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ALGEBRAS OVER THEORIES
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Introduction. In [5], Lawvere mentions the following problem:

Let f: A > B be a map of theories. When does the forgetful functor
f’: B® - A® from B-models to A-models have a right adjoint?

The purpose of this article is to throw some light on this question by
extending an interesting analogy which emerged in Lawvere’s paper.
This analogy may be loosely summarized as

Rings, modules ~ Theories, models.

A great variety of definitions and theorems generalize in this way,
e.g. bimodels, tensor products, matrix rings, Morita equivalence, the
centre of a ring, commutative rings, the tensor algebra of a module, Azu-
maya algebras etc. A whole programme of research suggests itself ; namely,
take a theorem about rings, and try to prove its analogue about theories.
This article is intended as a piece of propaganda for this programme.
For this reason, and for the sake of brevity I have omitted proofs, and
have restricted myself to definitions and statements of results. For further
details, the reader is referred to reference [7].

The main part of this article concerns the problem of Lawvere men-
tioned above. The analogues of the following notions turn out to be rele-
vant:

We may look at a ring homomorphism f: R — 8 in two ways:

1° as a ring homomorphism,

2° ag a homomorphism of R-algebras.

The coincidence of these two notions is not so entirely trivial as
at first appears. By an R-algebra we mean an (R, R)-bimodule X equipped
with an associative multiplication X @z, X - X and a two-sided unit
R—> X.

If we translate notions 1° and 2° by means of the analogy mentioned
above we no longer get the same thing. It turns out that they do coincide
if and only if f is a “good” map as far as Lawvere’s problem is concerned,
i.e. if f" has a right adjoint (as well as the left adjoint which always
exists).
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As a corollary of this, if f: 4 — B'is a good map then B is obtained
from A by adding in unary operations and further axioms. As an example
of such a situation [6], the embedding

(commutative rings) < (special A-rings)

is good.

1. Algebraijc theories. An algebraic theory A is a category with coprod-
ucts in which every object is a coproduct of copies of a fixed fundamental
object A*. We denote by A% the coproduct of an S-indexed family of 4'’s,
for any set 8.

An A-model is a product preserving functor

A°? > Ens

where A°® denotes the opposite, or dual of the category A, and Ens
denotes the category of sets and funetions. A homomorphism of A-models
is a natural map. We denote by A" the category of 4-models and homo-
morphisms. We leave it to the-reader to check that these notions corres-
pond to the classical concepts of universal algebra, except that operations
are allowed to have arities of arbitrary cardinal.

The category A° is complete, i.e. left and right limits exist. We denote

by
I,: A—>A°

the functor given by a — Hom 4( —, a). It is full and faithful. The following
theorem is very useful: '
" -THROKEEM 1. Let A be an algebraic theory, C a category with right limits,
and T: A — C a coproduct preserving functor. Then there exists a unique
(up to natural isomorphism) functor T: A®— C such that. T.1, = T.

If A and B are"algebraic theories, a functor f: A — B is a map of
theories if it preserves coproducts and fundamental objects. In this way
we get a category Th of algebraic theories and their maps. The category Th

is complete.
JIff: A — Bisamap of theories, composition with fgives a “forgetful”
functor f°: B® -> A®. Theorem 1 tells us there is a functor fa: A®—> B°

makmg the dlagram

..... A»—l—>B'
IA‘I{ ‘IB

vy

Ab_fg_)Bb

commute The functor f« i8 left adjoint to f¥, and this adjoint pair is
strongly tripleable [1], [4], [7].
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The -category ‘Ens is clearly an algebraic theory. It is trivial in the
sense that its models are simply sets with no extra structure, i.e. Eng
= Ens, and Iy, is the identity functor. Further, Ens is initial in Th.
If j,: Ens —> A is the unique map of theories, we denote (j,)% (j4)« DY
U,, F, respectively. The functor U, is the “underlying set” functor
and is given by X — X (A4'), for X an A-model. The functor F, is the
“free A-model” functor, and is equal to the composite |

i I
Ens —1s 44, Ab,

The fact that I, is full and faithful means that we may identify
A by means of I, with the full subcategory of free A-models. Theorem 1 is
essentially a consequence of the fact that every model is a right limit of
free models. ) '

Let R be a ring (with unit, of course). Let R be the category of free
left R-modules and R-homomorphisms. Then R is an algebraic theory,
and R-models are simply left R-modules. We call a theory of the form R
annular. Because R and R uniquely determine each other we will use
the same symbol for both theory and ring. Thus, Z is the theory of abelian
groups. It is a happy coincidence that the words “model” and “module”
are 80 alike (I am indebted to Jon Beck for this remark). This is the basis
of the rings — theories, modules — models analogy mentioned in the
introduction. We also have (ring homomorphism) — (map of theories).
Indeed, if A and B are annular theories, the maps of theories f: A — B
are in bijective correspondence with the ring homomorphisms f: 4 — B.
The functor f° is “pullback along f” and f. is B®4(—).

