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ESTIMATION WITH DELAYED OBSERVATIONS

1. Introduction. Let X,,..., X, be independent random variables
with the same probability distribution depending on an unknown param-
cter 4. Suppose that X, is observed at time #;, where 0 <{, <...<1{,,
and t,,...,t, are independent of X,, ..., X,. We will, in fact, suppose
that ¢,,...,t, are the order statistics of positive exchangeable random
variables U,, ..., U, which are independent of X,, ..., X, . In the paper
we shall be interested in the problem of estimating the parameter 4 when
the information is accessible, as described above, at random moments
(f time. We assume that the loss incurred by the statistician in estimating
the parameter 9 is not only due to the error of estimation but also to the
cost of observation.

The decision of the statistician is determined by a Markov stopping
time 7, which is the moment when the statistician decides to stop the
observation, and by an estimator f of ¢ chosen by him when he does stop.
The estimator f is a function of observations and of the number of obser-
vations made up to time r. We assume that at least one observation is
taken. The problem is to find sequential decisions which minimize the
expected value of the over-all loss due to the estimation and due to obser-
vation costs.

We will adopt a Bayesian approach by placing a prior distribution
over ¢ and find a class of optimal decisions for the statistician when the
loss due to the estimation error is the squared error loss. Moreover, we
assume that the observation cost equals ¢ units for unit time. For inde-
Pendent normally distributed random variables X,, ..., X, with unknown
mean and known variance the underlying problem was considered by
Starr et al. [4].

In the present paper we treat the estimation problem for a large class
of distributions belonging to a family &(?, a) from the exponential family
of distributions. We show that for a prior distribution @ from the family
€¢(ay, y), which is conjugate with &(&, a), the Bayes estimator of the
Parameter 9 is of the form (14). Further, we infer that the posterior risk
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corresponding to this estimator is equal to [a,+ B+ ak(r)]~'. Therefore,
the sequential estimation problem could be reduced to an optimal stop-
ping problem. Under assumptions on &(#, a) and on the distribution
function with a failure rate o for the random variables U,, ..., U, we show
that for a Welghted quadratic loss function the sequential plan 6 = (7,, fo )
where 7, and f 0 are defined by (16) (with a, = 0) and (17), reSpectlvely
is minimax.

The problem considered here arises when we are interested in data
which, no matter how we choose to manipulate our environment, are
forthcoming only at random moments of time. Following [4] let us quote
a few examples of the described situation. In studying the effectiveness
of safety devices in mobile objects the relevant data can only be obtained
as the results of a failure or an accident. For instance, medical data con-
cerning the effectiveness of 2 medicine can be obtsined at random mo-
ments of time when patients seek help or cre examined in one or another
way. One can supply more examples of the described situation when ob-
serving mail services or archeological discoveries.

2. Preliminaries. Let (2, #, P) be a prcbability space. Denote by
(Z, #) the measurable space, where 2 = R (R denotes the real line) and
# is a cg-algebra of Borel subsets of #. Comnsider the random variables
Xy ..., X, defined on (2, #,P), with values in (2, #) and with the
same distribution #, on (£, #) depending on a parameter 4 € D. We assume
that D is an open interval (possibly infizite or semi-infinite) of the real
line. Further, we suppose that all distributions 2;, & € D, are absolutely
continuous with respect to a ¢-finite measure » on (%', #). The probubility
measure P is, in fact, interpreted as an element of the family of probability
measures Py, ¥ € D, on (2, F). By E,(-) and D,(-) we denote the expected
value and the variance, respectively, evaluated with respect to the meas-
ure P,. We assume that Ey(X;) < oo for all 9 € D.

We suppose that the distributions 2,, ¢ € D, belong to some family
& (9, a) from the exponential family of disiributions, defined o5 follows:

By &(9#, a) we mean the family of distributions 2,, ¢ € D, for which
the densities with respect to the measure » are of the form

a2,

(1) 5

(%) = p(2; 9, a) = s(x, a)exp [aw,(F) +xw,(F)],

where a is a positive constant, s(x, «) denotes a (non-negative) Z-mea-
surable function independent of ¥, w,(d) and w,(?#) are functions defined
on D, twice continuously differentiable in D and with the first derivatives
w; (¥) and w,(9) such that w,(¥) > 0 and w, (F) jw,(¥) is strictly decreasing
in the whole interval D.
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The expected value and the variance of the considered random varia-
bles X, (¢t =1,...,n) are given by

w; ()
(2) Ey(X,) = O w(9)
and
. . {0
® o) = =57 Lt |

Let us remark that the most known distributions relevant to theory
and applications belong to the family &(&#, a), namely: normal A" {a#, a)
with 9 € (— o0, o), gamma %(¥!, a), Poisson £(a?) and negative-
binomial n#(9(1+9)~", a) with ¢ € (0, ).

