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1. Introduction

This paper gives a survey on results obtained in the joint works with W.
Sickel [26]-[29] (cf. also W. Sickel [34], [35] and [30, Chapter 3]. We are
concerned with the following problems. Let f be a 2n-periodic function and
let |\M, f12, with M, f(x) = f(x) (v = c0) be an approximation process. We
measure the rate of convergence of M, f(x) = f(x) (v = o) by

(1) Y v S (=M, f ()L, < o,
v=1
® 2j+1.4
2) Y 24277 Y 1f =M, S ) "IL| < o,
j=0 v=2J
3) I z v £ (x) =M, £ (19) L] < oo.

Here 0 <s <00, 0 <u< o0, 0<g< 0, 0 <p< . ||/|L,| stands for the
usual L,-norm on the n-torus, 0 <p< oo. If g =0 we have to replace
Zvv“(.. ) b/y sup,(...) in (1) and (3). If u = co in (2) the modification for
277% (..)*) " is sup,|...|. We are interested in equivalent characterizations
of (1)«3) for concrete approximation processes in terms of periodic function
spaces. Many special and general results are known concerning (1) and many
authors have dealt with this problem (at least if 1 < p< o0 and 1 < g < o).
Let us refer to the investigations by A. Zygmund [47], S. M. Nikol'skii [22,
Chapter 8], P. L. Butzer, H. Berens [5], P. L. Butzer, R. J. Nessel [6]. H. S.
Shapiro [32, 33], J. Lofstr6m [19, 20], J. Boman, H. S. Shapiro [4], W.
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Trebels [39], J. Bergh, J. Lofstrom [2, Chapter 7], J. Peetre [25, Chapter 8],
J. Boman [3], and H. Triebel [44, 2.5.3]. Thus it is well known that for
certain approximation processes (1) with 1 < p< 0,0<g< 0,0<s<o0is
satisfied if and only if f belongs to the periodic Besov (Nikol'skii, Lipschitz)
space Bj,, (cf. Section 2 for the delnition). Here ¢ corresponds to the
saturation order of the approximation process under consideration. As we
shall see later (cf. Section 5). problems (2) and (3) are related to the so-called
strong approximation by Fourier series (or strong summability) due to G.
Alexits, D. Kralik [1] (at least in the case p= x). For the historical
background and an extensive treatment including references see the recent
book by L. Leindler [15]. It turns out that (2) corresponds to the Besov
spaces, oo, whereas (3) leads to a different class of function spaces, the so-
called Lizorkin-Triebel spaces F),, generalizing the usual Sobolev spaces (cf.
Section 2 for the definition). These spaces are due to P. I. Lizorkin [17], [18]
and H. Triebel [40] and have been studied extensively in the last years. We
refer to the book by H. Triebel [44] (non-periodic spaces) and to [30,
Chapter 3] (periodic spaces). In this paper we restrict ourselves to the
periodic case. Of course, at least (1) and (3) have non-periodic counterparts.
From the point of view of the theory of function spaces we look for
equivalent characterizations of the two scales of spaces B,, and F},, 0

p< 2,0 ¢g<ac,0<s < o, via approximation. There are several other
types of equivalent descriptions or representations, e.g. via the decomposition
method (cf. 2.1), via derivatives and differences (cf. 2.2), via temperatures and
harmonic functions, via maximal functions, via interpolation or via atomics
and molecules. More information concerning the spaces can be found, for
example, in S. M. Nikol'skii [22], M. H. Taibleson [38], E. M. Stein [36], J.
Bergh. J. Lofstrom [2], J. Peetre [25], H. Triebel [42], [44], [45]. and [30,
Chapter 3]. In particular, the theory of the spaces B}, and F), could be
extended to values 0 < p< 1 and 0 < ¢ < 1 in a natural way using tools of
Fourier analysis, such as maximal inequalities and inequalities of Plancherel-
Polya—Nikol'skii type. This is due to J. Peetre [24], [25]. A systematic theory
has been developed by H. Triebel, cf. [44]. We are interested in characteriza-
tions of the spaces by means of differences and derivatives on the one-side,
thus classifying functions according to their smoothness properties, and
characterizations of type (1)«3) on the other side. We consider approxima-
tion processes of type