2. Bimodels. Let 4 and B be algebraic theories. A “co-A-model
in the category of B-models” is given by a coproduct preserving functor

X: A——>Bb.

We call this an (A, B)-bimodel. A map of bimodels is to be a natural
map, and we denote the category of (4, B)-bimodels by [4, B]. Eva~
luation at A' gives a forgetful functor

[A,B]—B’: X — X(4Y)
which forgets the co-4-model structure. o
If A and B are annular, an (4, B)-bimodel X is simply an (4, B)-
-bimodule, i.e. an abelian group X which is simultaneously a left B-module
and a right 4-module such that
b-z)-a=b-(x-a)
for aeA, beB, relX.
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If A is the theory of groups, and B the theory of commutative rings,
an (A, B)-bimodel is a Hopf algebra.
According to Theorem 1, an (A4, B)-bimodel

X: A->B

determines a functor X: A’ > B®. We denote this by X®,(—), for
obvious reasons.
If M is a B-model, the composite

Hompb(—, M)

A°? X, (Bbyor — Ens

is an 4-model, which we denote by Homg(X, M). Its underlyhing set is
the set of homomorphisms from the underlying B-model X (4') of X to M.
The functor

Homy(X, —): B® — A

is right adjoint to X ® ,(—): 4A®*— B
Let X be an (A, B)-bimodel and Y an (B, C)-bimodel. The composite

AS B"——W——)—) (0
is an (4, C)-bimodel which we denote by Y ®zX. Note that
(YRpX)®4(—) = Y Rp(X®4(—)).

This tensor product operation on bimodels is coherently naturally
associative.

Note that for any theory A, the functor I, is an (4, A4)-bimodel,
and that I, ®,(—) and Hom (I ,, —) are both identity functors. We
shall adopt the usual abuse of notation prevalent in ring theory by
denoting I, by simply A. Thus A®,X ~X and Hom, (4, X) ~ X,
evidently a satisfactory state of affairs. We refer to I, as the funda-
mental bimodel of A. Its underlying A-model is ' (1), the free A-model
on one generator. The fundamental bimodels act as units for the tensor
product.

The following theorem is useful (and easy):

THEOREM 2. Let A and B be algebraic theories. A functor T: A® — B®
18 of the form X ® ,(—) for an (A, B)-bimodel X if and only if T has a right
adjoint. Any natural map between such functors is induced by a unique map
of bimodels.

3. Algebras over theories. An algebra X over an algebraie theory A
is an (A, 4)-bimodel equipped with maps of (4, A)-bimodels

n: X@X—>X 9 A->X
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which we call “multiplication” and “unit” respectively for which the
diagrams '

X®AX®AX 1X®A"-—>X®AX'

n

n®4lx

X®A.X z '—>X

A, X B4X xo , x- 224" x5, 4

\ i

/
¥
\X[

e
~

commute. These diagrams just assert that n is associative and that # is
a two-sided unit.

If X and X' are algebras over A a map @: X - X' of (A, A)-bimodels
is a map of algebras if the diagrams

P® 4 @

Xe. X > X' QX A
n [n' ﬂ/ \\ ﬂ'
i Y \
X ki - X’ xX—2 .,.x

commute. In this way we get a category Alg(A) of algebras over A, which
has an obvious forgetful functor Alg(A) — [4, A]. This functor has a left
adjoint T: [A, A] > Alg(A4). If M is an (4, A)-bimodel, T'(M), the
“tensor algebra” of M has for its underlying (4, 4)-bimodel

T(M) = ” Mn,
n=0
where M® = A and M"*' = M ® ,M™
If X is an algebra over A, an X-module M is an A-model together
with a map of A-models u: X ® 4M - M such that the diagrams

X, X0 M 4™ xo M XQ M
. n® 41y N

N u
x4 I AQ M g

XQM—* . M M
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commute. If- M, M’ are- X-modules, a homomorphlsm O: M-~ M is
a map of X- modules if the diagram

X M X4, x e M

M——" W
commutes.