Let X,,..., X, be independent random variables with the same
distribution £, belonging to (&, a) with unknown parameter ¢ and known
value of a. We shall consider the problem of estimating 4 when observa-
tions become available at random moments of time. We suppose that X;
is observed at time ¢, (¢ = 1, ..., n), where ¢,, ..., t, are the order statistics
of positive exchangeable random variables U,, ..., U,. We assume that
U,,..., U, are independent of X,,..., X,. Let

k() = ) Tioq(Us)

be the number of observations made during time ¢ > 0, and let
Fy=olk(s), 8 <1, Xyy ..oy Xy}

Thus &, denotes the information available to the statistician at time ¢.
An #,-measurable random variable f will be called an estimator of 9.
We suppose that the loss due to the estimation error is determined by a
weighted quadratic loss function L (¥, f) and that the cost of observing the
process for unit time is a given constant ¢ > 0. Thus, if the statistician
decides to stop at time ¢, then the loss incurred by him is determined by

Lt(Q?’f) = L(197f)+0t,

where J is the true value of the parameter and f is the chosen estimator.

By a stopping time we shall mean an extended random variable 7
for which Py(0<7< o) =1 for all e D and {r >t} e F, for every
t> 0, and by a sequential plan we shall understand any pair 6 = (r, f).

The statistician decides when observing the process should be stopped
and what estimator should be taken when he does stop. He is interested
In making such a choice of  and f that the expected value of the over-all
loss function L, (&, f) = L(®, f)+cr be small.
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If 6 = (7, f) is a chosen sequential plan and # is the true value of the
parameter, then the risk function is defined by

E(#, 0) = Ey[L.(9, f)].

We consider only such sequential plans § for which R(J, ) < oo
for all ¥ € D.

We use a Bayesian approach considering a prior probability distribu-
tion of the parameter 9. Let us formulate this more formally. We intro-
duce a random variable @ with values # € D. Let .# be a c-algebra of
Borel subsets of D, and let @ be a prior probability distribution of @ on
(D, #). We suppose that, given ® = ¥, the random variables X, ..., X,
are independent and have a common distribution 2, € £(#, a) and that
0,X,,..., X, are independent of U,,..., U,. We denote unconditional
probability measure by P,, and we suppose that E4(0%) < co. For a given
sequential plan 6 the expected risk with respect to @ is then defined by

(D, 8) = Bo(L,) = [ R(9, 6)D(d9).
D

Suppose that for the prior distribution @, the posterior distribution
@%t, given Z,, is well defined. Then the conditional expected loss, given
F, corresponding to @ and f is defined by

r7yD, f) = [ L(9,f)®7H(dsd).
D

r7i(d, f) will be called the posterior risk corresponding to @ and f.

It is clear that for any stopping time r the functional r*+(®, f) is
minimized by f = 7, being a Bayes estimator with respect to @. Thus the
problem of finding Bayes sequential plans may be reduced to an optimal
stopping problem.

In sequential estimation problems without delaying the observations
it turns out that for some processes with a proper loss function the only
minimax sequential plans are the fixed-time ones. For example, it is known
(see [1] and [3]) that for processes with independent increments (most
frequently involved in mathematical statistics) and for a weighted quad-
ratic loss function, the minimax (sequential) plan reduces to a fixed-time
plan. The solution of the problem considered in this paper leads to the
plans which are essentially sequential.

3. Bayes and minimax sequential plans. Let D be an open interval
(a, b). We will find a class of optimal sequential plans 6 = (v, f) for & € D
based on a sequence X,, ..., X, of independent random variables with
a common distribution £, € (¥, a) satisfying the following conditions:
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(i) for each ¢ € D,

(4) 9 — w; (9) .

T wy(9)’

(ii) there exists a constant § > 0 such that the relation

1
) l‘exp[awl(a)wwz(ﬂ)ldﬁ = (a—p)s(=, a)

is valid for all a > g and x € & for which s(z, a) > 0;
(iii) for every a > f and for each x € 2 except perhaps « = infZ,

lin}L exp [aw, (¥) + 2w, (#)] = lim exp [aw, () + 2w, ()]
d—a

9—>b—
and

lin}r dexp [aw, (F) + 2w, ()] = lim Jdexp [aw,(F) + 2w, (F)].
d—a

d->b—

It is easily verified that conditions (i)-(iii) are fulfilled for all above-
mentioned well-known distributions belonging to &(¥#, a), namely: for
A (ad, a) with a= — o0, b=00, f= 0, for ¥(¢~', ) and n®B ($(1+9)7", a)
with ¢ =0,b = o0, =1, and for Z(a?) with a = 0,0 = oo, f = 0.

