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On the representation of non-negative solutions of linear
parabolic systems of partial differential equations
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‘Abstract. This article is a continuation of the author’s investigations author
(Ann. Polon. Math. 19 (1967), p. 193—197, and 22 (1970), p. 323—331) showing that if
{#(t, ®)} (¢ =1,..., N) is a non-negative solution of the parabolic system
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in (0, T]X Ry, then there exist non-negative Borel measures {y/} such that

N
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The purpose of this paper is to prove the uniqueness of the mesasures y;.
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Consider the system of equations

n n
(1) I, ..., ) = D af(E, @)uf, + D) b, @)U+
'sj'_" =1
1 1 N
+ M a)ut—uf =0 (b =1,...,N),
i=1
where the coefficients af;, b} and ¢} are defined and bounded in a strip
(0, T1 X R,,. We take (af;(t; ¢)) to be a symmetric matrix, i.e., afj = af
for £ =1,...,N.
Throughout this paper we shall assume that
dak  Baf . Obf
’ H b’:’
Ow; ~ 0w, 0y 0,
respect to (¢, 3) in (0, T] X By;
(b) there exists a positive constant « such that for any real vector
(e R,

and ¢f are Holder-continuous with

() a'{"jv

Dl a0 &gz el (B =1,...,N)

1,7=1
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for all (f, w)e (0, T X R, ;

(¢) ¢&(t, @)= 0 for all (3, z)e (0, TIXR, and ¢ #Fk (i, k =1,..., N).

Under assumptions (a) and (b), it is well known that there exists
a fundamental matrix {I'; (¢, @; 7, ¥)} (4,5 =1, ..., N) of functions defined
for (¢, ®), (7, 4)e (0, T] X R,,, v <t (see [4], Chapter 9). It follows from (c)
that Ty(t, @; 7, 9) =0 (4, j =1,...,N) for all (), (r,9)e(0, TI1XE,
(z <) (see [2]). :

In [3] it is shown that if {W (@, z)} (= 1, .y V) is a non-negative
solution of (1) in (0, T'] X R,,, then there exist non-nega.tlve Borel measures
9’ and a number 7, > 0 such that

N
@  dte) = [ D Tyt 0,9y @A) G =1,..,N)
Ry, j=1
for all (¢, #)e (0, T,] X R,. The purpose of this paper is to prove the uni-
queness of the measures y’. We also obtain a necessary and sufficient
condition for a system of functions defined by & formula such as (2) to
be a non-negative solution of (1).
‘We shall need the following lemma:

LeMMA. Let f(o) be a continuous and bounded fumction in R,. Then
liin [ Tyty 25 0, 9)f(@)de = 8,5(%) (6, § =1,..., N).
Rﬂ

Proof. Using the decomposition of I, we get ([b], p. 262)

Tyt, w5 7, 9) = Zy(t, @3 ,y)+2fda fzm(t @3 0,8) B0, 25 7,9)dy

j=1r=

=Jij(t7 m’ t’ y)+-Rij(t’ w} ’y)’
where
n

3 4L, )0, 9@~ ]
4(t—1) %)

Zy(tyw; vyy) = Oy(7, y)oxp | —

Ci(7, ) = (2Vm)"{det [A% (7, y)T},

{d4is(z,y)} denotes the inverse matrix to {a}y(z, ¥)}, Dy(o, 257, y) (k, J
=1,...,N) are continuous functions for (o, 2), (z,¥)e [0, T] X R, (¢ > 7)
such that

|Byi(0y 25 7, 4)| < O(o—7)~"+2-9)2 oxp (—c

le —y?
oO—7T !

where ae (0,1). It follows from the last inequality (for details see [5],
. 20)

Tim fR (t,@; 0, 9)f(@)dw =0 (i, j =1,..., N).

-0 B
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It is clear that
Lm [ Iy, @5 0,9)f(@de =F(y) (G =1,..., ).
-0 p ) '

TEmorEM 1. If {u'(t,2)} (i =1,...,N) is a non-negative solution
of (1) in (0, TIX R,, then exist unigue non-negative Borel measures {y’}
{j =1,..., N) such that formula (2) is satisfied.

