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Some applications of multidimensional integration

by parts

by S. K. ZAREMBA (Swansea)

The object of the present note is to show how Abel’s transformation
and the formula for integration by parts of Stieltjes integrals which goes
with it can be extended to an arbitrary finite number of dimensions
and how, then, they can be applied to two hitherto incompletely solved
problems. The first problem is this: An integral over a multidimensional
unit cube is approximated by the average of integrand values at the
points of a finite sequence; it is required to find a good upper bound
for the absolute error in terms of properties of the integrand and of either
of two measures, discussed below, of the equidistribution of the point
sequence. The second problem is that of finding useful upper bounds
for the Fourier coefficients of suitably periodic functions of several variables
satisfying certain types of regularity conditions. It should be mentioned
that the multidimensional Abel transformation introduced in §1 was
used in a somewhat less general form by Hlawka [4]; it is hoped that the
different system of notation adopted here will make the transformation
easily tractable in its full generality and capable of being applied to
a variety of problems beyond the two treated presently.

§ 1. Integration by parts In several dimensions. Letters
with subscripts 1, ..., s will denote coordinates of a point, the corresponding

bold character denoting the point itself. Qf will denote the partly open
s-dimensional cube

Q% 0<z; <1 (j=1,..,8),

Q° representing its closure.
Sets of 2s finite sequences <@V, ...,z and (&Y, ..., &Y

(j =1, ..., s) will be said to generate a double partition of @° if they satisfy
the relations

(1.1) 0 = E(}“) — m(]O) < E(’l) < w(;l) < 5\72) < < m(;nl])) — 5(}'"—(/”‘1)_; 1
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Given such a double partition, the operators 4; and 47 (j=1,...,s),
acting on arbitrary functions defined over @°, will be defined respectively
by the formulae

\(k) /
A,’(p(dfl, vy Tj1y By y Tjr1y Ty)

(kA1) (k)
= @(@yy oy Bjm1y Ty Tjgay eeey Ta) —@(Lry eoey Tjo1y Tf 5 Tjg1y veey Ts)

and
A*
HAC PPN
= @(@ry ooy Bio1y 1y Tjgay ooy Bs) =@y vy Bjo1, 0y Tjiay ooy L)

valid for j = 1, ..., s. The same definition will apply when the coordinates
are denoted by the letter £ with similar upper and lower indices. Operators
with different subseripts obviously commute, and

[ 3
Ajwy, ity 0T A, itk
will stand for

Ajaye- djay - 0r Ay Any

respectively. Clearly, each of these operators commutes with summation
applied to variables on which it does not act.

Given any expression &(r, ...,r+k—1;r+k, ..., s) depending only on
the partition of the variables j(r), ..., j(s) into the sets (j(r),...,j(r +k—1))
and {j(r+k), ..., j5(8),

2* D(ry...,r+k—1;r+k,..,8)
Ty 8 k

will denote the sum of all the expressions derived from @ (r, ..., r+k—1;
r+k, ..., 8) by replacing the given partition of {j(1), ..., j(s)) successively
by all the other partitions of this set into a set of ¥ and a set of s —r —k —1,
each partition being taken exactly once. The sum which has just been
defined is meaningful only if 0 <%k < s—7r41. If either k=0 or k = s—
—r+1, one of the sets becomes empty and there is, strictly speaking,
no partition; however, in order to avoid troublesome exceptions, the
sum will be interpreted, in such cases, as being reduced to one term.
ProPosITION 1. If 8 is any positive integer, if f(x) and g(x) are any

functions defined on Q°, and if (1.1) is satisfied, then

m(l)- 1 m{s)- 1

(1.2) Z 2’ f(E(ll(l)Jrl), s E(Sl(sH-l))Algm’sg(m(ll(l))’ - a‘ff‘s’))

U1)=0 I(s)=0

s N m(1) n(k)

Q k 7 \ ! (1) (LK) Y

= 2(_1) 2 Ak 41,0 Z Z, G@y 7y ey Tl Thtry ey Tg) X
k=0 L.,8 k 1)=0 lk)=0

(L(1)) (LK)
XAI....,kf(El 9 v ‘Ek sy Tht1y ooy ws);
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in the right-hand side, when k = 0, the summation signs referring to I(1), ..

