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INTRODUCTION

This paper will deal with properties of certain non-linear trans-
formations in BEuclidean spaces—mostly in two or three dimensions.
In the main they will be of very special and simple algebraic form.
We shall be principally interested in the iteration of such transforma-
tions and in the asymptotic and ergodic properties of the sequence of
iterated points. Very little seems to be known, even on the purely topo-
logical level, about the properties of specific non-linear transformations,
even when these are bounded and continuous or analytic. The trans-
formations we study in this paper are in fact bounded and continuous,
but in general many-to-one, i.e., not necessarily homeomorphisms. In one
dimension such transformations are simply functions with values lying
in the domain of definition; for example, if f(z) is continuous and non-
negative in the interval [0,1] and max[f(z)]< 1, then o' = f(x) is
a transformation (*) of the type considered. Even in one dimension,
however, nothing resembling a complete theory of the ergodic properties
of the iterated transformation exists. On the algebraic side, we study
in this paper the invariant points (fixed points), finite sets (periods)
and invariant subsets (curves) of these transformations—together with
the means of obtaining them constructively. The topological properties
of two (not necessarily one-dimensional) transformations S(p), T'(p) are
identical under a homeomorphism H: that is, when S(p) =H [T[H _1(p)]].
When 8§ and T are themselves homeomorphisms—and for one dimension—
necessary and sufficient conditions for conjugacy are known (2). When
8 and T are one-dimensional, but not necessarily one-to-one, it is possible
to give a set of necessary conditions for conjugacy; no meaningful suf-
ficient conditions, however, are known.

For example, the set of fixed points of S has to be topologically equivalent to
those of 7. The same must hold for the set of periodic points, i.e., pointa such that
the nth power of the transformation returns the point to its original position. The

(1) Here and throughout the paper a primed variable always represents the value
obtained on the next iterative step. In & more explicit notation, the above equation
would read: z™*+) = f(z(™).

(®) J. Schreier und 8. Ulam, Iine Bemerkung iber die Gruppe der topologischen
Abbildungen der Kreislinie auf sich selbst, Studia Math. 5 (1935).
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attractive and repellont fixed points must correspond, etc. These conditions are known
from the corresponding study of homeomorphisms. For many-to-one transformations
one may generalize these conditions by considering the tres of a point. For a given
transformation T we define the tree of a point P as the smallest set Z of points such
that:

a) P belongs to Z.
b) If a point @ belongs to Z, then T(Q) belongs to Z.
c) If Q belongs to Z, then ell points of the form T-%(@) belong to Z.

Obviously, for two transformations to be conjugate, the trees of corresponding
pointsa must be combinatorially equivalent and, in addition, their topological inter-
relations must be the same (*).

The present study was initiated several years ago () with the con-
sideration of certain homogeneous, quadratic transformations which we
called binary reacltion systems. A typical example is the following:

T} = @ -+ + 2,25
(1) X5 = 20,25 + 22,y ,

ﬂ?; = wf ’
where we consider initial points P with coordinates z,, 2,, #, satisfying:
(2) o<, mm+a,+z,=1.
Since

o]+ @y = (0 + 2+ 35)?

the transformation (1) maps the two-dimensional region (2) into some
sub-region of itself. The choice of these transformations was motivated
by certain physical and biophysical considerations. For example, the sef
of equations (1) could be interpreted as determining the composition
of a hypothetical population whose individuals are of three types, con-
ventionally labeled 1, 2 and 3. The ; would then represent the fraction
af the total population which consists of individuals of type ‘4. The
transformation can be thought of as mathematical transcription of the

mating rule:

type 2 and type 2 produce type 1,
type 3 and type 3 produce type 1,
type 1 and type 2 produce type 1,
type 1 and type 3 produce type 2,
type 2 and type 3 produce type 2,
type 1 and type 1 produce type 3.

(3)

(*) One-dimensional transformations are considered in more detail in appendix 1.

(*) Menzel, Stein and Ulam, Quadratic Transformations, Part I, Los Alamos
Report LA-23056, May, 1959 (Available from the Office of Technical Service, U. S. Dept.
of Commerce, Washington 25, D. C.).
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For any assigned initial composition, i.e., any initial vector (x,, ,, @)
satisfying (2), we may then ask: What is the final (or limiting) com-
position of the population after infinitely many ‘‘generations”, that is,
after infinitely many matings according to the scheme (3)?

In the present context, a mating rule can be defined as a system
of three non-linear first-order difference equations of the form:

@1 = [1(%1, Ty, ),
(4) @ = fo(@y, Ty, ),
Ty = fo(@y, T, @),

where each f; is the sum of some subset of the six homogeneous mono-
mials @, 75, B, 20,2y, 22, ¥y, 22,7, and each such term must belong to
one and only one f;. Two transformations are called equivalent if they
are conjugate under the (linear) transformation defined by a given per-
mutation of the indices 1, 2, 3. (This is the only linear homeomorphism
which preserves the homogeneous quadratic character of the transforma-
tion.) Under this definition of equivalence, it turns out that there are
97 inequivalent transformations of the above type. It quickly becomes
apparent that, despite their formal simplicity, these transformations are
very difficult to study analytically, particularly if one is interested in
their iterative properties. For example, for most initial points in the
region of definition, the sequence of iterates generated by repeated
application of the transformation given by equation (1) converges to
a set of three points:

2s=T(py),
(6) Ds = T(pa),
P =T (p,).

Using a standard terminology to be explained in detail below, we say
that the “limit set” is a ‘‘period of order three”. It is clear by inspection
of transformation (1) that another limit set exists; if we write

0= (o =1,2, =z, = 0), Pr= (=2, =0,35 =1),

then

(6) Pa=T(p), P1=T(ps).

In addition thero is the algebraic fixed point of (1):
(7) p="T(p).

The genera.i initial vector, however, always leads to (6). Oertain other
quadratic transformations show an even more complicated behavior.
An example is the transformation:

2 2
(8) ol = @ -+ 25 + 20,2, @ = )+ 20,2, Ty = 22,2, .
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This bears a close formal relationsbip to (1); in fact, they differ only
by the exchange of a single term. The limit sets, however, are quite
different. Transformation (8) has an attractive fixed point with co-

ordinates: ~
1 2 2-V2
(9) =g BT g ’ '

It also has a limit set of the type (6) with p, = (1,0, 0), p, == (0,1, 0).
In this case, both limit sets are observed. It is found experimentally
that the set of initial points leading to (9) is separated from those leading
to the oscillatory limiting behavior (6) by a closed curve smrrounding
the fixed point (figure 2 of the reference in footnote 4). The analytical
nature of this boundary curve remains unknown.

In view of the complicated behavior exhibited by these examples,
we felt it would be useful to study these transformations numerically,
making use of the powerful computational aid afforded by electronic
computing machines. From one point of view our present paper may be
looked on as an introduction, through our special problems, to modern
techniques in experimental mathematics with the electronic computer as
an essential tool. Over the past decade these machines have been ex-
tensively employed in solution of otherwise intractable problems arising
in the physical sciences. In addition to solving the particular practical
problem under consideration, this work has in some cases resulted in
gignificant theoretical advances. Correspondingly, attempts to solve
difficult physical problems have led to considerable improvements in
the logical and technical design of computers themselves. In contrast,
the use of electronic computers in pure mathematics has been relatively
rare (°). This may be partly due to a certain natural conservatism; in
our opinion, however, the neglect of this important new research tool
by many mathematicians is due simply to lack of information. In other
words, the average mathematician does not yet realize what computers
can do. It is our hope that the present paper will help to demonstrate
the effectiveness of high-speed computational techniques in dealing with
at least one class of difficult mathematical problems. With this end in
mind, we have devoted the first section of our paper to a brief discussion
of how computing machines can be used to study problems in pure
mathematics. Much of this section is introductory in character, and is
meant primarily for those readers who have had no first-hand experience
in the use of computers. It also includes, however, a description of the
numerical techniques used in this study; these may be of interest even
to seasoned practitioners.

(°) Perhaps the greatest computational effort has been oxpended on problems
in number theory. See section I, footnotle 2.
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After our study of quadratic transformations in three variables (%),
we decided to investigate the iterative properties of other classes of
polynomial transformations. As a natural generalization of the quadratics
described above, we consider transformations of the form:

(10) T = fi(mu eeey T) (i=1 to k) ’

where the f; are disjoint sums of the homogeneous monomials which
arise on expanding the expression:

k

(11) =)

fwml
The nuraber of such terms—each taken with its full multinomial coeffi-
cient—is

(12) wy =",

k
By construction, J f; = F, so that if we take
{m]

k
(13) Ya=1, x>0,

the (additive) normalization of the #; is preserved. We are then dealing
with positive transformations in a bounded portion of the Euclidean
space of k-1 dimensions, i.e., just the hyperplane defined by (13).
If m =2, k =3, these transformations are the 97 guadratiecs in three
variables introduced above. The bulk of the present paper is devoted
to the case m =k = 3, i.e., cubic transformations in threp variables;
there are 9370 independent transformations of this form. We have also
examined the 34337 quadratic transformations in four variables, but
our analysis of the results is not yet complete (January, 1963); for this
case (m =2, k = 4) we include only some statistical observations and
a few interesting examples. These three cases —m =2, k= 3; m = 2,
k=43 m=38, k =3 — are the only ones for which an exhaustive survey
is at present feasible. FFor other values of m and % the number of trans-
formations to be studied is much too large.

The determinalion of the exact number T7' of inequivalent transformations for
arbitrary m and % is an unsolved combinatorial problem. It can, of course, be redunced
to enumerating those transformations which are invariant under one or more opera-

(°) We shall not discuss this work here. J'ull details ere contained in the reference
given in footnote 4. That report contains, in addition, some fragmentary results on
o few partioular guadratio transformations in higherdimensional spaces.
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tions of the symmetric group on the k indices, but no convenient way of doing this
is known. The problem, however, is not of much practical eignificance. A lover limit
T*T {o the number T of inequivalent transformations is given by:

m
(14) TR = Sg*

where §% is the Stirling number of the second kind. Sj ia also the number of ways of
putting ¢ objects in j identical boxes, no box being left empty. This underestimates
TR by assuming in effect that each transformation has %! non-identical copies, i.e.,
that no transformation is invariant under any permutation (except the identity).
The following table illustrates the trend:

TABLE I

p oy g
m=2, k=3 6 90 97
m=3 k=3 10- 9330 8370
m=2k=4 10 34105 34337
m=4,k=3 15 2375101 —_
m=2, k=56 16 210766920 —_
m=3 k=4 20 46232115901 —

The T},"’ were obtained by direct enumeration—using, of course, all known short-
cuts. For m = 2, k = 4, this enumeration was actually performed on a computer.
In view of the huge values of the 7% in the lower half of this table, it is unlikely that
anyone will be interested in attempting a comprehensive numerical study of these
transformations for values of m and %k larger than those we have considered.

A general discussion of our results for the cubics in three variables
and the quadratics in four variables is given in section II; the reader
will also find there formal definitions of a few basic concepts and an
explanation of the special terminology employed throughout the paper.
Perhaps the most interesting result of this study is our discovery of limit
sets of an extremely ‘“pathological” appearance. The existence of such
limit sets was quite unexpected (?)—and is indeed rather surprising in
view of the essential simplicity of the generating transformations. Sections
IIT and IV are concerned with the effect—on the iterative properties
of our transformations—of two types of structural generalization. Spe-
cifically, in section III we consider the one-parameter generalization—
called by us the “A¢-modification”’—which consists in replacing equa-
tion (10) by:

(123) o} = (L — A2+ Afs(@y, .o, @) (E=1t0 k), O<At<1.

() Quadratic transformations in three variables apparenily do not exhibit similar
Pathologies.
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This generalization has the special property of leaving the fixed points
of the transformation invariant, although their character—i.e., whether
they are attractive or repellent—may be altered. The detailed discussion
of the behavior of such transformations under variations of the para-
meter At is limited to the cubic case.

Section IV describes the result of introducing small variations in
the coefficients of the monomials which make up the various f;. Again
we deal only with the cubic case, and indeed only with a few interesting
examples chosen from our basic set of 9370 transformations. Let us
denote the Nj monomials (e.g., 1, 3z,;, 62,2, ,...) in the expansion
of (11) by the symbol M, j =1 to N;'. The assignment of a particular
index to a particular monomial is arbitrary.

Then we have

Ny
(13a) fo= D dyM;, 1<i<k,
Je=1
with
(14a) dy=1or 0,
k
(15) Dy =1.
{=1

The generalization then consists in relaxing the restriction (14). If this
were done subject only to the condition that the d;; all be non-negative,
we should be dealing with a (k—1)Nj parameter family of positive,
bounded, homogeneous polynomial transformations. At present nothing
significant can be said about this class as a whole. As explained in sec-
tion IV, our procedure has been to study one-parameter families of trans-
formations which are in a certain sense ‘‘close” to some particular trans-
formation of our original set (%).

In section V we give a brief, heurigtic discussion of the connection
between our transformations—which are really first-order non-linear
difference equations—and differential equations in the plane. Our con-
clusion is that the connection is not, in fact, very close, and that the
techniques so far developed for treating non-linear differential equations
do not seem suitable for handling the problems discussed in this paper.

(*) Some analogous but rather unsystematic investigations were carried out on
quadratics in three varinbles, and are contained in the report cited in footnote 4.
Subsequent to the appearance of that report we made some studies (unpublished) on
quadratios with randomly chosen positive coefficients satisfying (16). For quadratios
(at least in three variables), the coneclusion seems to be that such randomly chosen
transformations are most likely to lead under iteration to simple convergence for almost
all initial points.
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The final section of our main text—section VI—contains a descrip-
tion of a class of piece-wise linear transformations on the unit square.
These transformations exhibit interesting analogies with our polynomial
transformations in three variables. Relatively little work has been done
on this “two-dimensional broken linear” case, but the preliminary results
we report seem to indicate that a detailed study might prove worth-
while.

There are two appendices: Appendix I is largely devoted to an
extended discussion of certain non-linear transformations in one di-
mension, on the unit interval. Some of these are special cases of our
cubics in three variables; others originated independently of our princi-
pal study. It is perhaps rather surprising how little can be said theo-
retically even about this simple one dimensional case. It turns out that
some of the same phenomena are observed in one dimension as are found
in the plane—e.g., the apparently discontinuous behavior of limit sets
as a function of a monotonically varying parameter. Of course, the re-
peated iteration of a one-dimensional transformation is a much simpler
matter than the corresponding process in several dimensions. However,
a8 we soon discovered, great care must be taken to avoid the pheno-
menon of ‘‘spurious convergence”. This point is discussed in some detail
and a few—rather alarming—examples are given.

Appendix II contains the bulk of the photographic evidence—
including the ‘‘pathology” of the limit sets—on which the discussion
of sections IIT and IV is based. These pictures, together with others
scattered throughout the main body of the text, constitute in a sense
the unique contribution of this paper. In retrospect, it seems unlikely
that our investigation could have been successfully carried out without
the visual aid afforded by the oscilloscope and the polaroid camera.
Put in the simplest terms, unless one knows precisely what one ig looking
for, mere lists of numbers are essentially useless. Automatic plotting
devices however,—such as the oscilloscope—allow one to tell at a glance
what is happening. Very often the picture itself will suggest some change
in the course of the investigation—for example, the variation of some
hitherto neglected parameter. The indicated modification can often be
effected in a few seconds and the result observed on the spot (°).

