On the representation of non-negative solutions of linear parabolic systems of partial differential equations

by J. Chabrowski (Katowice)

Abstract. This article is a continuation of the author's investigations author (Ann. Polon. Math. 19 (1967), p. 193-197, and 22 (1970), p. 323-331) showing that if $\{u^i(t,x)\}$ $(i=1,\ldots,N)$ is a non-negative solution of the parabolic system

$$\frac{\partial u^k}{\partial t} = \sum_{i=1}^n a_{ij}^k(t, x) u_{x_i x_j}^k + \sum_{i=1}^n b_i^k(t, x) u_{x_i}^k + \sum_{l=1}^N o_l^k(t, x) u^k$$

in $(0, T] \times R_n$, then there exist non-negative Borel measures $\{\gamma^j\}$ such that

$$u^{i}(t, x) = \int_{R_{m}} \sum_{j=1}^{N} \Gamma_{ij}(t, x; 0, y) \gamma^{j}(dy).$$

The purpose of this paper is to prove the uniqueness of the measures γ_1 . Subject classifications. Primary 35 65; Secondary 35 01. Key words and phrases. Representation theorems, fundamental solution.

Consider the system of equations

$$(1) L^{k}(u^{1}, ..., u^{N}) = \sum_{i,j=1}^{n} a_{ij}^{k}(t, x) u_{x_{i}x_{j}}^{k} + \sum_{i=1}^{n} b_{i}^{k}(t, x) u_{x_{i}}^{k} + \\ + \sum_{i=1}^{N} c_{i}^{k}(t, x) u^{i} - u_{t}^{k} = 0 (k = 1, ..., N),$$

where the coefficients a_{ij}^k , b_i^k and c_i^k are defined and bounded in a strip $(0, T] \times R_n$. We take $(a_{ij}^k(t, x))$ to be a symmetric matrix, i.e., $a_{ij}^k = a_{ji}^k$ for k = 1, ..., N.

Throughout this paper we shall assume that

- (a) a_{ij}^k , $\frac{\partial a_{ij}^k}{\partial x_i}$, $\frac{\partial^2 \hat{a}_{ij}^k}{\partial x_i \partial x_j}$, b_i^k , $\frac{\partial b_i^k}{\partial x_i}$ and c_i^k are Hölder-continuous with respect to (t, x) in $(0, T] \times R_n$;
- (b) there exists a positive constant α such that for any real vector $\xi \in R_n$

$$\sum_{i,j=1}^{n} a_{ij}^{k}(t,x) \, \xi_{i} \, \xi_{j} \geqslant a \, |\xi|^{2} \qquad (k = 1, \dots, N)$$

for all $(t, x) \in (0, T] \times R_n$;

(c) $c_i^k(t,x) \geqslant 0$ for all $(t,x) \in (0,T] \times R_n$ and $i \neq k$ (i, k = 1, ..., N).

Under assumptions (a) and (b), it is well known that there exists a fundamental matrix $\{\Gamma_{ij}(t,x;\tau,y)\}\ (i,j=1,\ldots,N)$ of functions defined for (t,x), $(\tau,y)\in(0,T]\times R_n$, $\tau< t$ (see [4], Chapter 9). It follows from (c) that $\Gamma_{ij}(t,x;\tau,y)\geqslant 0$ $(i,j=1,\ldots,N)$ for all (t,x), $(\tau,y)\in(0,T]\times R_n$, $(\tau< t)$ (see [2]).

In [3] it is shown that if $\{u^j(t,x)\}\ (j=1,\ldots,N)$ is a non-negative solution of (1) in $(0,T]\times R_n$, then there exist non-negative Borel measures y^j and a number $T_1>0$ such that

(2)
$$u^{i}(t,x) = \int_{R_{n}} \sum_{j=1}^{N} \Gamma_{ij}(t,x; 0,y) \gamma^{j}(dy) \quad (i = 1, ..., N)$$

for all $(t, x) \in (0, T_1] \times R_n$. The purpose of this paper is to prove the uniqueness of the measures γ^j . We also obtain a necessary and sufficient condition for a system of functions defined by a formula such as (2) to be a non-negative solution of (1).