.y U(k), as well as A, x are understood to disappear, and, similarly, when
k=s, A%i1,...s should be disregarded, the dummy wvariables Zy.,, ..., %
disappearing altogether.

Proof. When s = 1, (1.2) reduces to

m(1)—1 m(1)
(1_3) 2 f(E(ll(I)+l))Alg(w(ll(l))) — A:lk{g(x)f(w)}_ 2 g(w(ll(l)))Alf(E(]l(l)))’
=0 1(1)=0

which is nothing else but the well-known Abel transformation.

The proof is now completed by induction. Assume that the proposition
holds for variables with subscripts 2, ..., s. Substituting 4,g for g, and
taking the sum with respect to j(1) from 0 to m(1)—1, we find

m(1)-1 m(s)—1

CORP I Z FEPTD, o B, sg (@ e, 2

1(1)=0 1(s)=0
Z Afye,..,8%
2,008k

m(1)—-1 m(2) m(k+1)
(l(l)) (l(k+1)) @
X Z Z Z A,9(x oy Thet1 Lhtoe eony Tg) X
(=0 U2)=0 Il(k+1)=0
(L1)+1) (112)) (l(k+1))
X A2,...,k+1f(51 y &2 y Skt y Lhetzy oovy Tg) .

Here, the left-hand side coincides with that of (1.2). On the other hand,
(1.3) yields, after an obvious substitution,

m(1)-1
(l(l)) (Itk+1))
Z Alg(w vy Bh+1 5 Thtzy ooy Zs) X

=
dy+1) L2 (k+1))
X Az,...,k+1f(§1 y &2, ety Ek+1 3 iz -ovy x5)

(1(2)) (Uk+1)
= A {901, @27y vy Thr1 ) Thtzy ooy Tg) X

(2) k1) )
X Ay, k1 f(®yy E2 1‘5‘ y Lty «ony Lg)} —
m(l)

(l(l)) (l(k+l))
- 2 g($ vy L1y Trtoy ceey Tg) X
()=

. (L1 (l(k+1))
X Al,---,k+1f(£1 ) E y Lr+2y ...,ws) .

This identity, understood in the same way as (1.2), holds with £k = 0,
..., $—1. We can, therefore, apply to both sides of it the operator

Z Aks,..,

m(2) m(k+1)

Il t\d'

l(2)=0 k+1)=0
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In the new identity, the left-hand side coincides with the right-hand side
of (1.4), and, consequently, is equal to the left-hand side of (1.2), while
the right-hand side becomes

8—1
ol *
(1.5) }(—1)" § Af kia,..s ¥
2,..8k

k=0
n(2) mik+1)

—

} 2 (1(2)) (k+1) ..

X e g(wl,a’g g vecy wk.|_1 9 wk+2, veey .'L's) A
2)=0 Uk+t1)=0

(1(2)) UEk+1)
X Ag, k1 (B1y E2 7y vy k1 g Throy ooey Ls) +

s—1
k+1 *
(=1 T At s %
k=0 2,081 k
m(1) m(k+1)

X 2 2 g(
I(1)=0 Uk+1)=0

, (1)) (UEk+1))
X Al,...,k+1f(51 9 eeey ‘Sk+1 y Th42y »ovy ws) .

This is nothing else but the right-hand side of (1.2) written in a slightly
different form, Indeed, the terms corresponding to k= 0 in the right-
hand side of (1.2) and in the first part of (1.5) are the same. Similarly,
the term corresponding to k¥ = s in the right-hand side of (1.2) is equal
to the term corresponding to £ = s—1 in the second part of (1.5). Finally,
if 0 < k < s, the corresponding group of terms in (1.2) can be split into
two parts in connection with the effect of the operator Y*, viz. the sum
of all the terms in which 1 appears as a subscript of 4*, and the sum of
all the other terms; now the first part is identical with the term correspond-
ing to the same value of k in the first part of (1.5), while the second part
does not differ from the term in k¥ —1 in the second part of (1.5). Hence
the proof is complete.