Visual display is of very great value when one is in effect studying
sets of points in the plane; when one passes to three dimensions auto-
matic plotting ceases to be merely a convenience and becomes essential.

(*) This interaction of man and computing machine has sometimes been roferred
to as “synergesis”. See for example, 8. M, Ulam, On some new possibilities ... computing

machines, 1. B. M. Research Report 68, 1857. I. B. M. Corporation, Yorktown MHeights,
New York.
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A glance at our pictures of three-dimensional limit sets—the result of
iterating certain quadratic transformations in four variables—should
convince even the most skeptical reader. In our opinion, it would be
virtually impossible to make sense out of a mere numerical listing of
coordinates of the points plotted in these photographs.

Of the many who have helped with this work, there are three to
whom we are particularly indebted: Cerda Evans, Verna Gardiner, and
Dorothy Williamson. These ladies did the actual coding and supervised
all the machine calculations. Without their help this paper could not
have been written.



I. THE ROLE OF THE COMPUTING MACHINE

1. The use of electronic computers for the solution of complicated
or tedious problems—ausually of practical origin—is by now familiar.
Typical computer tasks are: the evaluation of integrals, tho solution of
large systems of linear equations, the solution of minimax problems
(linear programming), the treatment of complicated boundary value or
initial value problems, etc. One of the more impressive jobs that com-
puters have done i8 to calculate the time history of immensely com-
plicated physical systems (e.g. involving hydrodynamical motions, mag-
netic fields, etc.). Recently there has been considerable interest in using
computers to attack problems of a less applied nature, for example
those arising in combinatorial analysis (*) and number theory (). This
‘work often takes on an experimental flavor; such experimentation has
led to results of considerable interest, for example, the construction
of certain types of mutually orthogonal latin squares (¥). Computers can
also be used to investigate formal mathematical systems (%), to reduc
symbolic expressions (), and—with less success—to study games of
“skdll” like chess (1%).

The use of computing machines that we describe in the present
paper differs in two respects from the examples just cited. On the one
hand, our study is not essentially combinatorial in character, but falls
rather in the domain of algebra and real variable function theory. On

(**) See, e.g., Proceedings of Symposia on Applied Mathematics, Vol. X, Ame-
rican Mathematical Society (1968), or the article by Marshall Hall, Jr. in Surveys of
Applied Mathematics, Vol. IV, 1958.

(**) In the absence of a comprehensive referenco, we rofer the reader to the recent
ssues of Mathematics of Computation (1960-1962). See e.g. Vol. 16, No. 80, October
1062, especially the article by D. H. Lehmer, et al.

(1) See the article by E. T. Parker in Proceedings of Symposia in Pure Mathe-
matics, Vol. VI, American Mathematical Society (1002). Parker’s original construction
supplied the final step in the disproof of a famous conjecture by Euler.

(**) See H. Gelernter ot al., Proceedings of the Western Joint Computer Con
ference, San Francisco, May 1960, pp. 143-149.

() M. B. Wells, Proceedings of the IFIP Congress (1062) (to be published.

(*) C. Shannon, Philosophical Magazine 41, March, 1950. — Kister, Stein,
Ulam, Walden and Wells, Journal of the Association for Computing Machinery,
Vol. 4, Number 2, April 1057.
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the other hand, we are not attempting to ‘‘solve’ some well-defined
problem; instead we investigate via repeated trials the asymptotic prop-
erties of certain non-linear transformations, usually without any ad-
vance knowledge of what we may find in a given case. Even ‘“‘after the
fact”, so to speak, it is difficult to classify these asymptotic properties
in a meaningful fashion; the broadness of the categories we employ for
this classification (1%) is merely a measure of our lack of insight into the
structure of the observed limit sets.

Faced with this situation, one may ask the question: how does
one recognize ‘‘convergence’’—i.e., the existence of an invariant set—
when one has no a priori numerical criteria to apply? We can only supply
a partial answer to this question, but that answer has the advantage
of simplicity, viz: ‘‘use your eyes”. The practical application of this
‘“‘technique” involves, of course ('7), the use of automatic plotting devices.

2. Roughly speaking, computing machines are devices which per-
form the four elementary arithmetic operations on numbers in a certain—
not necessarily simple—sequence. This sequence of operations is called
the ‘‘program”, and consists of a set of logical commands, both of the
sequential (‘‘do this and then do that”) and of the branching (“if this
holds, then do that’) type. The program is composed by an investigator
(the ‘“‘programmer”) and must therefore reflect his own limitations.
Nevertheless, the machine may easily produce results quite unantici-
pated by the programmer, even if the program is essentially determin-
istic in nature (*¢). A classic example—which happens to be relevant
here—is the step-by-step application of some recurrence relation which
generates a sequence whose trend the programmer cannot determine in
advance. A3 an example, we may cite the following one-step recursion
in a single variable:

(1) Yni1 = Wn(3 — 3w+ owh), wn =3ya(l —¥a).

Given some initial 0 < ¥, < 1, we may ask: what is the result of apply-
ing the rule (1) N times, where N is some larger number, say 105? This
particular transformation is discussed in detail in appendix I; here we
quote three examples for the purpose of illustration.

(a) If ¢ = 0.99004, then for almost all y, the sequence of iterates
produced by (1) converges (in <10° steps) to a period of order 14.

(*) See section II.

(") Hand plotting is in general highly impractical, and clearly relinquishes the
principal advantage of machine computation: SPEED.

() Strictly speaking, all programs used on digital computers are deterministic
in nature: even when random numbers are employed, these are generated according
to some fized algorithm so that the sequence is in principle known.
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(b) If o =0.99005, the corresponding limit set is a period of
order 28 ().

(¢c) If o = 0.909008, no finite period is observed after N = bx10°
steps.

So far as we are aware, this behavior could not be predicated by
current analytical or algebraic techniques. Such phenomena are easy to
study on a computer, however, because of the great speed with which
it can carry out the (relatively simple) operations implied by an expression
such as (1) above. In fact, 200000 iterations of this transformation takes
glightly less than one minute on a really fast computer (*).

3. As we mentioned in the introduction, the principal content of
this paper is the study of the agymptotic properties of certain non-linear
transformations of relatively simple form. This means that, if 7' is such
a transformation, we examine the sequence

T(p), Ip), T*p), -

for various initial points p lying in the domain of 7. The mathematical
object of interest to us is the sel (or sets) of points to which these
sequences converge. In the absence of any general analytical technique
for calculating these ‘limit sets”, we must have recourse to ‘‘brute-
force” methods.

Some non-linear transformations which appear morplologically similar to those
considered here can in fact be completely analyzed by elementary methods. We dis-
covered one such case in the course of some earlier work on biological systems. It is
described in our report on quadratics in three variables (see the appendix of the re-
ference cited in footnote (4) in the introduction). We restate these special results here:

Let

N
(@) Oi= ) #m00,, 1<i<XH,
k,m=1

with coefficients satisfying

o yhm = y;"" >0, min(k,m) <% < max(k,m),
yfm =" — 0, otherwise,
k
(4) 2 A =1,
t=m
. k
. fm _ M+
(6) 42 W=
=m

() These results were found by using the IBM “STRETCH” computer. The
periods are exact to within the accuracy of that machine, i.e., 48 binary digits (~15
decimals). See further in appendix I.

(*) This figure applies to “STRETCH" and includes all additional “*diagnostic”
operations such as checking for “convergence’, etc.
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We normalize the O; by
N

(6) 0<Ci<l, alli, Y 0i=1.
i=1

This property is clearly preserved under iteration. With the coefficients defined as
above, there exists a linear invariant:

N-1 N—1
() o= 3 (N-i)0i= Y (N-9)0%.
=l =1

Given an initial vector (0{”, 07, ..., 0'9) whose coordinates satisfy (8), o is explicitly
determined. It can then be shown that every initial vector satisfying (6) converges
to a definite fixed point which is determined as follows. For the given value of o, there
is one value of the index j such that

(8) N—jzo>N—-j-1.
The fixed point is then explicitly given by
(9) Ojma—(N—j—1), Op41=N—§j—0, all other O;j=0.

Note that the fixed point is independent of the values of the coefficients y{-‘"‘.
Ae simple examples of coefficients satisfying (3), (4), and (5), we may mention

(10) y;,_-m= 1 ( |&—m| )

glk—m| \i— min (k, m)
and
1 e ,
(11) Jm ‘ k—m|+1° if min(k, m) <4 < max(k, m),
‘ =
0, otherwise.

For o fuller discussion of this transformation and its possible applications, we refer
the reader to the original report.

The term ‘‘brute-force” refers to the fact that, in order to determine
the convergence properties of some transformation T belonging to our
class, we must in general actually evaluate T*(p) for k=1, 2, .., N,
where N is likely to be quite large—sufficiently large, that is, so that
we can observe convergence () to the limit set. To make matters clear,
let us consider a specific example. We choose the cubic transformation

T = @y + 35137: +3mam§+ 62,2,z ,
(12) zy = 2 +3a:,w§+3a;am§ .
Xy = a:§+3m,m§+3m2mf .
We taken some initial point p = (,, z,, ;) whose coordinates satisfy:

(13) Ty Ty =1, 0<m<, i=1,2,3.

(*) “Convergence’ must be of course understood in some approximate numerical
sense. Our usual criteria are set forth in the next sub-section.
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The program then instructs the computing machine to evaluate the right
hand side of (12), thus producing a new point p’ = (1, @2, #a); the co-
ordinates of p’ again of course satisfy (13). p’ is then set to p, and the
process is repeated. The iteration proceeds in this fashion until either
some finite limit set is found (**) or an invariant set—presumably in-
finite—is ‘“‘observed”. The observation consists in looking at successive
groups of consecutive iterates—in practice we have usually taken 900
points at a time—until no qualitative visual change is noted over
a sample of several successive such groups of points. Since the trans-
formation (12) is really two-dimensional, we may plot the successive
points p in the plane. Accordingly, we define new coordinates S, a by
the linear transformation (*)

1+ —a, _ @
(14) §=—gp—", a=7.
The domain of the transformation is then the 45° isosceles triangle:
3
al
0 § - 1

In terms of these new variables, (12) takes the form:

8 =—}9-158a-§8c+3a®+68a—3a+1=F(8, a),
a =i8+38%+3§8a®—}a®—68a+3a =G(8,a).

The computer is instructed to store 900 successive points

P(S(")a a(n))’ P (S“H-]), a(ﬂ“)): arey

and, when the last point has been calculated, to plot all 900 points on
our oscilloscope screen (¥). If we choose, we may then photograph the
resulting pattern with a polaroid camera. Such a photograph is shown
in fignre 1. Here one sees 900 successive high-order iterates (n = 2700
to 3600) of the initial point, § = }, e = 0.17. TFor convenience, the trian-
gle of reference is also shown.

(16)

(¥) See the mnext sub-section.

(**) These are the coordinates employed in our earlier work on quadratics in three
variables; we have rotained them more for historical reasons than for any particular
advantage they may possess.

(#) The points are actually plotted in the order in which they are caleulated,
the whole pattern being replotted as many times as we wish. Actually, the plotting
of 800 points is effectively instantaneous so far as the human eye is concerned. If we
wish to see the pointa plotted in succession, we must introduce artificial time delays
between the plotting of successive points.



Fig.1



I. The role of the computing machine 17

This calculation—as well as all others which produced the photo-
graphs in this paper—was performed on the Los Alamos Laboratory’s
MANIAC II computer (%), MANIAC II requires about 15 seconds to
calculate 900 iterates of a point by repeated applications of a ecubic
transformation like (12) above. This figure includes the time spent in
examining the successive points for simple convergence, as well as other
“diagnostic” operations (2¢). The actual numerical values of the coordi-
nates may be printed out whenever desired by simply flipping a switch.
On MANIJAC II a decimal number is normally limited to eight signi-
ficant figures. In the present paper, when there is occasion to quote
numerical values obtained from MANIAC II print-outs, we shall gen-
erally reproduce them to seven figures without further specifying their
accuracy.

Computer programs are, of course, not limited to generating se-
quences of numbers from an iterative formula such as (12). A con-
giderable amount of sophistication can be incorporated into such a pro-
gram 80 a8 to allow the machine to make ‘“decisions” in the course of
the calculation. It can, in fact, examine any property or any functional
of the data that the programmer can describe in appropriate terms.
One problem that is met with frequently in this work is to determine
the points in a sequence of iterates that lie closest to some chosen point,
say within some chosen angle or set of angles. This sort of experiment
is frequently of help in elucidating the local structure of a complicated
limit set. Then again we may want to determine the average values of S
and q, i.e. ergodic means, taken over the sequence. To achieve any sort
of accuracy in such problems (¥) we may be required to go to 50000 or
even 100000 iterations. One saving feature is that several such diagnostic
experiments caun be carried out simultaneously. There are, however,
special questions that must be dealt with by special programs. One such
question arises in connection with our illustrative transformation (12).
The complicated limit set shown in figure 1 is not the only one observed.
This transformation has an attractive fixed point at:

(16) 8 =PF(8,a) = 0.6289977, a = G(8, a) = 0.1107896;

indeed, the eigenvalues of the jacobian matrix (%) evaluated at this point
are complex, with |A[* = 0.4366967. Consequently, there must be a neigh-
borhood of this point in which all sequences will converge to it. The only

(*) For the use of other computing machines in this work, see the next sub-section.

(**) YTor reasons of nccuracy, the caloulations are performed in the z: coordinates;
the transformation (14) to the S, a coordinates is carried out only for plotting purposes.

(*) More properly, to have any confidence in the results. The accuracy cannot
always De satisfactorily estimated.

(#) The criterion for the nature of a Mt is discussed in Section III.
BU 9
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way to find the boundary of this neighborhood is by {rial and error.
This is a time-consuming job, even for an electronic computer; if one
picks a point close to the boundary of the region of convergence, several
hundred—or even several thousand—iterations may be required before
one can tell whether the chosen point lies inside or outside the region.
Figure 2 (see page 24, section II) shows the approximate boundary for
the present case, drawn through 107 experimentally determined points.
One of these is known to one part in 107, while the others have been
determined only to 1 part in 10* (*).

4. General procedure

a. Cubio transformations in three variables. Enough has been said
above to make clear the necessity of using an electronic computer in
such investigations. We must now say something about the systematic
aspects of the study. All 9370 cubic transformations were initially stu-
died on an IBM 7090 (%). First a complete list of inequivalent cubics
was prepared—this was also done on the 7090, incidentally serving to
check our original pencil-and-paper enumeration. Then by a completely
automatic procedure, each transformation was taken in turn and four
randomly-generated initial points were each taken as the start of an
iterative sequence. For each point the iteration was continued until
either convergence to a finite set of points was ‘‘observed” or 10000
iterations had been performed. By ‘‘observed” we mean that the ma-
chine gensed convergence to a fixed point or to a finite period of order
<300. More precisely, the computer was programmed to test whether
the following conditions was satisfied

(17) lm(tnl) _mgﬂ)l < 10-7’ i = 1’ 2’ 3.

