*, 0),
(7.4) =0, H (ufy, ~ui, 0),
b= 0, HY (u)-y, —ui, 0), i=1(I)n.

For more details concerning also the application the reader is referred to [6].
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8. Discretized partial variational problems

Here the following 2D model problem is considered: Find ue H'(Q),
Q= [0, 1]x[0, 1] with

(8.1) [ {grad ugrad u+g u?—2fu} dQ — Min!
2

(8.2) st.csusd onf,

or

(8.3) s.t.|gradu| < lae. onf,

where ¢ 20 on Q.

8.1. A first discretization. Let h > 0 be the step size x; = ih, nh = 1, and
(x;, x;) the nodes. Denote by u; an approximation to u(x;, x;). Then, if
approximating problem (8.1), (8.2) by the finite difference method which
corresponds to (2.9) a program of the structure

n n
Z zFu Ui 1, Uij) Z Z ij(ty- 15 ij)—’MiH!

i=1j=0 i =
(8.4) S.b(Ui-1j, )€V, i=1{1)n, j= 0(1) n,
(-1, wide Wy, i = 0()n, j = 1(1)n,
arises. The functions F;;, G;; R*— R! are supposed to be strictly convex, the

sets V; = R*, W;; « R? to be closed and convex. Following the lines of 3.2 the
unconstrained dual program

H(u* - - Z L HI](“I 1jy — i' *)
i=1j=
(8.5) ) K?;-(u;_l, —v;+w7;)—+Max!
i=0J=1
*

with ug; = —wg;, up; =0, = 0(1)n, vjy = wiy, vh =0, i = 0(1)n,

<.

is obtained, where
H(E, n) = sup{&x+ny—Fy(x, y): (x, eV},
KHE, m) = sup{&x+ny—Gy(x. y): (x, y)e Wy}

The return-formula now reads

(8.6)

Ui u—a Hu( i—1jy U ij),

89 wip= 0, Hyul- )y —ufi=wi), i=1(1)n,j=0(1)n,
Ujj-1 = 0 KU(U,J - v?;-+ ),

Uy; = 0, K} (U I v,,+w,,), I=0()n,j=1(1)n.
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This approach has been developed in [6]. There are also given some
numerical results.

8.2. A second discretization. In order to cover finite difference ap-
proximations to problem (8.1), (8.3) and also some finite element approxima-
tions to (8.1), (8.2) as well as to (8.1), (8.3) one has to treat programs of the type

Flu) = Z Z Fij(uio 11y Uij—1, Ui—qj, uij)—* Min!
(8.8) e _ |

Sb(Uim g1 Uij—1, U= 1) W) €W, i = 1(1)n, j = 1(1)n
with strictly convex functions F;;; R*—> R' and closed convex sets Wj; = R*.
For dualizing (8.8) the Fenchel conjugate to F;; and W,; has to be determined

according to -
(8.9) Hj(¢.n, @, 0) =sup{&x+ny+ar+os—F;(x, y, 7, 8): (x, 9, r, e W},

Then, the program

n

n
*, * * * * * *
H(u*, v*, 2%} = — Z Z Hij(i- -1, O5p-1, —Wi-13—Zi— 1, — U+ 2;;) -~ Max!
i=1j=1
. * * ¥ % ok * ,
(8.10) with wg = —2zig, Vio = Zig, Uin = Vi = 0,1 = 0(D)n,

U:;j = Zgj =0, u:j = Z:j =0,j=0(1)n,

is dual to (8.8), and the return-formula carries over. If a solution (u*, v*, z*) of
(8.10) 1s known, the solution u of (8.8) 1s computed directly by

* * * % * K *
U—1j-1 = 0, Hij(ur—1j~1, Uij—1s —Uj—y1;—2i-15, —U.'j+2.'j):

®, % * * * x %
(8.11) Uijj—y = d, H[j(ui—lj—lz Dijo1s —Ui-1j7 25— 1] —U:‘j"‘zij),

X, ¥ * % * K %
Ui—1;= 03Hij(ui—lj—la Vij—1s —Uj—1j—2Zi-1j —Uij+zij)e

- *, % * * * * *
Uiy = 04Hij(ui—1j—la Dij—1s ~Ui-1j—Zi 15 —Uu‘*‘zij),

i=1(Un,j=11)n.

The details of this approach are mtended to be discussed in a forthcoming
paper.

9. A general program

A more general program covering all programs treated up to now reads as
follows,

Y Fijulug U, Uy, Uy, Ojg) > Min!
Uik heZ

9.1
S (U, U uy, g, vip) € Wi, G, J, k, Ye Z.

12— Banach Center . 24
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Here Z is a given set of ordered 4-indices,
Zcl{i,j, k) 0<gi<j<k<l<gn}.

The functions Fi;;: R®—R' are assumed to be strictly convex, the sets

Wi = R’ to be closed and convex.

For fixed i let Z; be the following set of 3-indices:
Z;={(j, k., D: (i,j, k,DeZ or(l,i,j,kleZ or
9.2
63 (k,1,i,)eZ or(j, k, I, )e Z}.

Then, a program dual to (9.1} can be formulated,
* * * * %
— Y Hiw(Uiju, Ui, Yeijs i, 0)—Max!
(LjkDezZ

with Y wuj =0,i=0()n.
Sk, NeZ;

(93)

Of course, this program is unconstrained since the occurring equality con-
straints are easily eliminated. The function H?;-,c, is defined by

94) Him& 1,0, 0,0 =sup{&x+ny+er+as+{z—Fyulx, y,r.s, 2)
(x, ¥, 1, 8, 2) € Wi}
Finally, the corresponding return-formula is given,
w; =0, H:;kl(urjkh “j‘ku: u:tuj, u?;jk: 0),
u; == 0, H?}kl(u?cjkl: u_}::li: u:lij, u?;jka 0),
(9.5) Uy, = 0y H?jkl(”?j‘kl: u_:;;(li: u:lija U;';Jka 0),
u =0, H?}kl(“?}kh u;;czf, u;:lij; u-;.;jka 0),
0)

K % * * * , -
Vijur = 05 Hijhl(uijhh Wikti> Urngs Uigrs> V), (i,j, k, DeZ.

10. A further generalization

In the preceding theory the variables u;, v;, u;;, v, are assumed to be real
numbers. However, all results are also valid for variables being real vectors. In
paper [10], a spline problem is considered which leads to a program (1.1) where
the variables u,, ..., u, are two-dimensional vectors.
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