We shall need the following lemma:

LEMMA. Let f(x) be a continuous and bounded function in R_n . Then

$$\lim_{t\to 0}\int\limits_{R_n} \Gamma_{ij}(t,x;\ 0\,,y)f(x)dx\,=\,\delta_{ij}f(y)\qquad (i,\ j=1,\ldots,N)\,.$$

Proof. Using the decomposition of Γ_{ii} , we get ([5], p. 252)

$$egin{align} arPsi_{ij}(t,\,x;\; au,\,y) &= Z_{ij}(t,\,x;\; au,\,y) + \sum_{j=1}^{N}\int\limits_{ au}^{t}d\sigma\int\limits_{R_{n}}Z_{ik}(t,\,x;\;\sigma,\,z)arPsi_{kj}(\sigma,\,z;\; au,\,y)\,dy \ &= Z_{ij}(t,\,x;\; au,\,y) + R_{ij}(t,\,x;\; au,\,y)\,, \end{split}$$

where

$$\begin{split} Z_{ij}(t,x;\;\tau,y) &= C_i(\tau,y) \exp\left\{-\frac{\sum\limits_{r,s=1}^n A^i_{rs}(\tau,y) (x_s-y_s) (x_r-y_r)}{4(t-\tau)}\right\} \delta_{ij}, \\ C_i(\tau,y) &= (2\sqrt{\pi})^n \{\det [A^i_{rs}(\tau,y)]\}^{\frac{1}{2}}, \end{split}$$

 $\{A_{rs}^{i}(\tau,y)\}\$ denotes the inverse matrix to $\{a_{rs}^{i}(\tau,y)\},\ \Phi_{kj}(\sigma,z;\tau,y)\ (k,j=1,\ldots,N)$ are continuous functions for $(\sigma,z),\ (\tau,y)\in[0,T]\times R_{n}\ (\sigma>\tau)$ such that

$$|\varPhi_{kj}(\sigma,z;\ \tau,y)| \leqslant C(\sigma-\tau)^{-(n+2-a)/2} \exp\left(-c\,\frac{|x-y|^2}{\sigma-\tau}\right),$$

where $\alpha \in (0, 1)$. It follows from the last inequality (for details see [5], p. 20)

$$\lim_{t\to 0} \int_{R_n} R_{ij}(t, x; 0, y) f(x) dx = 0 \quad (i, j = 1, ..., N).$$

It is clear that

$$\lim_{t\to 0}\int\limits_{R_n}\Gamma_{ii}(t,x;\ 0,y)f(x)dx=f(y)\qquad (i=1,\ldots,N).$$

THEOREM 1. If $\{u^i(t,x)\}\ (i=1,\ldots,N)$ is a non-negative solution of (1) in $(0,T]\times R_n$, then exist unique non-negative Borel measures $\{\gamma^j\}$ $(j=1,\ldots,N)$ such that formula (2) is satisfied.

Proof. The existence part of this theorem was proved in [3]. The uniqueness proof is similar to that of Aronson's [1]. Suppose that there are two systems of measures $\{\gamma_1^i\}$ and $\{\gamma_2^i\}$ $(j=1,\ldots,N)$, each giving a representation of $\{u^i\}$ in the form (2) and such that $\gamma_1^{j_0} = \gamma_2^{j_0}$ for certain j_0 . By Theorem 2.3 of [2], it follows that $\Gamma_{kk}(t,x;\tau,y)$ satisfies

$$\Gamma_k(t, x; \tau, y) \leqslant \Gamma_{kk}(t, x; \tau, y)$$

for (t, x), $(\tau, y) \in (0, T] \times R_n$ $(\tau < t)$, where Γ_k is a fundamental solution of the equation

$$\mathscr{L}v = \sum_{i,j=1}^{n} a_{ij}^{k}(t,x) v_{x_{i}x_{j}} + \sum_{i=1}^{n} b_{i}^{k}(t,x) v_{x_{i}} + c_{k}^{k}(t,x) v - v_{t} = 0.$$

It is known that there exist positive constants C_1 and C_2

$$C_1(t-\tau)^{-n/2}\exp\left\{-C_2\frac{|x-y|^2}{t-\tau}\right\}\leqslant \varGamma_k(t,x;\ \tau,y)$$

for (t, x), $(\tau, y) \in (0, T] \times R_n$ $(\tau < t)$ (see [1], Theorem 7). This estimate implies that there exist positive constants β and M such that

(3)
$$\int_{R_n} e^{-\beta |y|^2} \gamma_i^j(dy) \leqslant M (j = 1, ..., N, i = 1, 2).$$