Let ¢(39) be the density (with respect to the Lebesgue measure) of the
probability distribution @ on (D, .#), and let ¢*¢(9) denote the density
of the conditional probability distribution &%,

We assume that ¢(3) is of the form

(6) P(9) = aep(y; ?, ag+B)
= ao8(y, ag+ B)exp[(ao+ B)wy(F) +ywq (F)],

where a, > 0 and y are constants, and the function s is positive. Note that
¢(?#) is a density of a probability distribution on D, since

[o(®as =1.
D
This follows from (5), because in view of (6) we have
[ o(9)@% = a,s(y, ag+p) [ exp(ag+ B)w; () + yws(9)]dd.
D D

Let &,(ae, v) denote the family of all probability distributions on D
With densities defined by (6). We have the following

LEMMA 1. Let 24 € £(9, a) and let (ii) be valid. If @ € 8y(ay, y), then
(t)

&7t € &, (ao+ak(t), y+ D X))
i=1
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Proof. By the Bayes theorem, since the considered random variables
are independent, we have

0]
9(9) 3 p(X;5 9, a)
p7i(9) = s :
l{s‘v(’ﬁ)il]l (X5 9, a)dd

Substituting (6) into this formula and using (1) we obtain

K(t)

exp [[ao+ B+ ak(t)Jwy (9) + (¥ + g X;)w, (9))]

¢%t(8) = 0] .
1{ exp [[ao+ B+ ak(2)]w, (8) + (¥ + __21 X,;)w,(9)] dd

Now, taking into account (5) we get
97H(9)
k(t)

= [ao+ak(t)]s(y+ D Xy ao+ -+ ak(t)) exp [[ao+ -+ ak (8)]wy (9) +

k(t)

+(y+ X X)wa (8],

which completes the proof of the lemma.

In other words, the family &,(a,, v) of distributions @ is conjugate
with the family &(&, a) of distributions 2, satisfying (ii).

By Lemma 1 and by the strong Markov property we have the fol-
lowing

COROLLARY. For any stopping time v

k()
(7 q)’rego(ao—{—ak(r),y—}—zxi).

i=1

Conditions (i) and (iii) imply the following relations which are useful
in further considerations:

) a [ Swi(®)explaw,(8)+awy(9)]dd
D
= @ [ wy(®)exp [awy(9) +awy()]dd,
D

(9) fﬂ(x—az‘})w;(ﬁ)exp [aw, (#) + 2w, (F)]dd
b

= — fexp [aw, (&) + 2w, (¥)]dS.
D
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Using (5), (8) and (9) we have
a

(a—B)s(z, )’

In view of (2)-(4) the expected value and the variance of X,
(t =1,...,m) are given by

(10) f (@ — ad)2 o) () exp [aw, (§) + wwy (9)]dS =

D

(11) Ey(X;) = af
and
(12) Dy(X;) =

w, (9)
We take the weighted quadratic loss function
(13) L(8, f) = wy(9)(f— ),

i.e. the squared error measured in terms of the variance.

LEMMA 2. Let P4 € &(F, a) and let conditions (i)-(iii) be valid. Then
Jor the loss function (13) and for any stopping time v the Bayes estimator
of & with respect to @ € &y(ay, ) s of the form

k()

) y + ; X,
4 Uy S TR
Proof. In view of (13) the posterior risk »*+(®, f) takes the form
(15) (&, f) = ,f w; (9)(f— 99”7+ (8)d.

It is easily seen that this risk is minimized by
[ dwy(8)9™ () dd
D

I =t = e @i
D

By (7) we obtain

k(z)
) I,)f dw;, (9)exp [[ao+ B+ ak(z)]w, (F) + (v + 3 X)) w, ()] dd
= =
1')[ w, (9) exp [[ao + B+ ak(v)]w, (9) + (?’ +.§ X,-) 'wz('ﬁ)] dd

?

and the application of (8) leads to formula (14).

Let @ be the common distribution function of the independent random
variables U,, ..., U,. We suppose that G(0) = 0, G(t) > 0 for ¢t > 0, G is
absolutely continuous with density g, and g is the right-hand derivative
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of G on (0, o). The class of such distribution functions ¢ is denoted by ¥
Let £ = sup{t: G(t) < 1}andlet o(2) = ¢g(2)[1—G ()], 0 < 2 < ¢, denote
the failure rate.

We have the following

THEOREM 1. Suppose that G € 4 and G has a non-increasing failure

rate o. If ® e &(ay,y), 0 < ay< oo, then the Bayes sequential plan is
0oy = (Tags Je, )y where
0
(16) 7, = inf{t > 0: [n—k(f)]o(?)
< ca” M {ag+ B+ alk(t) +11} [ag+ B+ ak(t)]} .