It is well known that in the one-dimensional case, the Riemann-
Stieltjes integral

(1) (LUk+1))
5 N A y L2, ...,xs)x

[ f(@)ag(a)

exists whenever f and g are defined over [0, 1] and either of the two
functions is continuous, the other being of bounded variation; moreover,
such an integral can be integrated by parts. Essentially the same argument
which leads to these conclusions can be applied to any finite number
of dimensions using Proposition 1, provided that functions of bounded
variation are suitably defined in the case of several variables.

For any function f defined over §° and for any set of s sequences

@, ..., "y (j=1,...,s) satisfying

(1.6) 0=aV<al <..<a™"=1 (j=1,..,8
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form the multiple sum

m(1)—1 m(s)—1

(I(1) (1(s)
D Y s f @, L )

i(1)=0 j(8)=0

the least upper bound of such sums for all the sets of sequences satisfy-
ing (1.6) is known as the s-dimensional variation of f over Q° in the sense
of Vitali and is denoted by VO(f). If V(f) is finite, f is described as being
of bounded variation over Q° in_ the sense of Vitali. If the same function
restricted to the various faces of @° with 1,...,s dimensions is of bounded
variation in the sense of Vitali over each of them, then f is said to be
of bounded variation over Q° in the sense of Hardy and Krause.

‘When dealing with multidimensional Stieltjes integrals, we shall
use the notation d;q,,... jayf to indicate that the integration applies only
to the variables with subscripts j(1), ..., j(k), the other variables being
kept constant in the process of integration. Thus, for instance,

a3 f g(@1y gy 23) dy,o(®r Ty Ty)
Q2

= [ g(@y, @ay V) Af (@1, @0y 1) — [ g(®y, @2, 0)df (@1, 23, 0) .
Q2 Q?

It is quite clear that if f is continuous and g is of bounded variation
in the sense of Vitali over @°, the Riemann-Stieltjes integral

[ f(=)dg(x)
exists. ¢

ProposITION 2. If over @°, one of the functions f(x) and g(x) is of
bounded variation in the sense of Hardy and Krause, and the other is con-
linuous, then the Riemann-Stieltjes integral

[ f(=)dg (=)
QI‘

exists and satisfies

(L) [ fx)dg(x) = kE(—l)" 3" Atire [9(®) sk fl2) -
Qs =0

1,..,8k QE

If, on the other hand, f and g are periodic with a unit period in each of the &
coordinates of x, il suffices to assume that one of these functions is continuous
and the other is of bounded variation in the sense of Vitali over Q°, and (1.7)
simplifies to

(1.8) [f@)dg(x) = (—1)° [ g(x)df(=) .
Qs Qe



90 S. K. Zaremba

Proof. If it is ¢ which is continuous, apply (1.2) and pass to the
limit. When
(1.9) max (af"—2f)>0 (j=1,..,9),

ocl<m(y)

the right-hand side, clearly, tends to that of (1.7). Consequently, the
left-hand side tends to a limit which is, by definition, the left-hand side
of (1.7). Thus [ fdg exists whenever g is continuous and f is bounded
variation. In view of this, the passage to the limit is also legitimate
when f is continuous and g is of bounded variation. The conclusion con-
cerning the case of periodic functions follows from the fact that, in this
case, (1.2) reduces to

m(1)—1 m(s)—1

f(1)+1 (7(s1+1) (71)) (j(8)
N pEee A g (@ L 2 )

j(1)=0 i(8)=0
m(1) m(s)

= (—1)* Z 2 ZI Gy g g gl

j(1y=0  j(s)=0
the parts played by f and g are then symmetric.

§ 2. Applications to discrepancy and numerical integra-
tion. Let X = a”, ..., 2™ " with z* =G, .., & be any finite
sequence of points of Q°, and let v( ) = v(2y, ...,xs) be the number of
points of this sequence satisfying I < ( j=1,..,s). It is proposed
to call the function

g(x) = g(@yy oy Ts) = N 0 (2y, ovy Ts) — 2. 25

the local discrepancy of X. This function can obviously be regarded as
describing the imperfection of the equidistribution of X over @°. If a single
number is wanted to measure this imperfection, it is natural to use one
of the possible norms of g(x). The norm

D(X) = squlg(x)l
is known in the literature as the discrepancy of X. It is now proposed
to replace this name by that of extreme discrepancy in order to distinguish
it from another equally natural norm of g(x) which is

T(X) = !Q[ [g(x)Pdx)"

and will be called the quadratic-mean diserepancy of X. The two propositions
which follow relate each of the two discrepancies of a sequence X of points
of @° to the absolute value of the error committed when taking the value
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of an integral over Q° to be the average of integrand values at points
of X.