Ky,
(4) M‘,j'=M"’.’f=Znﬂ(;)f(k)e"‘", v=1,2,...,
ki Z,

where Y is an appropriate function defined on the euclidean n-space R, with
w() =1. Z, denotes the set of all points k =(k,,..., k,) with integer
components. ,f(k) is the kth Fourier coeflicient and kx =k, x,+ ... +k,x,.
Examples are approximation by partial sums or certain means such as de la
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Vallee- Poussin, Fcjer, Riesz or Abel-Poisson means. We shall establish
sufficient conditions concerning ¥ implying direct and inverse approximation
theorcms (and hence also equivalence theorems) for the problems (1) (3) in
the language of the spaces B, and Fj . These gencral results have the
following consequences:

(i) We are able to give a unified approach to the approximation of
functions via classical means in the sense of (1) {3) including the cases 0 p
<l and 0 - ¢ < 1.

(i) We extend the well-known results concerning (1) to values p - |

(ili) We can show that it is quite natural to deal with the problem of
strong approximation (summability) within the framework of the spaces B},
and F,. In particular, this reveals the signilicance of the spaces F), in
approximation theory.

Detailed proofs can be found in [26]-[29] (for partial results see also W.
Sickel [34], [35] and [30, Chapter 3]). To derive our results we use methods
of Fourier analysis related to those ones used by H. S. Shapiro [31}-[33], P.
L. Butzer, R. J. Nesse! [6], J. Lofstrom [19], [20], J. Boman, H. S. Shapiro
[4], J. Peetre [25, Chapter 8], J. Boman [3], and, in particular, by H. Triebel
[437-[45]), where we can flind the key to deal with the full range of
parameters 0 < p< x, 0 < ¢g< x. Let us mention that for this latter
purpose we essentially need the vector-valued maximal inequality for the
Hardy- Littlewood maximal function by C. Fefferman. E. M. Stein [97 as well
as the extension of Nikol'skii’s inequality for entire analytic functions to
values less than 1, c¢f. R. J. Nessel, G. Wilmes [21] or H. Triebel [41].

The paper is organized as follows. In Section 2 we define the periodic
spaces B),, and Fj, as decomposition spaces, describe special cases and
embeddings, and give characterizations via differences and derivatives. Sec-
tion 3 and Section 4 deal with general direct and inverse approximation
theorems in the above sense, respectively. The problem of strong summability
of Fourier series is treated in Section 5. Here our general results are applied
to partial sums of Fourier series. The final Section 6 is devoted to the
characterization of the spaces B}, and F’, , in the sense of (1)-(3) via classical
means. i.e. via de la Vallée-Poussin, Riesz. and Abel Poisson means.

This survey is based on lectures given at the Stefan Banach International
Mathematical Centre in Warsaw in April 1986. We take the opportunity to
thank our colleagues for their great hospitality.

2. Periodic function spaces of Besov-Sobolev type
2.1. Definitions

Let us fix some notation which will be used throughout the sequel. By Z,.
T.. R, we denote the set of all lattice-points, the n-dimensional torus, and the
Euclidean n-space, respectively. Their generic points are denoted by &
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=(ky, ..., k)€Z, and x =(x,, ..., X,) €ER,. As usually T, is represented by
T,= x| xeR,, —n<x;<m j=1,..., n}, where opposite sides are identi-
fied. S(R,) and S'(R,) mean the Schwartz space of all rapidly decreasing
functions on R, and its dual the space of tempered distributions, respectively.
D(T,) and D’(T,) stand for the infinitely differentiable functions on T, and its
dual space the distributions on 7,. $'(R,) and D'(T;) are equipped with the
weak topologies. If f €S’(R,) then Ff and F~!f denote the Fourier transform
of f and its inverse, respectively. If ¢ €S(R,) then
(Fo)() =2m~"2 | f(x)e™*™dx, yeR,.
R

Here xy =x, v{+ ... +x,y.. dx Lebesgue measure. Furthermore we use
(5) fy=@n "fe™), keZ,

being the Fourier coefficients of f e D’(T,). Via the representation of f €D’(T,)
as its Fourier series
f=3 foge

keZ,
we identify D’(T,) with the subspace S;(R,) < S'(R,) of 2r-periodic tempered
distributions, cf. [30, Chapter 3] or R. E. Edwards [8, Chapter 12]. C and
L,, 0 < p < oo, denote the spaces of continuous an p-integrable (with respect
to the Lebesgue measure) complex-valued functions on T,, respectively. They
are endowed with the (quasi-) norms

1 1€l = max1f (3,
6) IFILI = (f1f(IPdx)"?, 0 <p<oo,
. T,
1S 1Loll = ess-suplf (9.