If (17) is satisfied, a finite limit set has been reached to within the in-
dicated accuracy. For n = », +1 this means convergence to a fixed point
(“simple convergence"). Otherwise, the limit set is a period of order n —u,.
In practice, values of the z; were stored at fixed time steps =, = 300,
600, ..., the test (17) being performed on each step. If ‘convergence’
wag found, the appropriate values of the z; were printed out and the
next random initial point was used, etc. If no such convergence was
found after 10000 steps, the values of the iterates for the last few steps
were printed, and the computer proceeded as before.

When all the cubic transformations had been studied in this fashion,
the ‘“interesting” cases—i.e., those in which no convergence was ob-

(*) The point § = }, a = 0.2052833 lies in the region of convergence, while the

point § = }, a = 0.2952834 gives rise to a sequence which converges Lo tho class IV
limit set (see deflnition in seetion II).

() This computer is approximately 6 times as fast as MANIAC II.
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gerved—were examined one by one on MANIAC II, where the visual
oscilloscope display could be consulted. Many cases of apparent non-
convergence turned out in fact to be convergent with the iteration car-
ried further. It should be stressed that the restriction to 10000 itera-
tions, which we imposed in the course of the systematic, fully automatic
survey of all cubic transformations, was merely one of convenience; with-
out some such reasonable limitation, the automatic survey would have
taken too long. The same remark applies to the decision that only four
randomly-generated initial points be taken for each case. Past expe-
rience has shown that this last restriction is not unreasonable when
a complete survey of transformations is contemplated. By this we mean
that the behavior of an arbitrary transformation of our class is ‘“‘likely”
to be defined even if iterates of only four random points are studied.
To be sure, in some cases the limit set depends in a very complicated
way on the initial point; for such a fransformation this crude sampling
technique i3 not adequate. In these cases, however, the four random
trials are likely to produce two different limit sets; this in itself is an
indication that the transformation in question should be studied in
more detail.

For the detailed examination of a given transformation, many rela-
tively sophisticated MANIAC programs are available. We may, in effect,
study any properties of the transformation that seem of interest. Typ-
ically, these may include:

1. Determination of non-attractive fixed points (see section III).

2. Checking for periodicity.

3. Exhibiting some qualitative properties of the mapping, e.g., by
showing the images under the transformation of a family of lines.

4. Determining the dimensions of the limit set.

5. Verifying that low-order periods are attractive (see section III).

6. Examining the dependence of the limit set on the initial
point.

We cannot oxpatiate here on the actual procedures involved; suf-
ficient to say that the use of visual display (i.e., the oscilloscope plot)
is an essentinl tool in all this analysis.

b. Quadraiic in four variables. All (34337) inequivalent transforma-
tions of this class were studied by the same fully automatic method as
that used to study the cubics. For this purpose a faster machine than
the IBM 7090 was clearly required; we were fortunate enough to have
access to the IBM 7030 “STRETCH” computer, which is approxi-
mately 4 times as fast as the 7090 and 20 times as fast as MANTAQ IL
Only partial results are reported in section II, since our analysis of the
STRETCH print-outs is not complete.

2*
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The detailed study of a given quadratic in four variables is more
difficult than the corresponding analysis for the three variable cubics:
the domain is three-dimensional, being in fact the tetrahedron defined by

4
Mo=1, 0<m<1,1<i<4.

Thus a meaningful visual display involves plotting some properly chosen
projection of the three-dimensional limit set. In some cases it may re-
quire several trials before an appropriately ‘‘revealing” viewing angle
is found; consequently it was not feasible to plot every potentially
‘“‘interesting” limit set in this fashion, and some sort of selective pro-
cedure had to be resorted to. The method we chose was to look at three
plane projections first—e.g., 2, versus x,, ¥, versus x,, and @, versus z.
It turns out that one soon develops a feeling for the ‘‘interesting” case
even without being able to build up an image of the actual three-dimen-
sional configuration from the plane “slices”. More serious than this purely
technical difficulty is that resulting from the generally more complicated
dependence of the limit set on the initial point: it turns out that in
these transformations one is much more likely to miss something by
restricting one’s self to a few randomly-generated initial points. At the
present time, lacking any local or structural criteria for the prediction
of asymptotic behavior, we see no way to overcome this difficulty.



II. LIMIT SETS

1, Abbreviated notation for transformations. In order to have
o convenient way of referring to a particular transformation without
having to reproduce its explicit form, we introduce at this point a simple
shorthand notation. As already noted in the introduction, our cubic
transformations in three variables may be written in the form:

10
(1) 2 = gduma, i=1,2,3,
with
(2) dy=0o0r1, alld,j,
and

g
3) Ddy=1, alj,

{1

where the M; are the separate terms in the expansion of (w, +a,+ x,)%.
We now choose the following conventional ordering of the Mj:

M1 =m2, J"’[z ={Dg, Ma =(B=, J"I‘=3(D1$§, M5 =3E1(D§,

(4)

Mo = 3@2@?, M1 = 30’4’2%%, Ma = 3533’:’%, Mg = 3$a$§, M10 = 6:01:179,0:5.
Any cubic transformation of our class is then completely determined
by specifying which terms M;—or, equivalently, which indices j—appear
in the first two lines of the schema.(1). Let us call the set of indices
belonging to the first line C, and those belonging to the second line Cg;
Cy is of course the complement of C, - C, with respect to the full set
{1,2,...,10) and need not be written down. Thus, for example, the
transformation:

T = 0y -+ 31, 22 + 3, Ts + 30,05 + 3T573 + 62, @y Dy ,
(6) &y = iy -+ 3y ]

5 = wp - 3wy}
would appear in the form:
., =1{3,4,0,7,9,10},

(6) TCxC'I: Gg = ‘[1) 8} .
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An analogous notation may be adopted—mutatis mutandis—for
quadratics in four variables. Any such transformation can be written
in the form:

10
gi= D dyFy, i=1,2,3,4,

=1,
(1) dy=0o0r1, alli,j,
4
May=1, allj.
i=1

Our conventional assignment of indices to the Iy is as follows:

2 ) 2
F1=a7?, Fy = x;, Iy = xy, Ty =y, Py = 2, z,,
Fo=2w,3y, Pp=2p2,, TFy=2m,2, F)=22m1, Iy = 2my, .

(8)

Let Qx denote the set of indices belonging to the k* line of the schema (7).
Then any such transformation is specified by writing down three of the
four @ thus:

Ql = {2, 8,9},
(9) TQ]Q!QO: Qﬂ = {3, 7,10},

Qa = {57 6}

represents the transformation

%] = @)+ 20, T +2x,2, ,
x5 = g + 200, &, + 2,7,
Ty = 20, Ty + 22,24,

Zi =@+ o, .

(10)

Thig notation will be used exteunsively throughout the paper.

2. Limit set terminology. By a limit set Lp(1') we shall mean the
set of all points of the region of definition () which are limit points,
in the ordinary sense, of the set 77(p), n = 1, 2, ..., for fixed p. It may
happen that Ly(T) is independent of the initial point p; Ly(1) = L(T)
could then be called the limit set of 7. In general, L(7") will only be
defined for interior points p, since points on the boundary frequently (*2)
behave in a rather special way.

(™) For cubics this is the &, a iriangle introduced in section I; for quadratbics
it is the tetrahedron

.
=1, z20.

i=1

L (**) L.e. often enough to make it worthwhile excluding them in the definition
of L(T).
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Thus, for example, if py is a unique fixed point of the transforma-
tion: I'(py) = Po, and if the iterated images T"(p) of all interior points p
converge to p,, then L(T)= {p}. 1 py,py,..., pr—s form a system §
of %k points such that T(pi) = P41, t =1,2,..(mod %), and if for all
interior points p, lim T™(p) is one of these pomts then L,(T) =

n—>00
It might happen that the interior points divide into a finite number

of classes (,, Oy, ..., C; such that for all points p belonging to the same
class Lp(T) forms the same set; we should then have a finite number
of limit sets Ly, L,, .., L,. Some of these may contain a finite number
of points, others may be infinite. For convenience we shall usually refer
to a finite limit set containing % distinet points as a period of
order k.

Although a given finite limit set belonging to some transformation 7
may legitimately bo considered a ‘‘property” of that transformation,
it is in no sense characteristic; many different transformations of our
type may possess the same limit set, even for the same set of initial
points. It should also be stressed that not every set of points § = {py, ..., P&}
such that T'(p:) = pi41 (¢mod k) is properly a limit set. Such a set of
points—each of which is a solution of the equation T*(p) = p—must
have the additional property that there exists a set of imitial points
whose iterated images converge to §. Finite sets S which have this prop-
erty are conventionally termed atiractive. Thus, we should properly
refer to a finite limit ret of % points as an attractive period of order k.
In the sequel we shall usually omit the word atiractive when the con-
text makes it clear that this is what iz meant.

There is, of course, no structure problem so far as finite limit sets
are concerned; they are completely described by giving the coordinates
of their constituent points. For infinite limit sets, the situation is dif-
ferent. On the basis of our numerical work alone, we cannot say with
certainty that our transformations have such limit sets; the sets may
in fact be finite (with an enormous number of points in them), but the
presumption that they are infinite is very strong. For any observed
infinite limit set we can at most say that it is not a period of order less
than some very large k. Granting, however, that we are dealing with
infinito sets, and that we may infer some of their properties by examin-
ing a sufficiently large finite sub-set (*), we may attempt to classify
them according to their macroscopic morphological properties.

3. Infinite limit sets for cubics in three variables. On the basis of
our empirical study of cubic transformations, we may make a rough
division of infinite limit, sets into four classes:

(™) This assumption underlies all our numerical work.
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Class I. This includes all limit sets that appear to have the form
of one or more closed curves. Figures 3 through 6 will serve as examples
of this class. The detailed structure of these ‘“curves” has been studied
numerically in some cases, but there are as yet no theoretical argumenty
to the effect that these are really one-dimensional continua,.

To illustrate one type of numerical study that we have carried out on these limit
sets, we cite the case of figure 3. This shows the “infinite’ limit set L(Z') belonging
to the transformation:

C=1{,5,7,9,10},
0,=1{1,3,6,8}.

In the S, « coordinates, this takes the form:

9 =3930 Ga4- R~ 38— 300+ TS+ Fat+ ],
o' = —29+ 89+ tad+ 380+ Bt — S —Fu+i.
There is a (repellent) fixed point at:

(13) 8, = 0.6149341,  a, = 0.1943821 .

To six decimal places, the overall bounds on the curve are (*)

(11) To:Cy

(12)

Sma.x = 0.816878 at a4 = 0.058022 »
Smin = 0.411270 at a= 0.204381,
amgx = 0.436861 at 9 = 0.652246,
amin = 0.0177560 at 9= 0.728386G.

(14)

To five decimal places, the average value of ocoordinates is found to be (™)

N N

(15) = %,Z S — 062231, de= % Do = 0.20772.

i=1 =l
This set L(T) is the only infinite limit set the transformation seems to possess (the
pair (§ =1, a=0), (§ =4, a=3) turns out to be an aftractive period for thig trans-
formation). For “most” initial points, the sequence of iterates converges to L({T).
If we choose as our initial point some p ¢ L(T), the curve will be traced out by success-
ive images of p, though not in a continuous fashion. If, Lowever, we look only at
successive iterates of the 71t power of T: T(™, the curve is indeed generated in
a relatively continuous fashion; the successive points 7™ (p), n = 1, 2, ..., lie close
to each other and trace the curve in a clockwise sense. This is illustrated in figure 7,
where 246 successive values of 7 (p) are plotted. It is striking that the non-uniform
density of points along the curve—as shown in figure 3—is reproduced by this sequence
of iterates. We are thus led to the conjeoture that L(T) and L (T) coincide. It is,
of course, by no means generally true that 7™ and 7 will have the same limit set
for an arbitrary T of our type (of. the case of periodic limit sels wlhere k is o multiple
of the period). Further experiments have convinced ns that L(7) = L(T™) for all &
in this case. If this is so, the sel is ceriainly infinite. That it is a continuum is also
very probable.

(%) T.hese results were obtained by carrying out N = 06000 iterations, starting
rom a point on the ourve with coordinales: § = 0.5841328, a = 0.4125823.
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The presumption that L(Z') is one-dimensional is supported by the following
experiment. We choose s point p, which seems to lie, with all available precigion, on
a convex portion (*) of the curve, and obtain 100000 iterated images of it, keeping
track of those iterates which lie closest to p,. We find that the two points p, and p,
of closest approach lie in opposite quadrants with respect to p,, and that the slopes
of the two line segments (p,, po) and (p,, p,) are the same to within & fraction of a per-
cent. This suggests (1) that the limit set is a ourve, and (2) that the curve probably
has a coniinunous derivative at p, (*).

Limit sets cousisting of several separate curves (figures 8, 9, 10)
may in principle be treated in the same manner, although it is then no
longer true that 7' will have the same limit set as T for all k. For
example, if L(Z') consists of three separate curves, L( T®) will coincide
with only one of these—which curve depends, of course, on the ini-
tial point.

Class II. This class consists of those infinite limit sets all points
of which lie on a pair of boundaries of the (§, a) triangle. Alternate
iterates lie on alternate sides, hence the square of ‘the transformation
will have a limit set confined to one side of the triangle. T®(p) is then
strictly one-dimensional for all p situated on one or the other of the
two sides in question. The situation is illustrated in figures 11 and 12.
There seem to be only a few such one-dimensional limit sets possible
within our class of cubic transformations. Oorrespondingly, many dif-
ferent cubic transformations lead to the same pair of one-dimensional
transformations when the set of initial points is restricted to a pair of
sides of the (S, a) triangle.

TFor example, every tranaformation of the form:
! = x} -+ 3a, 2, 2} + 3403+ 3b, @y 22+ 3wy 2] - 60,2, %, %4
(16) o) = 72+ 23+ 3ay 2 T3+ 3byxy T} -} BC 2, 2,25
x} = 32,23+ 3a,x, 23+ 37,23+ 3Dy Ty 72 + 662, T2 2,

with non-negative a4, b¢, o; salisfying:

will lead to the pair of one-variable polynomial transformations of 6th order:

(18) Y =w[3—3wtw), w=3(l-y),
(19) w=3w(l—v), v=u[3-3utu].

In other words, transformations 7' of the form (16) have the property that T® trans.
forme each of the lines o, = 0 and x, = 0 into subsets of themselves (in the §, a co-
ordinates, those lines are respectively the boundaries S+a = 1 and S = a). The study

(*) Ovorall convexily is rarely, if ever, a property of these limit sets.

(™) We do not conjecture that the derivative exists at every point, but we
think it likely that the number of points where the derivative does not exist is at
most a sel of measure gero.
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of such one-dimensional transformations is much easier than that of the original plane
transformations, but there are certain serious computational pitfalls connected with
high-order iteration (see appendix I).

Olass IIL. The limit sets compriging this class will be referred to
as pseudo-periods. They consist of relatively dense clusters of points
localized at a finite set of centers, with a few scattered points in between
(figure 13). Such limit sets have not been observed for our original cubic
transformations with integer coefficients; they are, however, a prominent
feature of the more general transformations discussed in soections ITT
and IV.