ProPOSITION 3. With the previous notations, if the mixved partial
derivative

_df

= Lyyg aeey T
awl ...0.’1}'3 ler "'l:‘( 19 ) 3)

is continuous in Q° and if Xiy,....im) denotes the projection of the sequence X
on the s—n-dimensional face of Q° defined by )= ... = Tysy= 1, then

N-—1
(2.1) ‘%2 F(x0) — f f(x)dx
-0 g

2 * 1/2
< 2 2 T(Xk+l,...,s){'{[le,...,:ck(xly"-7xk111-'-11)]2d<w1’--'7wk>} ’
k=11,..8k QF

where X should be substituted for Xy4.,..,s when k= s,

Proof. Form a double subdivision of @’ satisfying (1.1) and such
that each coordinate of every point of X should be an element of the
corresponding sequence <£9, ..., &™)y and pass to the limit with (1.9),
Owing to this property of the subdivision of Q°, the left-hand side of (1.2)
tends to

N-1
(2.2) 2 a0 — [ jwas.
1=0 Qe

But since g(x) = 0 whenever at least one coordinate of x vanishes,
and since ¢(1,...,1) = 0, the right-hand side of (1.2) reduces to

8 m(1) m(s)
23)  D(—0F 3T N N g@™, a1, 1) %
k=1 1,..,8 k l(1)=0 i(s)=0 .
tending ¢ X Ak fELY oy 81,00, 1)
ending to

8
L
D2=0F D [g@yy ey @ry 1,y ey 1) X
k=1 1,..,8k @
) X fonwnzil@ry ooy Ty 1,y oony 1)d <@y, ooy Ti)
since the integrals exist by Proposition 2. An application of the Schwarz

inequality completes the proof.

PROPOSITION 4. With the previous mnotations, if f(x) is of bounded
variation over Q° in the sense of Hardy and Krause, then

N-1
(2.4) I% gf £ () —d[ f(x)dx

8

< Z 2*D'(Xk+1,....s)V(k)(f(~-’ 1,.., 1)) ’

k=11,..,8k
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where V”"( foey 1,y 1)) denotes the k-dimensional variation of f(xy, ..., <k,

L,..., 1) over Q in the sense of Vitali, and where the term of the sum cor-
responding to k = s is understood to be D(X)V(f).

" Proof. We proceed as in the preceding proof as far as (2.3) and note
that its absolute value will increase, if anything, when, omitting (—1)¥,
we replace Ay, f(E1™, ..., &™), 1,...,1) by its absolute value, and
g(@yy ey Ty 1, .00y 1) by D(Xpyy,..,s), obtaining the right-hand side
of (2.4).

Proposition 4 differs but little from a theorem proved by Hlawka [4],
but because of the shortness of our proof it was felt worth giving here.
The difference between two propositions is twofold. In the first place,
Hlawka allowed the points of X to be anywhere in @Q° instead of restrict-
ing them to @°, but, to compensate for it, he had to assume the periodicity
of f with a unit period in each of the s coordinates of x; it is easy to see
that either restriction can be replaced by the other, but is seemed more
natural to the present author to drop the requirement of periodicity and
rather restrict the points of X to @°, as would be done in any case if, for
instance, the sequence was obtained by reducing modulo 1 the coordinates
of the points of some other sequence (see [5] or [6]). Secondly, Hlawka's
inequality is slightly weaker than (2.4) insomuch as he replaces the
factor D(Xk44,...,s) in (2.4) by D(X), which cannot be smaller, and indeed
is likely to exceed D(Xj.1,..s).