"In this way We get a category X° of X-modules, which has an obvious
forgetful functor #*: X®— A®. This functor has a left adjoint #,: 4A°—> X°
given by M — X ® , M, where the structure map X ® (X ® M) > X Q M
of 5 (M) i8 7@ 41y.

Let X denote the full subcategory of X° of X-modules of the form
7, (F4(8)) for some set. 8. Then X is an algebraic theory and X° is just
o 4 _ _

. For this reason we abuse language by denoting X by simply X. Thus
an algebra over A defines a theory which we denote by the same symbol;
the functor 7, : A® > X restricted to free models, induces a map of
theories which we denote by 7: 4 — X, i.e. we use the same symbol as
for the unit of the algebra. It is not hard to see that this is a procedure
entirely consistent with the notations 77, n, Which we already have.
Hence, : A - X may be interpreted either in Alg(A4) or Th.

We may now ask: given a map of theories f: 4 — B, when.is B the
theory associated with an algebra over A%

Answer: if and only if f° has a right adjoint.

First; suppose X is an algebra over A. We may define a functor
n;:°A%—~ X® by defining %, (M) = Hom (X, M). The structure map of
‘ny (M) is to be the map X ® ,Hom (X, M)—>Hom (X, M) adjoint to
the map Hom (X, M) — Hom, (X, Hom (X, M)) given by =~

Hom , (X, M) M—»HomA (X®AX-,-M) = HomA(X, Hom , (X, M)).

It is not hard to check that %, is right adjoint to #°. Conversely,
suppose f: A — B is a map of theories. such that f°: B® — A® has a right
-adjoint f, . Theh the . composn;e

b4 b \
Y LIAEN ;R AL

has a right adjoint, namely A4°-* e g ge,

Hence, by.-Theorem 2, there is an (4, A)-bimodel X 'suc\h that f”f*
= X ®,4(—). Since this is a composite of a left adjoint followed by its
right adjoint, this functor has a natural monad structure. Again by Theo-
rem 2, this implies that X has a natural algebra structure. The strong
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tripleability of the pair (f?, f ,) implies that as theories B = X and that f
is the “unit” of X,

In particular, it follows that B is a quotient of an enlargement of A
by unary operations. To see this note that a B- model M is simply an
A-model together with an action u: X ® 4aM— M. Now X ®@ M .is gene-
rated as an A-model by elements z@®m where  is an element of the
underlying set of X and m runs over the generators of M. Thus, the action
is defined by the unary operations m > u(x ® m) for each . In fact these
unary operations form a semigroup, with multiplication defined by =:
X®4X - X and with unit defined by #: 4 — X.

Let us call a map of theories f: A — B good if f° has a rlght adjoint.
We have the following theorems:

THEOREM 3. The map f: A — B is-good if and only if B “is” an algebra
over A.

THEOREM 4. A composite of good maps s good.

' THEOREM 5. If in the commutative dz'agram of theories

f1 and f, are good then so0 is g.

Note that maps between annular theories are always good. Lawvere
[5] mentions the fact that j,: Ens — A4 is good if and only if 4 is‘a unary
theory (i.e. a monoid — so 4- models are sets on which the monoid acts).
This is immediate, because monoids are precisely algebras ‘over Ens.

The map of theories 4 — *, where * i§-the terminal object of Th
(a category with only one map; its models are one element sets) is good
if and only if 4 has precisely one nullary operatlon or, equlvalently, 1f Ab
has a zero object.

.Unsolved problem. Let A be a theory. Consider the categOry
whose objects are good maps B — A and whose maps are commutatwe
dla,grams

B— B’

./

Does this category have an initial object? (P 738). If A'is annular
the answer 1s yes, and the mltlal object is Z — A( ) '

) Prof R. Isbell has arguments to show that the conjecture is unlikely. ;.
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4. Azumaya theories and matrix theories. If S is a set, we call a map
a: A' > ASin a theory A an S-ary operation of A. If g is a T-ary operation,
we say that a and 8 commute if the following condition holds for any
8 X T-matrix of elements {x,,} of any A-model:

First apply $ to each row of the matrix {r,,}, and then apply a to
the column 8o obtained. Call the result y,. Now apply a to each column,
and then § to the row so obtained, and call the result y,. Then y, = v,.