Olass IV. In this class we place all infinite limit sets not included
in the first three classes. Viewed on the oscilloscope they appear as very
complicated distributions of points with no recognizable orderly structure.
Some examples are shown in figures 14 through 17. A few other examples
will be discussed in detail in the following sections. For illustrative pur-
poses, however, we include here a few remarks about figure 17.

This limit set belongs to the transformation:
0, = {3, 4, 6; 7,9,10},
C; = {5, 8}.

As is evident from the photograph, it consists of seven separated pieces;
each of these is invariant under the 7' power of the transformation.
Extensive experimentation indicates that the gaps are really there. There
appears to be no orderly structure within the separate pieces; in figure 18
we show about 385 consecutive images 7" (p) (in the upper left-hand
piece of the limit set) of some p lying in this sub-set.

(20) T

4. Statistical observations.

a. A large majority of our 9370 cubic transformations in three var-
lables—some 75 per cent—exhibited what might be called simple con-
vergence for all initial points tried. For these the limit sets consist of
a single point; i.e., a fixed point of the transformation. In many cases
there are two such attractive fixed points, but we have not found a case
in which both such points are interior to the (3, a) triangle.

We exclude Lere a few trivial cases such as the following. Consider

¢,=1{1,2,3,4,5,10},
0’ = {6, 9} .
Explicitly, the second and third line read:

(21) Tcicy:

(22) 3; = 35. (mt'l- %mo) ]

. Ty = 32g (2t + 7,7) .
us

(23) Ty _ T

N
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go that this ratio is fixed by the initial value, and we have & continuum of fixed points.
Setting @/, = », we find that the fixed point is given by

_l4r—y/0+m)3

(24) Ta Ifartn
with, of courae,
(25) Ty = Tdy T = 1—(1+T)G..

If we consider the transformation derived from the above by interchanging the right-
Land sides of (22), wo shall have:

zy @ @y
‘mT’ = 5; =1 e—
0 "

(20) 2,

yielding a covresponding continuum of limit sots which are periods of order two.

b. About 16.0 percent of the transformations seem to have only
finite (periodic) limit sets; not surprisingly, most of these are of order two.
More than half of the latter are of a trévial nature, that is, two vertices
of the triangle permute under 7. Less than 20 cases were found for which
the limit set was a period of order & > 3. High-order periods are, how-
ever, frequently encountered in the study of the generalized transforma-
tions discussed in sections III and IV.

c. Some 5 percent of the cases were found to have several (i.e., two,
rarely three) distinet finite limit sets of the types deseribed above. For
2 given transformation it would in principle be possible to determine
numerically the set of initial points whose iterated images converge to
a particular one of the several limit sets; lack of time has prevented us
from doing this except in a few cases. We only remark that there is in
general no reason to suppose that the boundary of such a set of initial
points is simple.

d. The remaining 3.5 percent—some 334 transformations—possess
infinite limit sets. Most of these—roughly three-quarters of them—be-
long to class I, that is they look like closed curves. Perhaps 5 percent
of the rest belong to class IT, the 20 percent residuum being of class IV
type. As mentioned above, no examples of class III (pseudo-periods)
limit sets were encountered in the study of our original group of cubic
transformations (i.e., those with integer coefficients 1, 3 or 6).

e. No case has been found in which a transformation has two dis-
tinet class IV limit sets, although there are cases where one of several
limit sets was of class IV type. One such has already been described
in section I (page 16); a morc complicated example will be mentioned
in section IV below.

f. We can say very little about the rate of convergence of a se-
quence 7™ (p) to its Lp(7'). Sometimes it may be extremely rapid (10 to
20 iterations); in other cascs many thousands of iterates may be required.
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If Ly(T) consists of a single point, Ly(T) = {po}, this ra.to_ can, of course,
be calculated (for points sufficiently close to p,) by solving the approx-
imate, linear difference equations explicitly.

This is, however, not always sufficient. If the jacobian matrix, evaluated at p,,
has complex roots, and |A*| = 1, the linear difference equations may generatc an in-
variant ellipse. Such a case was found in our of quadratics in three variables, and is
discussed in our report on that work. In the 8§, e coordinates, this transformation is

(27) 8 =1—4a+ 4>+ 228, o = 2a8
with fixed point at

(28) §S=1%, a=1}.

Letting

(29) o=8—% §=ai,

the linear approximation is

(30) o =—y+iz, ¥ =y+ix.
This then generates the invariant ellipse:

(31) z14 o'y 4 29" = 2t ay+ 29

In faoct, however, for the full (non-linear) transformation, the fixed point is attraotive.

5. Limit sets for quadratic transformations in four variables. All
34337 distinet systems of this type have been investigated on the
“STRETCH? computer, as described in section I above (¥). A prelimi-
nary survey of the results indicates that only about two percent of these
transformations possess infinite limit sets. The finite limit sets need no
special comment; they are of the same sort as those found in cubiecs
in three variables—except, of course, that they are not in general plane
sets. A few periods of rather high-order (more than 100 points!) were
found, as well as a fair number of cases with 10 to 80 points. This prob-
ably should be expected in view of the greater variety of possible alge-
braic structures.

We are not yet in a position to classify the infinite limit sets as we
have in the case of the cubics. Perhaps the closest analogy to sets of
the class I type are those which appear to be closed curves in space.
These are illustrated in figures 19 through 23. They are shown in con-
venient projections; the ‘‘coordinate system in the center of thoe picture
merely indicates the orientation relative to the viewer, who is conceived

(*") The computing time required for the whole study was only a [raction of what
one would predict on the basis of 7 seconds for 10¢ iterations —an average for these
recurrence relations ns actually coded—because a large majority of cases *‘converged"
in a few (~50) steps.
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of as stationed at a certain distance from the origin along the y axis (%).
Ttigure 19 (see page 26) shows a limit set belonging to the transformation:

Qi =1{1,3,4},
(32) To000 Q.= {5,86,8)},
Qs = {7,10}.

Presumably what one sees is a twisted space curve.

In figure 20, the limit set consists of two plane curves, one of which
lies in the (@, @) plane, the other lying in a plane inclined at 45° with
respect to the first. The corresponding transformation is

Ql = {1’ 27 9}!
(33) To:000 Q2= {4,7,10},
Qs = {3’ 51 6} .

The observed limit set is at least consistent with the fact that (33) evi-
dently transforms these planes into each other (so that the points lie
alternately on the separate curves). More complicated twisted curves are
poasible (figure 21). We have also found quite implausible looking limit
sets like that shown in figure 22. As a final example, we cite the trans-
formation:

Ql = {1v 77 9})
(34) TO:Q:On: @, = {3, 4, 8},
s = {2, 6,10}.

This has at least two infinite limit sets, one of which may be of class IV
type (not shown); the other (figure 23) is a ‘‘curve’ of unknown struecture.
At the time of this writing (January, 1963) wé are unable to say
anything more specific about the limit sets for quadratics in four
variables; to date, less than one-third of the seven hundred or so po-
tentially “interesting’’ cases have been looked at on the oscilloscope.

(%) The '‘reference system" (z,y,z) is parallel to, but displaced relative to, the
actual coordinate system (z,, ,, Z,). The origin of the (z, y,z) system is in the (ap-
proximate) center of the picture; that of the (z,,z,,,) system is in the lower left-
hand corner.
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1. We discuss here a particular one-parameter generalization of our
original cubic transformations in three variables which we have called
the At-modification (®). It consists in replacing the usunal difference
equations (49):

10
(1) o =D dyMy, i=1,2,3,
j=1
by
10
(2) o} = (1— A)mi 441 D) &y My,
i=
with
(3) 0<Aat<1.

If At =1, we recover the original set (1); 4¢ = 0 is excluded, since the
equations then become the trivial identity transformation.

The abbreviated notation of section II is extended in an obvious
manner to cover this case. Thus, if (1) is represented symbolically by
Teo.c,, (2) may be symbolized by T¢,cpm. For a given p, the limit
set will correspondingly be denoted by Ly(T), Lpun(T).

In the 8, a coordinates, (1) appears in the form

(4) 8 =F8,a), a =0G(S8,aq).
Correspondingly, (2) reads
(5) 8 =1-M)S+4tF(8,a), o =(1-At)a+4tG(8, a).

Tt is clear that the fixed points of () coincide with those of (4). As we
shall see below, this fact enables us to find these fixed points by simple

(®) This has already been mentioned in the introduction, equalion (12). The
modification can, of course, be introdnced for the genernl cuse (equations (10) through
(13) of the introduetion).

() The M; are defined in section II, sub-section 1, equation (4). Unless other-

wise stated, equations (2) and (3) of section IT are assumed to hold, as well as the
condition

Zwi =1, # >0, for all initial points p = (x,, z,, ) .
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iteration, thus avoiding the unpleasant algebra involved in eliminating
one variable from the pair of general cubics

(6) §=F(8,a), a=§G(8,a),

and then solving for the roots of the resulting high-order (<9) poly-
pomial. One c¢an look upon (i) at the simplest (and most naive) finite
difference scheme for approximating the first-order differential system
" B 10,0, Lo aras,a).

The analogy between (i) and (7) is not, however, very close (); con-
gequently it is better to discuss (5) on its own merits. The effect of setting
At < 1 (but >0) on a single iteration i easy to see. Let us take a par-
ticular point 8, a; the image produced by (4) will be denoted, as usual,
by 8§, a’, while we shall call the corresponding image under (5) §'mod,
a'mod. Then

(8) S'mod -8 =41(8' -8), o'mod-a =Adt(a'-a).

In other words, the length of the iterative step is altered, while the di-
rection remains the same. Whatl happens on repeated iteration is, how-
ever, not all obvious. One expects that the limit set Lpywuy(T) will in
general have smaller diameter as we decrease Af, but we cannot at pres-
ent predict its structure as a function of 4¢, even relative to the (ob-
served) structure of Ljp(1'). It is worthwhile illustrating this in a partic-
ular case. Consider the transformation:

01 ={3) 5’ 77 9710};

9 Tyt
®) 0= 11,2,8).

In the 8, ¢ coordinates, this reads explicitly:

8 =8-068%a—38c*+4a® -} 8°+38a -3 %41,
a' = —-84-38a2+ 20+ 3 8% -38a+3a.

Since we shall refer to this transformation quite often in the sequel,
we have given it the distinctive label (A). T4 has one interior (“*) fixed
point (repellent), whowro coordinates are:

(10) 3, = 0.5885696, uy = 0.1388662 .

There are (wo infinite limit sots; these are shown in figure 24 and in
figure 11 of section IL. At the moment, we shall not be concerned with

(1) IPor fwrthor disenssion on this point see section V.
(#) There i3 anothor repellent fixed point at a vertex of the triangle, namely
S=a=4.

(A) TA :
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the limit set shown in figure 11; this is evidently of class II type and
can therefore be studied in one-dimensional form (*). The limit set shown
in figure 24—which we shall henceforth refer to as L(T.)—appears as
an irregular pattern surrounding the fixed point (shown superimposed
on the picture). Figure 256 again shows L(T)—this time enlarged by
a factor 3, while figure 26 shows a portion of the upper left-hand corner ()
enlarged about 14 times. Figure 24 shows 900 consecutive iterates, while
figure 25 shows these same 900 points plus 1800 more. For comparison,
in figure 27 we plot just 50 consecutive iterates. The approximate outer
dimensions of L(T4) are (*)

Smox = 0.754696  at a = 0.077251,
Som = 0.443911  at a = 0.204610,
amox = 0.277406 at § = 0.491266,
amm = 0.071196 at 8§ = 0.739170,

We now contrast with L(T,) the limit sets L« (T4) belonging to the
generalized transformation Ti. If we set At = 0.9931, we get a limit
set entirely different from L(T,) (from the same initial point). This is
shown in figure 28. It exhibits what we have called ‘“pseudo-periodic”
structure, that is, almost all the iterated images >t the initial point p
are concentrated in the neighborhood of seven distin‘t ‘‘centers”—
an example of a class III limit set (9).

With a very small change in 4i—namely, by selting A¢ = 0.9930 —
we find instead a period of order 7. This is shown in figure 29. As we
decrease At in small steps down to 41 = 0.9772 (figure 30), the correspond-
ing Ly)(T4) remains a period of order 7; the coordinates of the indi-
vidual points appear to change continuously with A4i. For 4¢ = 0.97713,
Leay(T4) is again a pseudo-period, and this character persists down to
A4t = 0.9770 (figure 13 of section II). Below (¥') At = 0.9770 Lu(T4)
is a closed curve (*®) around the fixed point which shrinks in more or
less continuous fashion as At is decreased. Figures 31, 32 and 33 illus-
trate, respectively, the limit sets for At = 0.97, 0.94 and 0.92. Finally,
for At < 0.9180154 (see below), the limit set consists of a single point—
the fixed point (10) (“?). This peculiar behavior of Ly, (7T4) as a func-

(11)

(**) See section II.

(“) This is the region 0.466 < § < 0.526, 0.226 < a < 0.278.

() These results are based on a caleulation with N == 00000 iterntions.

(*) See section II for this classification seheme.

(') We have not attempted to find the critical values of At with greater precision,
though this could in principle be done to, say, 7 decimal places on MANIAC II.

() This is, of course, only a conjecture. See the discussion in section II.

(*) In the language of functional analysis, 7'y is o shrinking operalor in this
range of 4i values.
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tion of 4t is not an isolated instance, nor is it by any means among the
most extreme examples we have encountered (see section IV for a con-
siderably more ‘‘pathological” case). Within the class of cubic trans-
formations we have studied, it seems to be an empirical rule that the
more pathological the limit set looks for At =1, the more complicated
will be its behavior as 4i¢ is decreased.

2. Aftractive and repellent fixed points. The fixed points of a cuvic
transformation in the standard form (4) are those real roots of the alge-
braic system (6) which lie in or on the boundary of the 8, a triangle (5).
We are interested both in finding the values of the coordinates of these
fixed points and in determining whether the points are attractive or
repellent. By attractive we mean as always that, for any point p in
a sufficiently small neighborhood of the fixed point p,, the sequence
T™ (p) will converge to p,. A general criterion for the attractiveness
of a fixed point has been given by Ostrowski (*1), viz: let |Amax| be the
largest eigenvalue in absolute value of the jacobian matrix evaluated
at the fixed point. Then if |Anuz| < 1, the point is attractive; if | Amac| > 1,
the point is repellent. The theorem says nothing about the case [Amex| = 1,
nor does it yield a method for determining theoretically the appropriate
neighborhood. For the two-variable transformation (4), we may give
the eigenvalues of the jacobian matrix explicitly:

(12) 1= TotVTo—od,
2
where T, is the trace:
. _OF oG
(13) To=35+7, ety
a=ap
and J, is the jacobian:
oF oG oG oF
(14) Jo—ag'a—a'—ﬁ%‘g-.gb.

a=aqp
For the modified system (5), we find correspondingly:

At

(16) hoa =1 =4+ (7, +VTE —4J,).

If the roots are complex, i.e., if Ty < 4J,, we have

(16) |Aoa[* =1 = AU2 = Ty) + AP(1 - Ty +J4) -

(*) Brouwer's theorem assures us that theve is at least one fixed point.
(1) A. Ostrowski, Solution of Equations and Systems of Eguations, Chapter 18,
(New York 1060).