Furthermore, L,(R,) and ||f|L,(R,)| (0 <p < o) are used for the obvious
non-periodic counterparts. Finally, f *g means the convolution of f €S’(R,)
and g €S’(R,), whenever it exists. For example,

) g*f)x) = [ g f(x=—ydy
R

if geL,;(R,) and feL,, 1.<p< oo (identity in L, = L,(T)).
Let @ be the class of systems |¢;(y)|2o < S(R,) with the following
properties:
o =027 y); j=12,..,

supp o <yl Iyl <2},

(8)
suppe < 1y 1/2< |yl <2},

Y oj(y) =1 for all yeR,.
i=0
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If feS'(R) and {g;}2,€P then we put
9 J;0) = (F~ (@, FN)(x) = 2m)~"2((F~ ! @) * ) (x);

j=0,1,... (9 makes sense. Because of the famous Paley-Wiener-Schwartz
theorem f;(x) is an entire analytic function of exponential type. If f €D’'(T})
(= Sx(R,) then (9) can be reformulated by

©) (0 =Y o;k 7K e*

keZ,

and f;(x) is a trigonometric polynomial. We have

(10) f= i fij(x)  (convergence in §'(R,)(D'(T))).
j=0

DeriNITION. Let 0 <p< 0, 0 <g< 0, —0 <s <oo. Let {g;}2,€P.
() We put

B, = | €D (T)If 1By ll° = (T 2#IGMILY" < 0},
j=0
(11)

(ii) If additionally p < c0 we put

F;, q

1S €D (TLIS 134" = (X 215001 IL]| < o,
(12) e
Frw=f1f€D(T),IIfI1Fpall* =1 sup 271 f; (Ll < o0}
j=0.1,...

Remark 1. The spaces B;, are called periodic Besov (Lipschitz) spaces
and the spaces F,, are referred to as periodic Lizorkin-Triebel spaces. For
historical remarks we refer to H. Triebel [44] and to [30, Chapter 3]. We
defined them by the so-called decomposition method. Indeed, (10) yields a
decomposition of f in a series of trigonometric polynomials according to an
underlying (dyadic) smooth partition of unity. Its convergence is measured by
(11) and (12). For more information concerning the background of this
construction principle we refer to H. Triebel [44, 2.2] or J. Peetre [25,
Chapter 1]. The spaces B}, and F} , are quasi-Banach spaces (Banach spaces
if min(p, ) > 1). They are independent of the choice of {¢;}2,€® (equival-
ent quasi-norms). For a systematic study we refer to [30, Chapter 3] (cf. also
W. Sickel [34], [35)).

Remark 2. It is obvious how to define the non-periodic counterparts.
We obtain B, ,(R,) and F; . (R,) by replacing D'(T,) by S'(R,) and L, by
L,(R,), respectively, in (11) and (12). In its full generality the spaces on R, are
extensively studied in H. Triebel [44]. We should emphasize that our
considerations concerning the periodic case are based on this model case.
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Remark 3. In general, B}, , and F;, - arc spaces of periodic distributions.
They can be identified with function spaces if s is sufficiently large. For

example, we have

(13) By, L, Ly, Fy, = 1, 1,

P-4

if 0 p< 7,0 ¢g< », and s > max(0, n(l/p—1D) (p- » in the case of
the F-spaces). For further embeddings we refer to Section 2.3.

Remark 4. Let us consider problem (1) for means MY [ of type (4). Its
“dyadic™ version reads as

(¥ 24| L (1=p27k fRe L))" < =
=0 k. 7,

Having in mind (9), (9) this corresponds formally to the definition of the
spaces Bj,, in (11) with 1—y instead of ¢. Given a function y we ask
whether such a replacement leads to an equivalent representation of B} , for
some values p, ¢, and s. Roughly speaking this is our approach to approxi-
mation theorems (cf. also J. Peetre [25, Chapter 8] and H. Triebel [44], [45].
Analogously we deal with problems (2) and (3). Thus it is our task to lind
criterions concerning ¥ (or 1 —y) implying equivalent representations in the

above sense.

2.2. Characterizations by means of differences and derivatives, special cases

Let x = (x,, ...,2, be a multi-index of non-negative integers. If f €D’ (T,) we
denote by

Hal
Df = —— f

oxyt.LL e
the distributional derivative of f of order x (|2 =a,+ ... +2,).