Proof. Let us evaluate the posterior risk r*+(®, f) corresponding

to estimator (14). Substituting (14) into (15) and taking into account (7)
we get

0

k(7)

D, f) = lagkak(D)]s (y+ D) Xy o+ ak(v)) X

t=1

k(r) 2
ry+ 2 X;
fwz(ﬁ) 0+,§iak( — 8] exp|lag-+ B+ ak(x) ]y (5) +
k(z)
(x) [ag+ ak(z)]s(y "‘ZXuao"‘ﬂ‘l‘ak( ))
B
+(y+2 Xi)wz(ﬁ)]dﬁ _ AT X

i=1
k(z)

x [ i@ |p+ D) Xim#laot B+ ak()] exp[lao+f+ak(m))n(9) +
+(r+ i’) X)) w,(9)]as
By (10) we have —

_ 1
g+ B+ak(z)’

Thus, if @ € &,(a,, ¥), then the problem of finding Bayes sequential
plans reduces to the problem of minimizing

7‘9-':(45,]?1)

Vo(ag, 7) = Egp{[ag+ B+ ak(z)]” '+er}

with respect to .
If Ge% and G has a non-increasing failure rate, then it follows
from Theorem 2.1 in [4] that for any prior distribution @ (not only for
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D e Ey(ag, v)) Volay, ) is minimized by (16). Thus, taking into account
Lemma 2 we obtain the theorem.

It follows also from Theorem 2.1 in [4] that V4(ay, 7,,) is independent
of @.

The minimax sequential plans are determined in the following

THEOREM 2. Let X,,..., X, be independent random wvariables with
a common distribution Py e &(3, a) satisfying conditions (i)-(iii), and lei,
moreover, for f >0
(iv) sup*w,(4) = .
9eD

If E(t)) < oo, then for the loss function (13) the sequential plan o
k(o)

(17) I, k() 1 B
18 minimax.

Proof. Let us write V instead of V, when the distribution @ is
degenerate at «, = 0. Then, as remarked above, r(®, 0qy) = V (o, Tag)*
Let us now take into consideration the estimator (17). After simple com-
putations, in view of (iv), we see that

supR(&#, 6°) = V(0, 7,)

deD
is a finite constant. Thus, according to the well-known method of finding
the minimax rules in decision theory (see, e.g., [2], p. 90), it suffices to
show that V(a,, 7,) = V (0, 7) as a, — 0. To show this one can apply
an argument used in the proof of Theorem 4.2 in [4].

Condition (iv) is fulfilled, e.g., for the negative-binomial and gamma
distributions (g = 1).

One may also consider, adopting the methods used in [4], certain
modification of the discussed model, assuming that the distribution of
the random variables U,, ..., U, belongs to some exponential family
of distributions with an unknown parameter and taking a conjugate
prior distribution of this parameter.

In the analogous way as in [4] one may propose an adaptive plan
which requires knowledge of neither n nor @ and performs nearly as well
as possible when # is large for a wide class of G.
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ESTYMACJA PRZY OPOZNIONYCH OBSERWACJACH
STRESZCZENIE

W pracy rozwaza sie pewien problem estymacji nieznanego parametru rozkla-
dow, gdy obserwacje staja si¢ dostepne dla statystyka w chwilach losowych.

Niech X, ..., X,, beda niezaleznymi zmiennymi losowymi o tym samym roz-
kladzie, nalezacym do pewnej rodziny & (&, a) z wykladniczej rodziny rozkladéw.
Przypusémy, ze X; jest obserwacja w chwili ¢; (¢ = 1, ..., n), gdzie ¢, ..., t, s3 sta-
tystykami pozycyjnymi dodatnich zmiennych losowych U,, ..., U, niezaleznych od
X, X,

W pracy wyznaczono klasg optymalnych planéw sekwencyjnych nieznanego
parametru ¢ dla zmiennych losowych X, ..., X,, zakladajac, ze strata zwigzana
z bledem estymacji jest okre§lona przez wazona kwadratows funkeje straty, a zwiazany
z obserwacjg koszt ¢ (¢ > 0), przypadajacy na jednostke czasu, jest staly. Przy pewnych
zalozeniach dotyczacych &(4, a) i dystrybuanty G zmiennych losowych Uy, ..., U,
wyznaczono bayesowski plan sekwencyjny parametru ¢ wzgledem rozkladu a priori
z rodzmy skomugowanych rozkladéw dla &(#, a) i pokazano, ze plan sekwencyjuy

(To:fro), gdzie 7, i fT o 5% okre§lone odpowiednio przez (16) (dla ay = 0) i (17), jest
1111n1maksowy