Rozprawy Matematyozne XXXIX 3
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Defining Afym 2s the value of At for which | Amoal® = 1, We obtain
2-T,
(17) Awm = T 1 7,

Thus, for the case of complex roots, we may make the fixed point (8, o)
attractive by choosing 4i such that

(18) 0< < Atum .

Similarly, if Anec i8 Teal and negative, and [Amux| > 1, .
My = 2

(19) tm = 1 ’Hlmnx‘ '

It is clear that this artifice will not work if Amux > 1. Such a situabion arlses in
the one-dimensional case:

(20) D, =+ 30, o =ad+deln, obm=1,
that is
(21) z, = a} (3—21,).

The fixed points are z, = 0, }, 1; at these points the devivative dz;/dz, has the values
0,4, 0. Clearly both @, = 0 and z, = 1 are attractive fixed points; for all z{® < },
2™ 0, while for all z{® >}, 2{™ 1. The interior fixed point z, = } is repellent
and cannot be made attractive by using the At-modification. The corresponding
gituation does not seem to occur for any of our cubic¢ transformations in the plane,

In practice, all one has to do to obtain the numerical value of a re-
pellent fixed point is to choose a sufficiently small 4¢ and itorate; on
a computer, this caleunlation requires only a few seconds (%2).

3. Attractive periods. The set of points constituting a period of
order k are fixed points of 7). Thus one may test whether a periodic
limit set is attractive by applying Ostrowski’s criterion to 7. Let

a8™ ag™
o8 Oa
2a™ 9™ 4
98 20 i,
g™ ag™
ag™=1 Hainh
oa™ o™
3S(n-1) aa(u—l)

(22) IJ™ =

(23) Jno1 =

_st=1), n-1))
where e.g. (8° o) is a fixed point of T®,

(*3) Early in this investigation we mado the “mistake’ of toking /¢ > dhm in
o few cases, and thereby discovered the interosting limil sets Lp(a) (7).
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Then, by the chain rule:

(24) ¥ = Tpea X Tz X o X .

Thus J%* is easily obtained by evaluating (24) over the periodic set in
question; the application of Ostrowski’s criterion is then immediate.
We have often used this technique to convince ourselves that the pe-
riods are really limit sets and not the result of spurious or accidental
convergence (*).

() This technique has actually been used for periods with orders k as large
as 148. For very large k tho method might fail owing to round-off errors or other
pumerical inaccuracios.



1IV. MODIFICATION OF THE COEFFICIENTS

1. In this section we present some result on the cffect of modifying
the original integer-valued coefficients of our cubic transformations in
three variables. That is, we consider, as before, transformations of
the form:

10
(1) m; = 2 dyMy,
=1
8
(2) 2 diy=1,
i=1

but we no longer require that the di; all be 1 or 0. As already remarked
in the introduction, if we impose on the dy only the additional condition:

(3) 0<dy<1,

then (1), (2), and (3) define a class of cubic transformations depending
on 20 parameters, e.g., dyy, dyy (j =1 to 10) (*). Since wo are unable
to formulate a complete theory for the finite sub-class of transformations
characterized by the restrictions: dy =0 or 1, all ¢, §, it is clear a for-
tiori that we do not have a theory for the infinite class.

In this paper we limit ourselves to showing how an experimental
study of some special cases can help to throw light on the properties
of our original cubic transformations.

In effect, what we do is study certain transformations which are
‘“close to” some particular transformations of our basic type. A natural
way to define a transformation close to some given 7', would be to
choose its coefficients as follows:

dig=1-2y, JjCO,
diy = &4, i¢ Oy,

(**) For the definition of the cubic monomials M;, see cquntion (4) of section II.
The domain of this class of transformations is again iLhe vegion

3
in=l, 1 IS YRE 4 I

=1
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where the dj must satisfy (2) and (3), and the & are small, This class
of transformations, defined with respect to some ZTg,o, is still too ex-
tensive to study, even if the various e are restricted to a few discrete
values. What we have actually done is to consider 20 such transforma-
tions, each of which depends on a single parameter ¢. We denote these
by the symbol:

(5) T(r’s).’ ].g?'\{lo, Ogegl, 8=0,1.

It is understood that these transformations are only defined relative to
gome T¢,c,. For convenience we shall generally refer to the transforma-
tions T\ defined relative to some To,c, a8 assooialed transformations.
The coefficients of the 7', s, are specified as follows:
For j #r:
(6) dy=1, JjCCy,
dy=0, §q0C,.
For j =r:
d]r=1—'s, TCOI,
dyr =(1-38)e, rq0;
dyr =1 —¢, rCC,,
dor = Se, r@ C,.

In words: T4, is formed from T¢,c, by the replacement M,—(1 —e&)M,
wherever the term M, occurs, and by adding ¢M; to one of the other
two lines of the three-line schema. As an example, consider the trans-
formation 7'y introduced in section III:

¢, =4,6,7,9,10},
Cz ={11218}-

(7)

(8) .TA:

Relative to T4, L, would read:

2] = Mg+ (1 — &) My + M+ My+ My, ,
(9) @y = M+ M+ eMy+ Mg,
Xy = .ﬂh-{-.M'g ]

while 7'4,). would take the form:

@y = My+ My Mg+ My + My + Mo,
(10) (L‘é -_—M] —I-JII2+M3,
m; = (1 - 8).M4 —l—Mu .
In the 8, a coordinates, the Z'xs)e oan be written:

(ll) S'=.F(S, a)+sfr,(8, ﬂ), G’=G(So a)+£gfl('gl a’);
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the original T¢,c, is obtained from (11) by setting £ = 0. lor the Lwo oxamples given

above, we lhave:

= =—-S— l—lq— ’,
(12) P o= Jn = THE-a “

In = —fn H
= {0 = 12a*(S—a),
(13) T 000t frs = fao ( )
Guw=0.

It turns out that for these one-term modifications T'(rs). we always have gr = 1 f,
or 0. frg can further be factored into a numerical coofficient crs and a function M (8, a);
the M, are of course just the original cubic monomials expressed in terms of § and a,
The ¢rs and grs are determined as follows:

For r c Oy:
(14) 8=0: Jra = 0, era=-—1,
B=1: @Gra=—fra, Ora=—%;
for r c Oy ‘
= 0: ra = — g =
(16) 8 rs , f'rn, Org i,
s=1: grs=/fm, Opg=~—%;
forr ¢ Gy, r @ Oy
=O: o =0’ = 1,
(16) & Jra Crs

§=1: gn=)‘n, Ors = % .

2. We have studied the modified transformations 1'%, for a va-
riety of our original cubic T'¢,c, that happen to have infinite limit sets.
Our usual procedure has been to vary e in steps of }7 in the range
s < e <1y for a given T\.,, relative to a given Tg,q,, although on
occasion intermediate values of ¢ have been used. Only for the trans-
formation T4 (equation (8) above) have we looked at all 20 modified
transformations. For a few other 7,0, we have limited ourselves to
selecting certain of the associated T, for detailed study. Since this
selection has generally been made on intuitive grounds, we cannot claim
that the most “interesting” modifications of the original transforma-
tions have always been considered. Nevertheless, this part of our study
has proved most revealing, especially as regards the structure of class IV
limit sets.

Before describing the results, we insert a few remarks on the dif-
ference between the two types of generalizations we have considered—
the At-modification of section III and the assooiated transformations
Tis. The di-modification is essentially nothing but the application
of a technique frequently employed in the practical solution of non-
linear equations by iterative methods; it is, in fact, one way—perhaps
the simplest—of introducing a linear convergence factor. Apart from our
use of this device for obtaining the coordinates of the fixed point, our
principal interest is in small convergence factors (4¢ close to unity)—
too small, in fact, to produce convergence to the fixed point. In view
of the fact that the Ai-modified transformation T'¢c,.ny bas precisely
the same fixed point as the original transformation Z'¢,p,, one might
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expect that there exists a close relationship between the corresponding
limit set§ Lpay (L) and Ly(T). In some sense this is true, as the exam-
ples given in section III show (see also below, sub-section 4). We may
express this more formally as follows:

We define a sequence of transformations T¢ e,y = T, With cor-
responding limit sets Lp4,)(T) by some convenient rule:
1-41,

2

(17) My = My, dty=1-

The sequence Ty, ¢ =1, 2,..., clearly converges to Tg,g,.
We then formulate the following conjecture:

Given a Te,cy and a 6 > 0, then, for oll p in the triangle, there exists
an Ny such that, for i > N,y and for all 2 C Ly(T), there exists a yC
C Lp(‘uo(T) satisfying |y — x| < 6.

The modification of T'c,c, defined by the associated transformations
Ts differs from the A4i-modification in several respects. In the first
place, the perturbation introduced is not linear. Furthermore, the fixed
points of T, are in general not the same as those of T¢., (fixed
points on the boundary of the triangle may, of course, be common to
T.0e and Te,c, for some pairs r,s) (°%). Finally, each pair r,s must be
treated separately; for fixed &, perturbations of different terms of T¢,g,
may lead to quite different limit sets. Nevertheless, a conjecture anal-
ogous to that formulated for the sequence 7'y, would most probably
turn out to be correct.

3. Limits sets of the transformations 7., associated with T'4. Since
we usually deal with values of ¢ of the form:

(18) s,=1—;§6, 1<i<10,

we introduce a symbol to denote a set of such values:
(19) I(3,j)={e}, i<n<]j.

In addition, Rf., will denote the closed interval of &:
(20) R = [ Rl "Rlsol, “Ripo <e < Ria

for which the limit sets L5, of T are periods of order . The photo-
graphs illustrating the examples that follow will be found, suitably
labelled, in sub-section 2 of appendix II.

() The new fixed point S(rs): = S+45, as,ss = a+4a, calenlated to first order
in (48, 4a), has both 48 and da proportional to e. The ratio 48/4a in this order is
therefore independent of &, though not of 7, s. There are, in fact, 8 possible directions
of displacement, two for each of the three cases: grs = frs, gra = —fray grs = 0, cf. equa-
tions (14), (16), and (16).
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There is one sighificant feature common to all the T4, associated
with 7'4; for every pair r, s at least one periodic limit sot—that is, a pe-
riod of order % > 1—was found in the range I(1,10). The order of pe-
riodicity of most frequent occurrence was k = 7. Thus, for example,
for (r,s) = (10,0), we found periodic limit sets with & =7 over the
range I(3,10), and the case (r,s) = (6, 1) behaves in the same fashion
over the same range. For both series of associated transformations, the
limit sets for & = 0.01 are of class IV type and closely resemble L(T,).
At &= 0.02, bright spots show up in the pattern (fignre A-1); this
usually indicates that one is near a period, i.e., that a relatively small
change in ¢ will yield a transformation having a finite limit set. In the
notation (20), this would be written: —Ri,, —0.02 € 1. In these two
examples it happens that a period of order 7 is observed over the range
1(3,10), that is: I(3,10)C Rf.,. This is not generally the case. Thus
for the case (r,8)=(9,0), I(2,9)C Rj,, whereas Lyuoo and Lgoon
are of clagss IV type and are morphologically similar to L(7.). It
may be recalled (section III) that an analogous behavior was ob-
served for the A¢-modified transformations 7', namely that L(T4)
was found to be a period of order 7 for a particular range of values of
At (0.9930 < 4t < 0.9772), and different in character (actually, of class ITI
type) outside the range on both sides.

Periodic limit sets of order 7 have been found for some range I (i, §)
of ¢ in 9 out of the 20 possible cases. For one of these, (r,s) = (2, 1),
I(4,7)C Rlyy, while Luipiw is periodic with & =28 (figures A-2,
A-3). In the transition region, i.e., for *Rli < & < ~R{3.), the limit
sets are infinite. These are shown in figures A-4 and A-6 for the range
I(8,9). They look like pseudo-periods, but, when suitably enlarged,
they are seen to be of class I type (figures A-6, A-7). In these pictures
one clearly sees with increasing & the onset of instability—to use an
expression from mechanics—and the eventual attainment of a different
stable state. The transition region at the lower end of the range also
contains infinite limit sets. Tigures A-8 and A-9 show L iy, first
to normal scale, then enlarged. It is manifestly a class III limit set.

For other Ty, periods of order & > 7 are found for cortain ranges
of the parameter ¢, viz: k = 9, 16, 23, 30, 37, 40, 62, 148. In two cases,
two periods of relatively prime order are found in different sub-ranges
of I(1,10). Thus Ts.), has two periodie limit sets, one with & = 23
for ¢ = 0.01 and one with %k, = 16 over 71(9,10). Similarly, 7. has
a periodic limit set with %, = 16 for ¢ = 0.01, and onc with k, = 9 for
¢ =0.10. In these cases the dependence of the limit sot on ¢ in the
transition region *R{.,, < ¢ < ~Rfl, is more complicatod than that
described above. For e-values in this region and sufficiently close to
the end-points we observe the expected pseudo-periodic limit sets. For
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values of & not too close to either boundary the limit set may be either
of class IV or of class I type. Figure A-10 shows Ly0.0s t0 normal
scale; in figure A-11, a portion of the limit set is shown enlarged.

We conclude this sub-section with two further examples. These
jllustrate a phenomenon previously mentioned in our general descrip-
tion of limit sets (section II), namely the coexistence of finite periods
and class IV sets. Ifigures A-12 and A-13 show two distinct limit sets
belonging t0 Ty - One is a period of order & = 23, while the other
is a class IV set closely resembling L(T4). The same phenomenon is
perhaps more wirikingly illustrated by the case of Tis0)0.05. Here we
find both a class IV limit set and a period of order k = 148 (figures A-14
and A-15). We can say virtually nothing in this case about the depend-
ence of the limit set on the initial point. Current computing facilities
and techniques are not sufficiently powerful to effect an acceptably
accurate determination of the respective regions of convergence without
using prohibitive amounts of computing time. We have, however, carried
out a few numerical experiments, the results of which certainly confirm
our first impression that the geometrical structure of these regions is
immensely complicated.

4. Study of the associated transformations for other Z'g,o,. In this
sub-section we discuss a few additional examples to illustrate the de-
pendence of infinite limit sets on the parameter & The relevant photo-
graphs and tables will be found in appendix II.

For our first example, we choose the transformation:

i e 01={2:4’6)7;.9}7
(21) Yooy =To: o _(5,8,10).

The class IV limit set L(1'p) belonging to this transformation is shown
in figure B-1. As is evident, it consists of three separate pieces. Each
of these is, of course, a limit wset for T8, It is instructive to compare
the limit sets L,.(7's) with those belonging to certain of the associated
Te5s- In appendix IT we list the results for only one case: (r,s) = (1, 0).
The limit sets L.(7p) and L. are described in table B. There are
(at least) threo ranges of At values for which L.(T's) is periodic; for A?
close to unity the behavior of Ly(Ts) as a function of A¢ is rather wild.
As At approaches Aty, = 0.854320 the (class I) limit set shrinks in
a continuous manner. The behavior of L, a8 ¢ is varied over I(1,10)
is, if anything, more “pathological”; there are at least 6 different inter-
vals R for which the limit set is periodic, and each period has a dif-
ferent order. Note the similarity in appearance between the two class IV
limit sets: Ly(7's) (4t = 0.994) and Lg,o00.0-
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The next two examples may be taken together:

c,=1{2,7,8,9,10},

T
(22) D g, — 4,5, 6);
=1{2.5,7,8,9
(23) TE: 01 {, b ] ) }’

C, = {4, 6,10}.