Comparing Propositions 3 and 4, one notices immediately that the
former requires more of f by way of smoothness than the latter. However,
when it can be applied, (2.1) is capable of yielding a more favourable

upper bound for the absolute value of (2.2) than (2.4). Indeed, in any
event

T(X) < D(X),

and it has been found that, with N —oco, T(X) can even be of a smaller
order of magnitude than D(X) [2], which, incidentally, is a good reason
for introducing 7'(X) besides D(X).

§ 3. The coefficients of multiple Fourier series. It is
well known that in the case of one variable the Fourier coefficients of
a function of bounded variation are O(n~!), but a careful search of the
existing literature produced only one paper [1] extending this property
to multiple series. This paper, written by S. Faedo, treats only double
series (although a rather tedious extension of his approach to functions
of more variables would be possible), and considers only the case when
all the subscripts of the coefficient are different from 0. Faedo’s result
will now be obtained, for any finite number of variables, as an immediate
consequence of Proposition 2, and will also be extended to the case when
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some of the subseripts of the coefficient are zeros. Three propositions
will lead to a final corollary which is more general than the theorem
merely quoted by Hlawka [b] without references to the existing litera-
ture (1).

In what follows, h = <{h,, ..., hs> will always denote a lattice point,
i.e. a vector with integral coordinates, and R (k) will stand for the product

max (1, |&])...max(1, [A4),

a dot denoting scalar multiplication.

ProrosiTioN 5. If f(x) is of bounded variation over Q° in the senmse
of Vitali, and is periodic with a unit period in each of the s coordinates
of x, then its Fourier coefficients can be expressed in terms of Riemann
integrals

(3.1) on= [ f(x)exp(—2mih-x)dx
@
and satisfy
(3.2) les < (2m)°R(R) TV f)
whenever hy...hy # 0.
Proof. If

g(x) = i°(2n) "R(h) 'exp(—2=ih-x),

then (3.1) can be re-written, according to (1.8), in the form of

o= [flx)dg(x) = (=1 [ g(x)df(x),

(JB (')3
and (3.2) follows from the definition of V*(f) and from
lg(=)] = (2m) "R(k)"".

When some of the coordinates of h are equal to 0, the situation be-
comes slightly more complicated. There is no loss of generality in assuming
that for some k

(3.3) : hl...hk #* 0 and hk+1 = e = hs = 0.

Now the variations of f in the sense of Vitali over linear varieties with
fewer than s dimensions have to be brought in. It should be noted that

(') TAdded on January 22, 1968] Essentially, the latter theorem can be found
in N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize (Number theoretical
methods in numerical analysis), Moscow 1963. It may be noted that, when compared
with our Proposition 8 below, hoth this theorem and some interesting variations on
it obtained by Korobov require the existence of partial derivatives of a higher order
{as well as their continuity) to ensure that the Fourier coefficients of the function in
question are of a given order of magnitude.
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if f is of bounded variation in the sense of Hardy and Krause over @°,

then

(3.4) sup V(oo Erpry ey E)) < +00 (k=1,...,5—1);

0<§<L1(i=k+1,...,8)

more precisely, one finds by induction that this supremum does not

exceed the sum of V'¥(f) and of the variations, in the sense of Vitali, of

the function f restricted to the various faces of Q° with s—k,...,s—1

dimensions, obtained by equating some of the coordinates zy1, ..., zs to 1.
PROPOSITION 6. If f(x) ¢s periodic with a unit period in each of the s

coordinates of x and is of bounded variation over Q° in the sense of Hardy
and Krause, then (3.3) entails

(3.5) lewl < (27) " *R(R)™? sup VO(f (s Bty ey £5)) -
)

0<Hy<1(i=k+1,....8

Proof. In view of (3.3), put
(3.6) g @y, ..., xr) = i¥(2n) ¥R (k) 'exp(—2nih-x) ,

and regard Zpii,...,% and &4, ..., & provisionally as fixed, though
arbitrary. Substituting % for s in (1.2), and taking into account the perio-
dicity of the functions involved, we find

m(1)—1 mk)—1

(L1 +1) (Ik)+1) (k) (U1 (k)
e O FERTY L EY ey ) Ay, g P, ., 2
K1)=0 U k)=0
m{1) m(k)

k (k), (Un) (U k))
= (=% D . D 2™ L 2 x
=0 Uk)=0

(1) (Ik)
X Ay, f(& ), ey Sk ), §k+1, ey &5)
and further

m(1)—1 m(s)—1

(3.7) 2 Z f(E(ll(lHl)y---’Efsl(m-j-l))x

(1)=0 U(8)=0

(k)(a;(ll(l)) (Lk+1))