Set $\sigma_1^j = \gamma_1^j - \gamma_2^j$. Then

(4)
$$0 = \int_{R_n} \sum_{j=1}^N \Gamma_{ij}(t, x; 0, y) \sigma^j(dy) = \int_{R_n} \sum_{j=1}^N \Gamma_{ij}(t, x; 0, y) e^{\beta |y|^2} \lambda^j(dy)$$

 $(i=1,\ldots,N)$ for all $(t,x) \in (0,T_1] \times R_n$, where

$$\lambda^{j}(E) = \int\limits_{E} e^{-eta|x|^{2}} \sigma^{j}(dx)$$

for all Borel subsets E of R_n . By the Hahn-Jordan decomposition theorem there are Borel sets A_j $(j=1,\ldots,N)$ such that $\lambda^j \geq 0$ on all Borel-measurable subsets of A_j and $\lambda^j \leq 0$ on all Borel-measurable subsets of $R_n - A_j = B_j$. Set $\lambda^j_+(E) = \lambda^j(E \cap A_j)$ and $\lambda^j_-(E) = -\lambda^j(E \cap B_j)$. It follows from (3) that $\lambda^j_+(R_n) < \infty$. Therefore the measures λ^j_+ and λ^j_- are regular. Since $\sigma^{j_0} \not\equiv 0$, we can assume that $\lambda^j_+(A_0) = a > 0$. We will show that

this leads to a contradiction. By the regularity of $\lambda_+^{i_0}$ and $\lambda_-^{i_0}$, there exist a compact set $K \subset A_{j_0}$ such that $\lambda_+^{i_0}(K) > \frac{3}{4}a$ and a bounded open set $E \supset K$ such that $\lambda_0^{i_0}(E-K) < a/4$. Let $\varphi = \varphi(x)$ be a continuous function in R_n with $\varphi(x) = 1$ on K and $\varphi(x) = 0$ on $R_n - E$ and $0 \leqslant \varphi(x) \leqslant 1$. Introduce the functions

$$v_{ij}(t, y) = \int\limits_{R_n} \Gamma_{ij}(t, x; \mathbf{0}, y) \varphi(x) e^{-\beta |x|^2} dx.$$

From the lemma it follows that

$$\lim_{t\to 0} v_{ij}(t,y) = \varphi(y)e^{-\beta|y|^2} \quad \text{for } i=j$$

and

$$\lim_{t\to 0} v_{ij}(t, y) = 0 \quad \text{ for } i \neq j.$$

It is well known that

$$\Gamma_{ij}(t, x; \tau, y) \leqslant C_3(t-\tau)^{-n/2} \exp\left\{-C_4 \frac{|x-y|^2}{t-\tau}\right\}$$

for (t, x), $(\tau, y) \in (0, T] \times R_n$ $(\tau < t)$, where C_3 and C_4 are positive constants. Hence, if $\overline{E} \subset \{x; |x| \le r\}$, then there exists C_5 and T_2 such that

$$0 \leqslant e^{\beta |y|^2} v_{ij}(t, y) \leqslant C_5 e^{\beta r^2}$$

for $0 < t < T_2$. It follows from (3) and (5) that

Therefore v_{ij} is integrable with respect to σ^{j} for each $t \in (0, T_2)$ and

$$\int\limits_{R_{n}} v_{ij}(t,\,y)\,\sigma^{j}(dy) \, = \int\limits_{R_{n}} e^{\beta |y|^{2}} v_{ij}(t,\,y)\,\lambda^{j}(dy)\,.$$

Since $|\lambda^{j}|(R_{n}) < \infty$, applying the dominated convergence theorem we get

(7)
$$\lim_{t\to 0} \int_{R_n} v_{j_0j_0}(t,y) \, \sigma^{j_0}(dy) = \lambda^{j_0}(K) + \int_{E-K} \varphi \lambda_+^{j_0}(dy) - \int_{E-K} \varphi \lambda_-^{j_0}(dy) > \frac{3}{4} a - a/4 = a/2 > 0$$

and

(8)
$$\lim_{t\to 0} \int_{R_n} v_{ij}(t,y) \, \sigma^j(dy) = 0 \quad \text{for } i\neq j.$$