The basic class IV limit sets L(Z'p) and L(Tg) are shown in figures D.1
and E.1; their morphological resemblance is apparent. The behavior of
the Ly and ILgpy, for these two cases is set forth in the tables and
photographs of appendix IT. Detailed comment is perhaps superfluous
at thiy state of our knowledge; we limit ourselvos to drawing attention
to the following comparisons:

1. Compare Ly(Tp) (4t = 0.97) with Lg,o0.10(1'p).
2. Compare L‘u(TE) (At = 0.97 and 4t = 0.96) with L(;,n)n,ug( .TE) and
Li3,000.10( TE).

5. The original transformations T's, T'p, T arc closely related from
the point of view of formal structure. Tp and Tr differ by exchange
of a single term between the defining sets C; and C,, while each of these
goes over into Tp under the simultaneous interchange of two terms
between €, and C,. A comparison of the associated limit sets for T'p
and Tg shows that the initial similarity of L(T'p) to L(1'g) is roughly
preserved under perturbation. This suggests the possibility that some
meaningful clasgsification based on algebraic form might be devised ().
Of even greater interest is the correspondence, in these examples, be-
tween the L, and the L., for some ranges of the respective para-
meters. We are not at present in a position to draw any significant con-
clusions from the existence of this correspondence; it seems likely, how-
ever, that a closer study of these examples would yield criteria enabling
one to prediet such behavior.

6. There is one property of these transformations which may safely
be inferred from the data, namely, that they are close to transforma-
tions having periodic limit sete (for some common set of initial points),
where close is to be interpreted with reference to some appropriate para-
meter space—e.g., a range of ¢ values of 4¢ values. Their limit sots are
‘“‘close” to periods, not in the sense that pseudo-periods are, but rather

(*) The difference in behavior of La(2'p) on the one hand and La(T'n), La(Te)
on the other is undoubtedly due in part to the fact that in the lirst. case the jucobian
matrix has complex eigenvalues at the fixed point, while for 7’5 and 7 the eigen-
values are real; this is probably sufficient to explain the qualitative difference of be-
havior of the corresponding L as At—>Alym for At— Afyn sufficiently smnall.
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by virtue of the fact that they contain points which lie close—perhaps
arbitrarily close—to a set of algebraic solutions of T%(p) = p. In other
words, the Hausdorff distance between the set of period points and the
limit set L is small. In this connection, the following piece of evidence
may be presented. Consider the transformation Tuop0 associated
with Tg, for which we have observed that the sequence T(Thou (p),
n=1,2,.. converges to a period of order k¥ = 10 for almost all p.
Let us choose a p close to the fixed point. If we then examine the se-
quence for m =1,2,..., N, where N i3 sufficiently large, we find that
the images 7 (p) of p have traced out a pattern which closely resem-
bles the original class IV limit set L(Tg) of figure E.1. This is shown
in figure I&.2. The bright spots are the points belonging to the periodic
limit set Lg,go.0. Presumably this means that the effect of infro-
ducing a small perturbation into T'z, of the form specified by Ty op.01 (*7)
is to make the limit set L(Tg) contract to 10 points. Alternatively, we
could say that, as -0, the periodic limit set Lq,.(TE) spreads out
until it becomes the class IV limit set L(Tk).

This and other similar examples suggest that it might be useful
to consider the period limit sets as fundamental, the hope being that
one could develop an appropriate perturbation method, taking these
periods as the unperturbed states. The effect of a small change of a para-
meter (in the direction of imstabilily) is then simply to make the period
non-attractive. This can in principle be studied by purely algebraic
methods. Determining the structure of the resulting limit set—the per-
turbed state—is of course a more difficult matter,

In some cases this may amount to nothing more than the development of im-
proved techniques for handling algebraic expressions of very high order. To clarify
this statement, we offer one further example. Consider the A¢-modified transforma-
tions Ta(Ta4), where T4 is the transformation introduced in sub-section 2 above.
For A4t = 0.80300, L (T.) is a period of order 7. With a very small change in Ai—
namely, for 4t = 0.89301—the limit set is of class III type, a pseudo-period. Rather
thon investigating T.i(a) lel us turn our attention to the seventh power of the mod-
ified transformation, TL(A;)(P) (4t = 0.99301). If we choose our initial point p suffi-
ciently close to one of the (repellent) fixed points of TL( 4 (%), we find that the first
616 iterated images of p, fl'”?j”(p). n=1,2,..,516 lie on an almost exaot straight

A
line in the &, « triangle. This is shown in figure A-16. The initial point p is at the lower

"y If 1'% is writlen in the form: §’' = I"(§,a), ' = G(3, a), then T(,o0) i8
S =F(S,a)+e(§—ap, « =0G(S,u).

(**) The actual valnes are not known: we have not yet developed good techni-
ques for finding the coordinates of the points of a non-attractive period. The initial
point for {his example wna taken as: § = 0.7034477, a = 0.1159449, chosen on the
basis of some simple numerical experimentation. It is close to one of the periodic points
belonging to the limit set L.acan (4t = 0.99300), viz.: § = 0.7037400, a = 0.1157123.
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right, and the successive images fruce out the line continuously from right to left (),
If we continue the iteration, we find that the later images deviate lrom the straight
line, then oscillate in position, and finally settle down to generale anolhor straight
line with a different end-point—presumably very close to another fixed point of TSR 0
It is clear that if one had powerful enough algebraic tools, one could calculate thla
linear behavior:

7. We close this section with two remarks:

1) A study of the Ty and T associated with those Z'¢,c, which
have only class I limit sets indicates that the latter are much more
stable with respect to these one-parameter modifications than are the
limit sets discussed above.

2) Even these unstable limit sots appear to Do stable with respect
to some one-parameter perturbations of the corresponding transforma-
tions. Thus the transformations Ty, awsociated with T'p have limit
sets visually identical with L(Tz) over the whole range I(1, 10). Ano-
malies such as these make general pronouncements about absolute sta-
bility (or instability) impossible.

To illustrate: One might be tempied to explain the observed stability in this

case as follows:
Explicitly, T'(s0). has the form:

(24) S =F8,a)+e(l=8—a), d=0(S,uqa).

Now the density of L(Ty) is relatively large near the right-hand boundary of the
triangle, S+ « = 1. The perturbing terms, however, vanishes on this line. Thus the
transformation is on the average very litlle altered by the perturbalion. But this
“‘explanation’ becomes less convincing when one looks at other transformations asso-
ciated with Tx. T(2,1)s, for example, has the form:

(26) 8 =F(§8,a)+3c(1—8—aP, o =@G(8,a)+3}e(l—9~a).

One would expect the same argument to apply here, but in fact the limit sets only
resemble L(Tg) over the two ranges I(1,2) and I(6, 10). In between, we get the
familiar periodic and pseudo-periodic behavior,

(*) The final point plotted has coordinates: § = 0.7030208, « = 0.11628136,
8o the slope of the line is roughly Aa/4S ~ —0.713. For this photograph, the scaling
factor iz approximately 2340.



V. RELATION TO THE THEORY OF DIFFERENTIAL EQUATIONS

1. As we remarked in section III, the non-linear transformations
discussed in this paper exhibit certain analogies with systems of dif-
ferential equations. In the following we confine ourselves to discussing
the plane case.

An important study in the theory of differential equations, par-
ticularly as applied to non-linear mechanics, is that of so-called auto-
nomous gystems (%, @, 62):

(1) %=meh %=Qmm.

The theory, initiated by Poincaré, seeks to determine the properties
of the solutions of (1) under very general conditions, and to deduce
such properties for particular cases without actually solving the equa-
tions explicitly (i.e., obtaining the general integral). In particular, the
trajectories, given parametrically as a function of ¢:

(2) =), y=y@

are investigated from a topological point of view. Fundamental is the
classification of the singular points of the system (1), that is, the points
z,y, where P(x,¥y) =Q(z,y) =0. The behavior of trajectories in the
neighborhood of singular points can be found by consideration of the
linear approximation to (1); the real object of the theory, however, is to
characterize and, where possible, predict behavior in the large. One of
the most interesting phenomena connected with behaviour in the large
iy the existence of closed trajectories, or limit cycles. The theorem of
Poincaré and Bendixson (%) gives sufficient conditions for the existence
of such. Unfortunately, the fulfillment of these conditions in particular

(®) A gonernl roeferonce in N. Minorsky, Non-linear Osoillations, Princeton
1062, T'nll references are given here. More delail on theoretical points can be found in:

(") §. Lefschetz, Diffcrential Equations: Geomelrio Theory, New York 1057.
See also:

(") Nomitsky and Stepanov, Qualitative Theory of Differential Bquations,
Princeton 1960.

(") See reference in foolnote 60.
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cases is often hard to verify; to date no satisfactory theoretical method
for dealing with an arbitrary given system has been found (™).

2. If we write our general two-dimensional system of non-linear
difference equations in the form:

(n) {n—-1)
S _Af _ _S(n—l) +F(S("_1), r1(7!,--1)) ,

(3) (n) {n—1)
a —;It: — _ a(n—n —|-G(S‘”'”, a(n-l)),

the analogy with (1) is evident. The fixed points of (3) correspond to
the singular points of (1), and the behavior of solutions in the neigh-
borhood of a fixed point can be investigated via the linear approxim-
ation; this procedure, in fact, yields Ostrowski’s criterion (see section III),
If the fixed point is attractive, the asymptotic solution in its neigh-
borhood can of course be obtained. In the case of repellent fixed points
(or if the initial point is outside the region of attraction of all attractive
fixed points), the sequence of iterates sometimes converges to a limit
set which appears to resemble a Poincaré limit cycle, i.e. a closed curve.
In other cases, finite limit sets (periods) are obtained; on the other hand,
one may observe limit sets of quite ambiguous geometrical, not to say
topological, structure. These last two alternatives have no analogues in
the case of differential equations.

In fact, the analogy between (3) and (1) is more apparent than real.
The significant. distinction lies, perhaps, in the fact that for our dif-
ference equations there is nothing corresponding to the trajectories of (1);
successive iterates do not in general lie close to each other. This fact
makes it difficult to use topological arguments to determine the char-
acter of the limit set. For sufficiently small At the sequence of iterates
may resemble a trajectory to some extent, but the limit as At—0 is
almost certain to be a single point (%).

(%) See reference in footnote 62, appendix I. The practical applications are
largely confined to stability theory. See reference in [ootnote 60 and the literature
there cited.

(*) It may happen that some power 7™ of a transformation more closely
resembles a trajectory; ef. the example cited in seclion II.

1Y



VI. BROKEN-LINEAR TRANSFORMATIONS IN TWO DIMENSIONS

1. For certain special quadratic transformations in one dimension
one can give an almost complete discussion of the iterative properties;
this is possible because these transformations are conjugate to piece-
wise linear (broken-linear) mappings of the interval into itself. For example,
the transformation: &' = g(»), where g(z) = 22, 0 <2 < }; g(%) = 2 - 22,
}<o<1(%). The iterative properties of the latter can be obtained
from a study of the law of large numbers for the elementary case of
Bernoulli. Stated differently, the behavior of iterates of this simple
quadratic transformation turns out to depend on combinatorial rather
than analytic properties of the function. With this in mind, we tried
to see whether an analogous gitnation would obtain in two dimensions.
Our non-linear, polynomial transformations of a triangle into itself might,
we thought, be similar to suitably chosen broken-linear mappings of
8 square into itself, at least as regards their asymptotic behavior.

One simple generalization to two dimensions of broken-linear trans-
formations in one variable is a mapping:

(1) I=f(m1'.'/)! y,=g(a’3y)1

where each of the functions f and g is linear in regions of the plane.
In other words, the graphs of these functions consist of planes fitted
together to form pyramidal surfaces. The motivation for studying such
transformations is the hope that their iterative properties will turn out
to depend only on the folding of the plane along straight lines or,
more specifically, on the combinatorics of the overlap of the various
linear regions which is generated by the mapping. The simplest non-
trivial case to investigate consists in taking f(z, y) as a function defined
by choosing & point in the square and making f maximum at this point,
the function being linear in the four triangles into which the square
is divided. g(», %) is defined in an analogous manner.

Each of the functions (=, ¥), g(x,y) is thus made to depend on three parameters.
Thus for / we ohoose a point z,, ¥, in the square and erect a perpendicular of height

(**) Seo further in appendix I.



48 Non-linear transformation aludies on eloclronic compulors

0 < d, <1 at this point; this defines a swrface consisting of 4 intersecting planes,
The transformation can then be given explicitly as [ollows:

1—1
(@) l
III T = —1——(1—:17),
&
i,
I H 'l = - ’
\/ x yly

Iip y="u,
Ty
It 9= u-‘;r_——l- r+1,
(3) 1 '—l?ll Y— &
T Ll pvl s
H = _yL- —_T
L'l‘ Y l‘-‘xl (1 'T) ’
then:
tegion I is bounded by I,, I, and = =0,
@ region II is bounded by I,, L; and y — 1,

region III is bounded Ly L,, I and = =1,
region IV is bounded by L,, I4 and y = 0.

Analogous equations hold for y' = g(=, y), with paramelers @y, ¥y, ty.

Of the several transformations of this type that we have studied
numerically we mention only the following:

=14, Hr=1{, di =090,
2y, = 0.6, y, = 0.5, dy, =0.95,
2 =08, y,=09, d =1,

%y =0.3, ¥, =0.7, dy = 0.8,

() T,:

(6) Ty

and the one-parameter family:

T, =Y =2, dy =1,

(7) T,
mz = yn = 1 '—z, da R 1 .

The limit sets are shown in figures H-1, J1-2 and 11-3 through H-17
of appendix II.

L(T,) (figure H-2) is, in a sense, analogous to thoe class T limit sets
we observed for some of our cubic transformations in three variables.
In contrast, L(T,) (figure H-1) represents a now phonomenon—a con-
nected ‘‘curve” (in this case, a collection of line segments) that does
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not cloge. More interesting, however, is the behavior of the limit sets
L(T,) as # varies from 0.49 down to 0.01 (%), Initially L(T,) is an open
eycle like L(T,). With decreasing 2, the limit set becomes more complex,
until it resembles a class IV limit set (e.g., z = 0.27). With further de-
crease of #, the limit get appears to contract; the tails get ghorter, and
the points cover some sub-region of the square more and more densely.
One interesting question—unanswered at the time of this writting—is:
does T, become ergodic-for some range of z values? In figure H-10 we
see 1000 (consecutive) points belonging to L(T,) for 2z = }. Figure H-11
shows these same 1000 points together with the next 2000 points. It is
evident that the region containing L(T,) is filling in. In our opinion,
this is a strong indication of ergodicity.

For lower values of 2z, the same ergodic behavior is observed, until,
at z = 0.15, the limit set splits into four disconnected pieces (figure H-15).
As 2z is further decreased, these four pieces shrink; by the time we reach
¢z = 0.01, the limit set is nearly a single point.

2. It is clear that one can devise broken-linear transformations
that are dense in the unit square; one may take, for example, product
transformations with independent coefficients and use the one-dimensional
result for each factor. For transformations of the type considered in
this section, however, it is not easy to determine a priori what the limit
set will be. It should be emphasized that there is no hope of demon-
strating that our polynomial transformations in three variables are
exactly conjugate to some two-dimensional broken-linear transforma-
tions. Presumably there is no such conjugacy. Nevertheless, one might
hope that a somewhat weaker notion of equivalence than that of strict
conjugacy could be introduced.