It may be remarked that this definition can be slicked up to an
element-free form. Note that a unary operation commutes with itself,
but for higher arity an operation does not necessarily commute with
itself. A theory is commutative if every pair of operations commutes.
In that case, just as for rings, every A-model has a natural (4, 4)-bimodel
structure. Thus, if X and Y are A-models, and A is commutative,
Hom ,(X,Y) has a natural A-model structure, and we have an 4A-model
X ®,Y, which is naturally isomorphic to ¥ ® , X.

For any theory A, we define the centre of A, Z(A) to be the largest
subtheory of A whose operations commute with all the operations of 4.

If A and B are any two theories, we define A ® B to be the quotient
theory of A * B (the coproduct of A4 and B in Th) by the congruence
which, in effect, states that operations in A * B which have come from A
commute with those that have come from B. An A ® B-model may be
interpreted as an A-model in the category of B-models, or conversely,
as a B-model in the category of A-models. If A and B are commutative,
then A ® B is the coproduct of A and B in the category of commutative
theories.

We say that a map of theories f: A — B is an extension if B is gene-
rated by Imf and a set of operations which all commute with Imf. Alter-
natively, f can be factorized

A—>-AQC—>B

for some theory C, where A - A ® C is the canonical map, and A C - B
is surjective. It is not hard to see that a composite of extensions is an exten-
sion, and that if f is an extension, then f(Z(A4)) < Z(B).

Now we come to another concept, that of a primitive element of a bi-
model. Let A be a theory and X an (A4, A)-bimodel. A map of bimodels
A — X determines, by applying the forgetful functor [4, 4] — A% a homo-
morphism F (1) - X (A'), and hence, by adjointness, an element of the
underlying set of X. We call such an element primitive. If 4 is a ring, and X
an (4, A)-bimodule, r¢X is primitive if ax = za for all ae4. We call X
primitively generated if it is generated as an A-model by primitive
elements.

THEOREM 6. A good map of theories f: A — B is8 an extéension if and
only if B, as an algebra over A, i8 primitively generated.
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Let us denote the full subcategory of primitively generated (4, A4)-
-bimodels by {A}. Composing the inclusion {4} < [4, A] with the for-
getful functor [4, A]—> A® gives a forgetful functor {4} — A°.

In general, if f: A — B is a map of theories, there is no induced functor
from [A, A] to [B, B]. However, we have the ~following'theorem:

THEOREM 7. Let f: A — B be an extension. Then there is a functor
fi: {4} = {B} making the diagram
Hf

{4} - {B}
v v
Ab fe s Bb

commute.

We call a theory A Azumaya if 4, is an equivalence of categories,
where i: Z(A) > A is the inclusion, which is an extension, of course.
The following is a characterization of Azumaya theories:

THEOREM 8. A theory A is Azumaya if for every set 8 and subfunctor T
of IT: A® > A® having a left adjoint, there is a set 8’ and a pair IT = IT
s : s &

of natural maps whose equalizer is T.

An Azumaya ring is an Azumaya theory, and also the theory of
groups is Azumaya (this follows from Kan’s theorem that a cogroup
in the category of groups is free).

Two theories A and B are Morita equivalent if A® and B’ are equi-
valent categories. If one of them is Azumaya, so is the other, and they
have isomorphic centres. '

For any theory A, we denote by M (A4) full subcategory of 4 given
by objects of the form AS*T for some 7. Then Mg(A) is a theory (though
not a subtheory of 4 unless S = 1, in which case M,(A) ~ 4). If 4 is
a ring, M (A) is the ring of 8 x S row finite matrices with coefficients
in A. We may prove the following facts about Mg(4):

THEOREM 9. M (A ®B) ~ M (A)® B.
THEOREM 10. A and M (A) are Morita equivalent.

Ms(A)-models are precisely A-models of the form IIX for some
s

A-model X, and homomorphisms are of the form I7f for f a homomorphism
of A-models. s

Note that in particular we have M (4) ~ A @ M (Ens). The theory
Mg(Ens) is generated by S5 S-ary operations, subject to quite simple
identities. In fact, if ISIX is a typical M (Ens) model, an S-ple of elements

of J1X is given by an § X § matrix of elements of X. The generating opera-
S
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tions give each one S-ple of elements by selecting an element from each row.
We clearly have S5 ways of doing this. We also have the following intere-
sting, and very simple theorem:

THEOREM 11. Every theory Morita equivalent to Ens is of the form
M (Ens) for some set S.

We have not mentioned the obvious generalizations of algebraic
K-theory to algebraic theories, but it looks as'if there is a rich field waiting
to be explored there.
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