Proof. The existence part of this theorem was proved in [3]. The
uniqueness proof is similar to that of Aronson’s [1]. Suppose that there
are two systems of measures {y{} and {y{} (j =1,..., V), each giving
arepresentation of {«’} in the form (2) and such that yj» = yfofor certain j,.
By Theorem 2.3 of [2], it follows that I (f, #; 7,y) satisfies

¢, »; 7,9) < Ip(t, 25 7,9)

for (3, %), (v,y)e (0, T] X R, (v <t), where I}, is a fundamental solution
of the equation

n n
Lo = D) ai(, @) vgg+ D VI, @)vg,+ difE, 0)v—v, = 0.
1,7=1 =1

It is known that there exist positive constants C, and C,

‘ a2
Oy (t— r)‘"”exp{ —0, ht ]
t—t

}gfk(t,CU; T, Y)

for (1, ), (7,9)e (0, T]X R, (r<1?) (see [1], Theorem 7). This estimate
implies that there exist positive constants 8 and M such that

(3) [yl <M (j=1,..,N,i=1,2).
Rn
Set o/ = yi—yj. Then

. N N
@) 0= [ DIy 0,90 @dy) = [ D Iy(t,2; 0,9)e" ¥ (dy)
R, j=1 R, j=1

(4t =1,...,N) for all (¢, )e(0,T,] xR,, where

Y(B) = [e P o (da)
B

for all Borel subsets ¥ of E, . By the Hahn—Jordan decomposition theorem.
there are Borel sets 4, (j =1, ..., N) such that 27> 0 on all Borel-mea-
surable subsets of 4, and 4/ < 0 on all Borel-measurable subsets of R, — A4,
=B;. Set M. (B) =V(En4,) and ¥ (B) = —V(E nB). It follows
from (3) that 4, (R,) < co. Therefore the measures A}, and A. are regular.
Since o0 = 0, we can assume that A% (A ) = a>0. We will show that
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this leads to a contradiction. By the regularity of }.f" and }.j", there exist
a compact set K < 4, such that A" (K)> 3a and a bounded open set
B o> K such that A}(F —K) < a/4. Let ¢ = p(z) be a continuous function
in B, with ¢(#) =1 on K and ¢(z) =0 on B,—F and 0<¢p(@) < 1.
Introduce the functions

- 2
vty y) = [Tyt @5 0, y)p(@)e"" du.
Ry,
From the lemma it follows that

limvy(t, y) = p(y)e ™" for i =]
-0
and
=0
It is well known that

_nlz lm__ylz
Ly, 25 7,y) < Oyt —7) " exp{ — 0,

i1—<t

for (2, #), (7, ) (0, T} X B, (z < 1), where (; and C, are positive constants.
Hence, if ¥ < {o; |»| <r}, then there exists C; and T, such that

(5) 0 < Moy (t, y) < Oy

for 0 <t < T,. It follows from (3) and (5) that

(6) Jost, 1) (dy) = [ 6" 0,(1, 4)|7](dy) < oo.
Ry B,

Therefore v,; is integrable with respect to ¢’ for each te (0, T,) and

R{ vy(8, 9) o’ (dy) = [ e uy(t, )V (dy).

¢

Since |A|(R,) < oo, applying the dominated convergence theorem we get

(M tm fo0,9)00@y) = YD)+ [ paldy)-

BlK
— [ ¢i*ay) > ta—ajt = aj2> 0
and —K
(8) l‘if.lR{vi,(t,y)a"(dy) =0 for i #£j.
In view of (6), for each te (0, T,) we have
R{ V3t 9)o* () =Rf [Rf Tty @5 0,9)9(2)e™"" da] o (dy)

=Rf[R{I:'io{(t7 @; 0,) Oj(dy)]¢(m)8_mxlzdm'
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Summing over ¢, we conclude that

N E
2 f w9 dy) = [ [ D Iu, e 0,9)0 (@)@ iz =0
Ry By i=1
and
lim 2 [ vty y) o' (dy) =0
0 o1 R,
in contradiction to (7) and (8).

THEOREM 2. Let
U, o) = [Tult,o; 0,9)edy) (=1,...,H),
R,

where p is a non-negative Borel measure.
Then U7 is a non-negative solution of (1) in (0, T,] X R, if and only if

(9) UG oe do< o (j=1,.., )
E,

for te (0, T,], where p 18 a non-negative number.

Proof. If {U’} is a non-negative solution of (1) in (0, T,] X R,,, then.
it follows from the maximum principle that U’ satisfies (9) (for details.
gee [3]).

To prove the converse, consider the Cauchy problem

T, ..., u¥) = 0 for (,d)e(l,, T,]x R,,
W, 2) = U(,2) forzeR, (j=1,..,N),

where {f,} is a sequence of points in (0, T';) such that ¢, — 0. It follows.
from Theorem 1.3 of [4] (p. 237) that this problem has a non-negative.
solution »! which can be written in the form

N
wW(t,o) = Y [Tult,; 4,9) U, 4)dy

k=1 R,
By the Kolmogorov identity, we obtain
N
W(t,a) = D [ Tult, o5 4,9 frm(t,,y, 0, %) o(dz)| dy
f=1R,

f[ fz‘rjk(t @; by ¥) Ity 95 0, z)] (dz):

Ry, k=1

= [Iu(t,2; 0,2)0(de) = U'(t, @)
R,

for (¢, ®)e(t,, T,] X R,. Hence {U7} is a solution of (1).
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