(U ky) )
X Ax.....kg y ey T ) Aps1Tigr e doZg

m(1) m(k) m{k+1)—1 m(8)—1

\ ! N (k) (L) (L(k)
= Z 2 2 Z g @™ L 1) x
K1=0 Uk)=0 l{k+1)=0 I(s)=0

&) (k) HUk+D+1) Us)1+1) (Uk+1)) (Us))
X Al.---.kf(fl y sery §k )y bk y veey &5 YAk41&r31 .. AdsTs .

It is easily seen that, with (1.9), the left-hand side tends to the Riemann
integral

ff(x)exp(—2m§h-x)dx = ¢,
Ql
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while, clearly, the modulus of the right-hand side cannot exceed the
right-hand side of (3.5). Hence the proof is complete.

In what follows, f will always be assumed to be of bounded variation
over @° in the sense of Hardy and Krause; then Proposition 5 can be
regarded as a special case of Proposition 6. An adaptation of the proof
of the latter yields the following result.

ProrosiTioN 7. If f(x) is periodic with a unit period in each of the s
coordinates of x, if it has all the mized partial derivatives

"f

m=fqm.....zm)(x) ) <..<jn); 1 <n<s),

and if these are bounded variation over @° in the sense of H ardy and Krause,
then (3.3) entails

(3.8) en = F(2r) *R(R) ',

where ¢ is the corresponding Fourier coefficient of fn,,... z:(%).

Proof. By an easy extension of the mean value theorem of the
differential calculus, we find

(l(l)) (k) (l(k+1)+1) (U8)+1)
Sef (& 7y ey By Gt y weey Eg )

) Uk (l(k+n+1 (l(sH—l) ey (l(k))
= fzurz Y2 ) yos Yy Ekt ) v YA & Ak

where

@)

(60
i <Y

< &Y =1, ..,k).

Substitute this in the right-hand side of (3.7) and note that, in view of

the continuity of g(®, altering its arguments to yi"”, .. ,y““‘” will make

no difference in the limit. A similar transformation affecting 4,,..,x9"®

in the left-hand side is evén more straightforward owing to the continuity of
()kg(k

m—k = exp(—2mh-x) .

We have, then, on both sides Riemann sums tending to integrals which
exist, since both integrands are products of functions being either con-
tinuous or of bounded variation in the sense of Hardy and Krause. Taking
into account (3.6), we obtain, therefore, in the limit

[ fx)exp(—2mih x)dx = i*(2m) f Foro..ma(®) XD (—2mih-x) da |
Q!

Hence the proof is complete.
Combining the last two propositions, we find by induction the
following final result.
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ProPOSITION 8. If f(x) is periodic with a unit period in each of the s
coordinates of x, and admits all the partial derivatives

é)q(1)+...+q(3)f

— (0 <q(i) <r;1=1,..,8)
e’V og1® ’ T

for some positive integer r, these partial derivatives being of bounded variation
over Q° in the sense of Hardy and Krause, then the Fourier coefficients of f
satisfy

lewl < (2m) "TORR)Y TN (R £ <0, ..., 0)),

where M is a constant depending on f and not exceeding the biggest of the
sums, referring lo each of the mired partial derivatives -

. - (j(1) < ... <j(n) <s),

of their variations, in the sense of Vitali, on Q° and on all its sides obtained
by making some of the coordinates of x equal to 1.

In this statement, the exponent —(r-41) of 2n could clearly be
replaced by —k(r+1), where % is the number of non-zero coordinates of h

(see (3.5)), but the object of the exercise was to find for |¢,| an upper bound
depending only on f and on R(h).

Remark. It may be noted that under the conditions of Proposition 8,
the Fourier series of f converges uniformly, and therefore, converges to f
(see e.g. [3], Theorem 8; the argument iz essentially the same in s di-
mensions).
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