One suggestion along these lines is the following: define two trans-
formations 7 and S to be asymptotically similar if for almost every
initial point p the limit set L,(7T) is topologically equivalent to
Ly(8) for some suitably chosen p’, and vice versa. Thus, for example:
if for any two transformations T, 8, the sets of iterates ™, 8™ are
dense in the (common) domain of definition for almost every initial

(") The case z = § has not been studied. The reason for this is technical. Straight-
forward iterntion will alwoys produce sequences which degenerate to zero in a finite
number of steps, owing to the fact that every iteration involves multiplication by 2.
In a binary machine, this operation is a “ghift” to the left. A sufficiently long chain
of such left shifts will alwaya resuli in zero. If one wants to study this case, one must
replace multiplication by 2 by some arithmetically equivalent operation, e.g., multi-
plication by O/(}0), where O is not a power of 2.

For this case (z = }), the problem becomes, of course, one-dimensional. The iter-
ates remain on the line # = y, and the limit set is identical with that of the trans-
formation 2’ = g(x) introduced in sub-section 1 above.

Rozprawy Matematyczne XXXIX ¢
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point, then 7 and § are asymptotically similar in the above senge.
Another special case in which two transformations, 7' and 8, are asym-
totically similar is when each transformation possesses just one attract-
ive fixed point, the region of attraction being, in both cases, the whole
space.

As we remarked above, in the case of broken-linear transforma-
tions the asymptotic behavior of iterates depends only on the combi-
natorial structure of the subdivisions of the fundamental regions
(triangles) under repeated folding. Just how complicated this can be is
shown by the behavior of the limit sets L(T,) belonging to the one-para-
meter family T, discussed above. To date we have not managed to devise
any good method for handling the Boolean algebra of these iterated
intersections,



APPENDIX I

In this appendix we collect some general remarks about the process
of iterating transformations, particularly in one dimension. We also
discuss, in some detail, a few special one-dimengional transformations
which we have had occasion to study.

1. One of the first, simple, transformations whose iterative prop-
erties were established is the following:

(1) 2 =f(n) =4x(l—-z).

To obtain these properties we consider, instead of (1), the broken-linear
transformation (%):

(2) o =g, 90 {50 o tor ﬁfi

The study of the iterates of this transformation is equivalent to investi-
gating the iterates of a function S(w) defined as follows:

3) if x=0.0q,a3a5...an..., where the a; are either 0 or 1,
(4) then S(z)=0.axa0a4a,..

In other words, S(z) is merely a left shift of the binary word « by one
place. The iterative properties of §(x) are in turn deducible from the
law of large numbers in the case of Bernoulli. In effect, S“’(w) falls into
the first half of the interval if and only if a; = 0. The ergodic average

N
% 2 F [89(2)]

i=1

is therefore the same as the fraction of ones among the a¢ for 1 << < N.
Py is the characteristic function of the interval [0, £].

The relation between (1) and (2) is that of conjugacy: there ig
a homeomorphism k(z) of the interval [0, 1] with itself such that

(8) g(@) = b|f(h7(2)]] .

(*) This transformation has already been mentioned in section VI.
4%
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Thus the study of the iterates of the quadratic transformation (1) re-
duces to the corresponding study for the broken-linecar transformation (2).
In this case, h(») can be written down explicitly (*):

(6) h(®) = % sin—1(y/z) .

2. The set of exceptional points. In the case of the function f(z)
= 4w(1 —a), it is true, then, for almost every () initial point, that the
sequence of iterated images will be everywhere dense in the interval,
and what is more, the ergodic limit can be oxplicitly computed; it ig
positive for every sub-interval.

There exist, however, initial points ® such that the sequence z, f(z),
f[f(@)], ..- is not dense in the whole interval [0, 1]. Obviously, all perio-
dic points, i. e., points such that, for some #, /*™)(x) = x, are of this sort. It ig
interesting to notice, however, that there exist points # for which the
sequence f®(z), i = 1,2, ..., is infinite without being dense; there are,
in fact, non-countably many such points. To show this we consider the
equivalent problem of exhibiting such points for the function §(z)
introduced above. The construction then proceeds as follows. Congider
a point # = 0.4,05 ... az ... We define a set Z consisting of all those 2's
which have ap = ay4+3 = ap4e for all n of the form »n = 3¢. In other words,
the set Z consists of points which have every binary digit repeated
three times, the sequence being otherwise arbitrary. Consider now the
transformation 2’ = §(»), where S(x), as defined in (4) above, is a shift
of # one index to the left. We now look at the sub-interval from 0.010
to 0.011. Starting with any point in Z, it is clear that no iterated image
will fall in this sub-interval; no three successive binary digits of a point
in Z are of the form (010). It is easy to see that Z contains non-count-
ably many points; in particular, it contains non-periodic points, so that
the set of images 8(«), i =1, 2, ..., is infinite, but not dense in [0, 1].

Presumably, one can find points in Z for which the ergodic limit
exists. The measure of the set Z is zero, but, relative to Z, the set §
of those points for which the sojourn time exists still form a majority.
We may define majority either in the sense of Baire category or as
follows. Take points na (mod 1), m =1,2,.., where a is an irrational
constant. Consider the set N; of those a’s for which na (mod 1) belongs
to Z, and also the set N, of those n’s for which na (mod 1) belongs to S.
We then say that the points belonging to 8 form a wmajority of those
points belonging to Z if the relative frequency of N, in N, is.one.

(**) This result was first published by S. Ulam and J. von Neumanun, American
Mathematical Society Bulletin, Vol. 53 (1947), p. 1120, Absiract 403. See also the
work of O. Rechard, Duke Mathematical Journal, Vol. 23 (1956), pp. 477-488.

(") Almost every is to be undersiood in the semse of l.ebesgue measure.
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The behavior exhibited by the points belonging to Z is more gen-
eral, in the sense of measure, for some other transformations of the
interval [0,1]. It i8 possible to give examples of econtinuous functions
guch that, for almost every point, the iterated sequence will be now-
here dense in the interval, although the sequence does not converge to
a fixed point.

3. A remark on conjugacy.

TuEOREM. Lel g(m) be the broken-linear function of equation (2)
above, i.6.,
2z, 0o,
y(2) =
(2) y(a) 2(1-2), i>z>1.

Let t(x) be a convex funciion on [0,1] which transforms the interval inlo
itself, and such that 1(0) = 1(1) = 0. For some p in the interval, we must
have i(p) = 1; by convexily, there is only one such point. Consider the
lower tree (™) generated by the point 1. The necessary and suffioient oondition
that t(x) be conjugate to g(x) is that this tree be combinalorially the same
as that generated by 1 under g(xz), and that the closure of this set of poinis
be the whole interval, i.e., that the tree be dense in [0, 1].

The condition is obviously necessary, since the point 1 generates
a tree under ¢(x) which is simply the set of binary rational points.
Under any homeomorphism %(z) which has to effect the conjugacy,
the point % must go over into p, and our assertion follows.

To prove sufficiency, we construet h(x) in the following manner.

We take h(}) =p by definition. We next choose h(}) to be the
smaller of the two values of t~'(p); h(}) is then by definition the larger
of these two values. We then take %(}) to be the smaller of the two
values of t_l[h(%)], and so on. Proceeding in this fashion, we thus con-
struct a function h(x) defined for all binary rationals. It remains to
prove that we can define it for all # by passage to the limit. This, how-
ever, follows from the assumption that these points are dense in [0, 1]
and that their order is preserved. The function h(z) will obviously be
monotonic, and, being continuous, will possess an inverse b~ (z). From
our congtruction it thon follows that hl[g(x)] = t[k(x)].

4. Broken-linear transformations. In one dimension these are func-
tions f(x) that are continnous on [0,1] and linear in sub-intervals
of [0,1]. We assume that the graph of the function has a finite number
of vertices, i.e., that f(z) consists of a finite number of lines fitted

(™) By the lowor tree of p (under f(z)) we understand the smallest set of all points
with the following properties:
(a) The seli contains the given point p.
(b) If o point belongs to the set, then so do all its counter-images under f.
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together continuously. For these broken-linear transformations one cer-
tainly expects that the ergodic limit exists for almost every point. For
example: if one considers the sequence of iterated images T(p), then,
for almost every initial point p, the time of sojourn should exist for all
sub-intervals, i.e.,

N
tim £ ' x[ )]

N—oo T=1

ghould exist for almost all  and all measurable sets I; here fp is the
characteristic function of the set R ("). The value of this  -limit may
indeed depend on the initial point p; it is likely, however, that all the
points of the interval can be divided into a finite number of classes such
that, within each class, the value of the limit is the same ().

There is another finiteness property that these transformations may
possess. Given n, consider all broken-linear transformations which have
at most n pieces (i.e., the space divides into n regions, in each of which
the transformation is linear). Then it may be conjectured that there
are only a finite number of different types of such transformations,
where any two transformations of the same type are asymptotically
gimilar (in the sense defined above, section VI). In other words, accord-
ing to this conjecture, the type (or class) that a given transformation
belongs to does not depend on the precise numerical values of the co-
ordinates of those points where the derivative is undefined (corner
points), but is determined only by the combinatorial structure of the
subdivision of space into linear domains. In one dimension this means
that the {ype of a transformation is determined by the number and
inter-relation of the nodes in the graph of the function, and not by
their precise location. °

(**) We should perhaps mention here a more general conjecture. Suppose 7' is
& polynomial trapsformation of the sort described by equations (10) to (13) of the
Introduction. We then conjecture that the sequence of iterated images T™(p) has
the following property: Let O be any cone of directions in n-space, and let fo(p) be
the characteristic function of this cone, i.e., fo(p) = 0 if p does not belong to O,
fo(p) = 1 otherwise, Then, for almoest every p,

N
. 1
lim + 3 fo[7® (p)]

N—-oo =1

exists, Cf. the article by 8. Ulam in Modern Mathematios for the Ingineor, socond series,
edited by E. F. Beckenbach, New York 1061, p. 280.

(") See pages 71, 72 of 8. Ulam, A Collestion of Mathematical Problems, New
York 1960. An analogous conjecture can be made concerning the actual limit sets

Lp(T) for our cubics in three variables. Cf. the discussion in sub-section 2 of section II
of this paper.
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5, Numerical accuracy. The machines we use to compute the iter-
ation process work with a fixed number of significant digits (™); in
MANIAC II, for example, this number is 8. It is therefore clear that
any direct, single-step iterative process carried out on this computer
will exhibit a period in not more than 108 steps. Given an algorithm
which is iterative and of first order (i.e., the nth step depends ouly
on the (n—1)*), the process will, with great probability, exhibit
a period which is much shorter. Statistically, one can reason as follows.
If we assume a random distribution of, say, the last 4 digits of all com-
puted numbers, then the probability that the cycle will close long before
the full theoretical run of 108 steps is extremely close to one. Indeed,
after producing numbers 4,, 4,, ..., 4x, the chance that A,., will be
equal to one of the preceding numbers is of the order of k/108. If we
continue the calculations up to. Ay, the chance that at least two num-

k
bers in the chain will coincide is approximately 1 —(1 -I%a) . This is

practically equal to 1—% if %&~10% Clearly, going to 3k, 4k, ..., the

probability that the chain will be cyclic gets very close to one. The sit-
uation is quite different in an iterative process involving two or more
variables, e.g., computing (Ag4y, Bys1) from (A4z, Bx). On a probabilistic
bagis alone, one expects to encounter periods of length ~10% (the max-
imum possible being 10'). In practice, this means that in two dimen-
sions one doos not expect to encounter accidental or false periodicity
unless one generates very long sequences.

Ag the argument above shows, fortuitous periodicity can be a very
real danger in one-dimensional iterative calculations. Indeed, we came
across a striking example in the course of studying the asymptotic prop-
erties of the transformation

(7) y =sinny, 0<y<1.

This classical transformation is symmetric about ¥ = %, and maps the
unit interval into itself. Furthermore, both fixed points —y = 0 and
¥ = 0.7364845 — are repellent. Now a simple argument shaws that for
such a function there cannot be any attractive periods of any finite
order, that is, the derivative

() For any particular wachine one can increase the accuracy by resorting to
so-called mullipreoision arithmetic. This can generally be done only at the cost of con-
siderable loss in speed.
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evaluated at any periodic point ,’l“"’(yp) = yp I8 always greater than
one in absgolute value (). Nevertheless, when we performed the iteration
on MANIAC II, the limit set we observed was invariably one:of two
finite periods, the first of order 1578, the second of order 6168. These
periods were exact to the last available binary digit! This spurious con-
vergence is undoubtedly produced by the complicated interaction of sev-
eral factors, e.g., the particular machine algorithms for multiplication
and round-off, our choice of finite approximation to the function sinmy,
and so forth. When we repeated the calculation on the “STRETCH”
computer (which works with about 15 significant figures), the periods
were no longer observed; even after a million or so iterations, there was
no observable tendency toward convergence to such periods.

If one is interested in obtaining the asymptotic distribution of
iterates under some transformation like (7), one must either provide
for more significant figures or resort fo ingenious devices. One such
trick—which appears to work well and is relatively convenient—con-
sists essentially in computing the inverse transformation. Since the func-
tions under consideration are two-valued, this involves introducing a ran-
dom choice at each step. Specifically, taking some initial point p,, we
compute the sequence

Do f—l(Po), 7-2(1’0)’

Here the symbol 1%(p,) implicitly contains the prescription that
we choose one of the two values of the true inverse at random; thus
the sequence

@) =", i=1,2,..,

implies a sequence of random decisions as to which counter-image to
choose at each step. If the calculation is carried out in this fashion, the
chance of falling into an exact period is vanishingly small until we reach
a chain length in the neighborhood of the theoretical maximum. Once
having obtained our inverse sequence, we can conceptually invert it,

() It is essential for this argument that the irunsformation maps tho whole
interval into itself. The number of distinet periods of order k can then be oasily
enumerated. The conclusion follows on noting that

4 mix)
@T )

muet be the same for all points y belonging to the same period. If, howover, tho max-
imum value of the function is less than one, 7% (y) can have relative minima above
the y axis; then, indeed, there may exisi attractive periods, i.e., the lino Y == k) =y
may intersect the curve sufficiently close to an extremum so that the k™" order fixed
point is attractive,
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that is pretend that wo started with the last point and proceeded to p,
by direct iteration ("¢, 77),

6. In this sub-section wo present some results of a study of a par-
ticular one-dimensional transformation (7);

(8) Toe: Yy =W@-3W4oW?), W=3y(l-y).

This arises in a natural manner from a certain sub-class of our gener-
alized cubic transformations in three variables:

10
(9) o = D dyMy,
=1
0
(10) Ddy=1,allj, 0<dy<1.
1=l

Namely, we choose certain of the dy as follows:
dn=0, dy=dy=dy=dp=1, dy=0.