In view of (6), for each $t \in (0, T_2)$ we have

$$\begin{split} \int\limits_{R_n} v_{j_0 i}(t, y) \, \sigma^i(dy) &= \int\limits_{R_n} \Big[\int\limits_{R_n} \varGamma_{j_0 i}(t, x; \ 0, y) \varphi(x) e^{-\beta |x|^2} dx \Big] \sigma^i(dy) \\ &= \int\limits_{R_n} \Big[\int\limits_{R_n} \varGamma_{j_0 i}(t, x; \ 0, y) \, \sigma^i(dy) \Big] \varphi(x) e^{-\beta |x|^2} dx. \end{split}$$

Summing over i, we conclude that

$$\sum_{i=1}^{N} \int_{R_{n}} v_{j_{0}i}(t, y) \sigma^{i}(dy) = \int_{R_{n}} \left[\int_{R_{n}} \sum_{i=1}^{N} \Gamma_{j_{0}i}(t, x; 0, y) \sigma^{i}(dy) \right] \varphi(x) e^{-\beta |x|^{2}} dx = 0$$
 and

$$\lim_{t\to 0} \sum_{j=1}^{N} \int_{R_n} v_{I_0i}(t, y) \, \sigma^i(dy) \, = 0$$

in contradiction to (7) and (8).

THEOREM 2. Let

$$U^{j}(t, x) = \int\limits_{R_{n}} \Gamma_{ji}(t, x; 0, y) \varrho(dy) \quad (j = 1, ..., N),$$

where e is a non-negative Borel measure.

Then U^i is a non-negative solution of (1) in $(0, T_1] \times R_n$ if and only if

for $t \in (0, T_1]$, where μ is a non-negative number.

Proof. If $\{U^j\}$ is a non-negative solution of (1) in $(0, T_1] \times R_n$, then it follows from the maximum principle that U^j satisfies (9) (for details see [3]).

To prove the converse, consider the Cauchy problem

$$egin{align} L^k(u^{f 1}, \, \ldots, \, u^N) &= 0 & ext{ for } (t, \, x) \, \epsilon \, (t_{f r} \, , \, T_{f 1}] \, imes R_n \, , \ u^j(t_{f r} \, , \, x) &= U^j(t_{f r} \, , \, x) & ext{ for } x \, \epsilon \, R_n \, \, (j \, = \, 1 \, , \, \ldots, \, N) \, , \ \end{array}$$

where $\{t_r\}$ is a sequence of points in $(0, T_1)$ such that $t_r \to 0$. It follows from Theorem 1.3 of [4] (p. 237) that this problem has a non-negative solution u^f which can be written in the form

$$u^{j}(t,x) = \sum_{k=1}^{N} \int_{R_{2k}} \Gamma_{jk}(t,x; t_{\nu}, y) U^{k}(t_{\nu}, y) dy.$$

By the Kolmogorov identity, we obtain

$$egin{aligned} u^{j}(t,x) &= \sum_{k=1}^{N} \int\limits_{R_{n}} \Gamma_{jk}(t,x;\ t_{r},y) \Big[\int\limits_{R_{n}} \Gamma_{ki}(t_{r},y;\ 0\,,z) \, arrho(dz) \Big] dy \ &= \int\limits_{R_{n}} \Big[\int\limits_{R_{n}} \sum_{k=1}^{N} \Gamma_{jk}(t\,,x;\ t_{r},y) \, \Gamma_{ki}(t_{r},y;\ 0\,,z) \Big] \, arrho(dz), \ &= \int\limits_{R_{n}} \Gamma_{ji}(t\,,x;\ 0\,,z) \, arrho(dz) \, = \, U^{j}(t\,,x) \end{aligned}$$

for $(t, x) \in (t_r, T_1] \times R_n$. Hence $\{U^j\}$ is a solution of (1).

References

- [1] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa 22 (1968), p. 607-694.
- [2] J. Chabrowski, Les solutions non négatives d'un système parabolique d'équations, Ann. Polon. Math. 19 (1967), p. 193-197.
- [3] Les propriétés des solutions non négatives d'un système parabolique d'équations, ibidem 22 (1970), p. 323-331.
- [4] S. D. Eidelman, Parabolio systems, Nauka, Moscow 1964 (Russian)
- [5] A. Friedman, Partial differential equations of parabolic type, Englewood Cliffs, 1964.

Reçu par la Rédaction le 30. 1. 1971