The rest are arbitrary, except that they must, of course satisfy (10).
If we restrict ourselves to the sub-class of initial points such that
2, =0 (i.e., the side §+4-a =1 of our reference triangle), the second
power of the transformation can be written in the form (8).
T, is symmetric about y = %, but it does not map the whole inter-
val [0, 1] into itself; its maximum value is

1) Vi = To) = 75(1+)

8o this is the right-hand boundary of the invariant sub-region. The left-
hand boundary is then the image of #hex. In the range 1> ¢ > 0.9,

(") One cannof, of course, actually reverse the calculation and expect {o re.
produce the sequence. If one could, there would be no need for this stochastic device.

(") This procedure presupposes n good method for generating random numbers.
There are several of tliene which arc well suited for use in automatic digital computers.
One of the most common—-nnd, in fact, the method used by us—is to generate the
numbers by the ehain:

‘R'n,-l-l = Rol?»n (mOd 2") ’

where k is the hinary word length of the machine, and R, is some properly chosen
constant. On MANIAC II, I, == 5!, This chain closes, but its length is greater than 10%.
The lowost order binary digits are themselves not random, but this makes no difference
in practice.

(") This transformation was introduced by the way of illustration in seotion I.
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the fixed point varies from y, = 0.8224922 at 0 = 1 down to y, = 0.8193719
at ¢ = 0.90. Over this range, the derivative at y, is negative and greater
than 1 in absolute value; thus the fixed point is repellent.

We have studied this transformation as a function of the two para-
meters—the initial point y, and the coefficient o—on the “STRETCH”
computer. To study the asymptotic distribution, we divide the interval
into 10000 equal parts and have the machine keep track of the number
of points which fall into each sub-interval over the iteration history.
Such a history was usually taken to be a sequence of length = x10,
with 4 <n < 9 (™). Should a period (of order k < 3 x10°%) be detected
by the machine, the calculation is automatically terminated. If the order
of the period is not too great (& < 500), the values of the periodic points

are printed out, and the value of %1’5"’(1}) is calculated over the period;

d
dy
is actually a limit set.

Our numerical investigation of (8) has been mostly restricted to
the range 0.98 < ¢ < 1 (%). Even in this restricted parameter range, the
observed asymptotic behavior is of bewildering complexity. For ¢ =1,
the distribution of iterates in the interval is extremely non-uniform.
There are large peaks at the end-points of the allowed sub-interval,
with much complicated fime-structure in between, i.e., many relative
maxima as well as sizeable intervals in which the distribution is locally
uniform. This general behavior persists as o iy decreased down to
o = 0.9902. At ¢ = 0.9901, however, a dramatic change takes place;
most of the points concentrate in a few small sub-intervals. The limit
set is, in fact, a pseudo-period (®!). At ¢ = 0.99009, the pseudo-periodic
behavior is still evident, but the occupied sub-intervals are larger. They
contract, however, for o = 0.99008, and at ¢ = 0.990079 a period of order
k = 42 is found. Actually, for this particular value of the parameter o,
there appear to be two possible periodic limit sets, with & = 42 and
k = 84 respectively. The dependence on the initial point is, of course,
quite complicated ®2. For example, a8 1, is varied over the values i, = 0.11,

if |- T¥(y)| < 1, this fact is strong evidence that the observed period

(*) As we have already remarked (section I), the ealenlalion of 2 x 108 iterates
of this transformation requires about 1 minute on "STRETCH".

(*°) Below ¢ = 0.98, various periodic limit sels of order k& < 24 were found on
MANIAC II. We have not studied tbis parameter range on "STRETCII".

(™) It may actually be a period with order k = 83049. This is the result indicated
by the machine. At present we have no way of verifying Chis.

() Subsequent numerical work has shown thei this o dopendenco is spurious.
The caleulations were performed with multi-precision arithmetic; in somo cases a8
many a8 ity decimal places were retained! (Note added in print.).
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0.12, 0.13, ..., 0.21, the period with k = 42 is found in all except three
cases, namely y, = 0.11, 0.16, 0.18, which apparently lead to the pe-
riodic limit set with k = 84. Both periods are numerically well-attested;

d
@Tﬁ"’(y) <1(%).

As we continue down in o, the limit sets are pseudo-periodic (%)
until we reach ¢ = 0.99007, for which a period of order % = 112 is found.
This appears to be the approximate right-hand boundary of a periodic
belt; that is, in the range 0.98990 < ¢ < 0.99007 there are only periodic
limit sets for this transformation. All these have orders which are multi-
ples of 14 (with & < 112), except for the (approximate) left-hand bound-
ary of the o-range (o = 0.9899) where a period of order 7 exists. The
dependence of these limit sets on the initial point is complicated, and
will not be reproduced here.

At o= 0.98988 there is another large discontinuity in behavior;
we again find an asymptotic distribution which covers the whole allow-
able sub-interval in non-uniform fashion. No more periodic limit sets
are found as o is decreased to o = 0.9800. The only phenomenon of note
is the splitting of the limit set into two parts; this occurs somewhere
between o = 0.986 and o = 0.985. The resulting gap—which contains
the fixed point—continues to widen as o—0.980 (*%).

The results of this investigation—which is rather incidental and
sub-ordinate to the larger study reported in the present paper—clearly
show that therc is a great deal to be learned about the asymptotics of

they are exact to the last binary digit and have

(8) It is difficult to decide whether this behavior is real or not. Some supporting
evidence for its reality is the observed behavior for values of o very close to this eritical
value o = 0.990079. We find that, with ¢ = 0.9900789, only a period with &k = 42 is
obtained, while on the other side, o = 0.9000791, the limit set is always a period
with k& = 84. ‘

() In this range, the machine detected some exact periods of huge order—e.g.,
k = 206148 (0 = 0.990079)! There seems to be no compelling reason to take this at
face value.

(*) Such gaps have been observed in other cases. One interesting example is the
transformation:

y = Wi3—-2W), W=3y(1-y),

which is also a spocin) case of one of our cubics in three variables. For this trans-
formation, the limit set consists of 4 separate pieces, a3 follows: (I) 0.34664356 < y
< 0.4086018, (II) 0.4200080 < y < 0.56791385, (III) 0.7562830 < y < 0.81404689,
(IV) 0.8220064 < y < 0.84375.

In the present case, i.e. thal of T,, the exisience of the gap can ezgily be pre-
dicted. Let y,(c) be the fixed point. There will clearly be a gap providing THY1nax)
> ¥,(a), since in this caso only one of the two inverses of y,lies in the allowed interval.
Of course, the determination of the critical value o of o from the equation T2 (Ymox)
= 94(0) would in any event have to be carried out numerically.
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iterative processes, even in one dimension. It seoms that “pathological?
behavior is not a property of higher-dimensional systems alone. With
regard to our study of the periodic limit sets, it may be argued that
what we have really done is to investigate, in a rather indirect manner,
the behavior of the roots of high-order algebraic equations as a function
of their coefficients. This is certainly true, at least in part. It is there-
fore of interest to observe that the #lerative method seems at pres-
ent to be the only effective tool for treating this purely algebraic
problem.



APPENDIX II

1. In this appendix we collect the photographs and tables illustrat-
ing the phenomena discussed in section IV and VI. The notation used
has been deseribed in sections IT, IIT, IV and VI. For convenience, some
of the transformations are written out explicitly.

2. Modifications of the transformation 7,. In shorthand notation,
this transformation is

01 = {375’ 7; 9;10}’

1) Ta: G2, 8).

In the §, a coordinates, this reads:

(2) 8 =F (8, a) =8 - 68% —38a? +40® — §8°4-38a - §a? +1,
a =@(8,a)=-8"+38a*+2a+ § 82 -38a+ 3al.

The (repellent) fixed point has coordinates:

) 8, = 0.58853696 ,
ap = 0.1388662 .

The generalized transformations based on 7'y may be written:

(4) 8" = (1-4)8 +At{F (8, a) -+ efr(8, @)},
' a = (1-Adt)a+At{G(S, a) +egr(8, a)};

the original transformation is recovered by setting 4t =1, ¢ =0.

TABLE A
;T‘?‘if:;:r ai € r,8 Comments

A-l 1 0.02 ] 6,1 Class IV limit set

A-2 1 0.07 | 2,1 Period: k=7

A3 1 010 2,1 Poriod: & = 28

A4 1 0.08 | 2,1 Clags I limit set

A-b 1 0.00 | 2,1 | Class I limit set

A-G 1 0.08 | 2,1 | Scaled plot of part of A-4. Scaling factor ~77
{0472 < S < 0.485, 0.1256 < a < 0.135)

A-1 1 0.00 | 2, 1| Scaled plot of part of A-5. Scaling factor ~37
(0.466 < S < 0.492, 0.120 < a < 0.140)
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TABLE A (continued)

Figure At e | ™8 Comments
Number
A8 1 0.03 | 2,1 | Pseudo-period
A0 1 003 |21 Scaled plot of part of A-8. Scaling factor ~5.6
(0.440 < S < 0.620, 0.176 < a < 0.265)
A-10 1 0.04 | 6,1 Class IV limit sot
A-11 1 0.04 | 5,1 Scaled plot of part of A-10. Scaling factor ~6

(0.44 < § < 0.64, 0.20 < a < 0.30)

A-12 1 0.01 | 3,1 Period: k = 23

A-13 1 0.01 31 Class IV limit set

A-14 1 0.02 | 5,0 | TPeriod: k = 148

A-15 1 002 | 65,0 | Class IV limit set

A-16 0.09301 | 1 — | 514 successive iterates of I}, (p). Initial

point: 8, = 0.7034477, a, = 0.1150449. Scal-
ing factor ~909.

3. Modifications of Ts. In shorthand notation, this transforma-
tion is
C,=1{2,4,6, 7,9},

(6) Ts: 0, — 5, 8,10).

In the §, a coordinates, it takes the form

8 =PF(8, a) =98% —o® — 38 —98a — $a? + 38+ La,

6
(6) o =G@G(8,a)=-38%+3a®—-382+38a—Ja*+ 318 - }a.

The coordinates of the fixed point are

8, = 0.6887703

(7)
a, = 0.1592083 .

The only associated T'.,, discussed is the case (r,s) = (1, 0); for this

case, the generalized transformation, written in the form of equation (4),
has

(8) 71‘5 =f10 = (S—a)u7
s = Gho =0.

In table B below, all scaled plots show the region: 0.30 < 8 < 0.65,
0.20 € a < 0.36, i.e., the upper left-hand piece of the complete limit

set (shown in figure B-1 for the unmodified transformation). The scale
factor is ~2.9.



Fig.A-1 Fig.A-2

Fig.A-3 Fig.A-4

Fig. A=5 Fig.A-6



Fig.A-9 Fig.A-10

Fig.A-12




Fig. A-13 Fig. A—14

Fig. A-15 Fig. A-16
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TABLE B
Tigure at s | r,8 Comments
Number
B-1 1 0 — Class IV limit set (2700 points)
B-2 1 0 — Secaled plot of part of figure B-1,
B-3 0.996 0 — Class IV
B-4 0.994 0 — Class IV. Compare figure B-8.
B-6 0.992 0 — Class 1V
B-8 0.890 0 — Period: % = 78 (26 points in this piece)
B-7 0.880 0 — Class IV
B-8 1 001}1,0 Class IV: 12 separate pieces (4 shown lLere).
Compare figure B-4.
B-9 1 002110 Period: k = 24 (8 points shown here)
B-10 1 004 | 1,0 Class IV
B-11 1 008 1,0 Period: k = 84 (28 points shown here)
B-12 1 008 (1,0 Class IV
B-13 1 0.00 { 1,0 | Period: ¥ = 102 (34 points shown here)
B-14 1 010 1,0 Period: k¥ = 30 (10 points shown here)
B-15 0.91 0 — Class IV; shows “transition” from period with
k=3 (4t = 0.92)
4, Modifications of 7p and Tr. These transformations are given

by the schemes:

(9)

(10)

01 ={2,7,8, 9710}’
oa = {4, 53 6]”

0, = 2,6, 17, 8, 9},
0, = {4, 6,10},

Tp:

Tg:

In the §, a coordinates, these read explicitly:

(11)

Tp:

SI

a

with fixed point:

(12)

(13)

TE:

with fixed point:

(14)

— 8+ 382 +§8cF + L2 a® —~68a —6a®+ 38+ ja,
38° 4 28% — §8a® - §o® — 38% +3a® +48 — 4,

8, = 0.65625211,

a, = 0.3056821 ;
9’ = 98% — o® -38t —128a+ 34?2+ 38 + 3¢,
a' = —38% +30®468a - 602,

8, = 0.6444612,
a, = 0.3219678 .
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TABLE D

Figure Al g r,8 Commeoents

number L :
D-1 1 0 — R
D-2 0.97 0 — Compare figure 1D-0
D-3 0.06, 1.0 | 0 — Limit set for AL = 0.96 superimposed on L(T,) {
D-4 0.83 0 —
D-5 1 0.07 | 1,0
D-6 1 0.10| 1,0 | Comparo fligure -2

TABLE L

Figure 4t e 7,8 Comments

number
E-1 1 0 —
B-2 1 0.01| 1,0 Shows eonvergence Lo poriodic limit set

(k = 10) from initinl point close to fixed
poini

E-3 0.97 0 — Compare with E-5, E-0
E-4 0.96 0 — Compare with 1.5, 1i.0
L-5 1 009 1,0
E-6 1 010 1,0

5. Broken linear transformations. These are described in section VI, ®

Figures H-1 and H-2 show, respectively, 1000 points in the limit sets -
of T, and T,. The latter are specified as follows:

@ =}, =14 d; = 0.95,

(16) T,:
2, =06, vy,=005, d,=0.95,

with fixed point:

(16) m0=*, y0=§’
and
(17) T2: ml = 0.5, yl. == 0'9’ dl =1 ,

@, =03, 9,=07, d;—08,
with fixed point:
(18) To= "y Yo
The remaining figures, H-3 through II-17, show thae limit sels belonging
to the one-parameter family 7',:

(19) 7, BTHTE dy - 1
m2=y2 '-:1"‘.’9', d-)_ namn l.
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Fig.B-7 Fig.B-8

Fig.B-9 Fig.B-10

Fig. B~11 Fig.B-12



Fig.B-13 Fig.B-14

Fig.B-15



Fig.D-1 Fig.D~-2

Fig.D-3 Fig.D-4

Fig.D-5 Fig.D-6
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Fig.E-3 Fig.E-4

Fig.lo 6 Fig.E-6
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Fig.H-3

Fig.H-5 Fig-H-6



Fig.H-7 Fig.H-8

Fig.H-9 Fig.H-10

Fig.H-11 Fig.H-12



Fig.H-13 Fig. H~14

Fig.H-15 Fig.H~16

Fig.H-17
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The identification is given by the following table (all figures except
H-11 show 1000 points):

Rozprawy Matematyozne XXXIX

TABLE H
Figure number 2 Comments

-3 0.49 For 2 = 0.5, see the remarks in section VI,
note 2

H-4 0.42

H-6 0.40 Compare figure H-1

H-6 0.38

H-7 0.36

H-8 0.32 Like “elass IV"” limit set

H-9 0.27 Like *‘class IV" limit set

H-10 0.256

H-11 0.26 Points of H-10 plus the next 2000 consecutive
iterates

H-12 0.23

H-13 0.19

H-14 0.16

H-156 0.16

H-16 0.12

H-17 0.03 Fixed point becomes attractive below z = 0.01
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