ProPosITION 1. Let 0 <p< 0,0<g< 00, —00 <s<00. Let m=1, ...
(1) We have
(14) B,,= feD(T) D’feB} ", 0< |2 < m!.

rq °

() If additionally p < % then
(15) F,,= feD(T) D*feF, ", 0< |x| <m!.

For the proof we refer to [30, Chapter 3] and its non-periodic counter-
part in H. Triebel [44, Theorem 2.38].
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ProposiTioN 2. Let 1 <p < x.
(i) We have
(]6) F(;'z = Lp.
) Ifm=1,2,...and —ox <s < x then
2= D°f€L,, 0<|af <m),

ta=feD(T) ¥ (1+ k2 f(ke*=eL,).

keZ,

)

For the proof we refer to [30, 3.5.4]. (16) is the well-known Littlewood-
Paley theorem. (17) follows from (15) with s =m and (16). We put F},
=W, m=1,2, ... (periodic Sobolev spaces) and F} , = Hj}, (periodic Liou-
ville or Bessel-potential spaces).

Let f be a function delined on R,. We put

A4, f(x) = f(x+h)—f(x), (x,heR,),
A:'.,.('\-’ = Ah(Az’_ I f)('\.)9 I = I’ 21 sy
o', ), =suplldy f(IL, O0-p<=,0<r<1.

1h| <1t

ProposiTioN 3. Let 0 <p< 0, 0<g<ow. Let m=0,1,...,1=1,2,..
such that 1 >s—m > max (0. n(1/p—1)). Then,

(18) By,= {f €L} If1Bsqllm)

- 5 i ¥ (

|2} <m 2| <m

dh \'/4
| Ihl"“"""'lldf.D‘flL,,II"W> < 00},
T, )

(19) Bp,= %fGL,,I 1S 1B5.qll

~ 3 wriLi+ T

laj €m laj < m

1 de \'e
[t=e"mawl(, D’f)‘,‘,—r—) <

0

(modiﬁcéztion if ¢ = oo). All quasi-norms || f |B';,,q||$:;{,, i =1, 2, are equivalent to
each other.

For the proof we refer to the non-periodic counterpart in H. Triebel [44.
Theorem 2.5.12 and Remarks 2.5.12/2, 3] (or in H. Triebel [45]) and the
methods developed in [30, Chapter 37]. (18) and (19) show that the spaces
B,, with 1<p< x. 1<g<x. and 0 <s < coincide with the (now-
adays classical) Besov (Nikol'skii if ¢ = oc, Hélder (Lipschitz)}-Zygmund if
P = ¢ = ) spaces.

Prorositioxn 4. et O p 2, 0 ¢g< 7.,
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(i) Le¢t m=0,1,.., =1, 2,... such that

[ >s—m>max (0, n(—,—l——l)).
min(p, q)
Then

200 |IfIF5 IRk = Y ID*fIL,I

lal €m

+ X

laj €m

1 1/q
(It“"""( f lA.b.D*f(x)ldh)'?) IL,

0 |h €1

is an equivalent quasi-norm in F;,, (modified if @ = ).
(i) Le m=0,1,...,1=1,2,... such that | > s—m > 1/min(p, q). Then

@) fIF IR =} ID*fIL,H

la| €m

+ )

laj €m

dh '
(Tj Ihl"""""IALD’f(x)I“IhI,.> |L,

is an equivalent quasi-norm in F; , (modified if q = ).

For the proof we refer again to the non-periodic counterpart in H.
Triebel [44, Corollary 2.5.11 and Theorem 2.5.10] (or in H. Triebel [45]) and
the methods developed in [30, Chapter 3]. The proposition shows that the
spaces F, , can also be characterized via differences (ball means of differences
in (20)) and derivatives if q # 2 and/or p <1. We also refer to G. A.
Kalyabin [11].

Remark 5. As already mentioned the above assertions have non-periodic
counterparts. The necessary modifications are obvious.

2.3. Embeddings

Obviously we have B;,=F;, —o <s<o, 0<p<oo. With this

trivial exception the spaces B} , and F:,‘Ml are always different. Also the

P0O40
spaces B0, (Fpm,) and By, (F, ) are different for different triplets

P1-491 P1-41
(So» Pos> 90) and (sy, py, q1)- Thils can be proved analogously to H. Triebel [44,
2.3.9]. Thus embeddings between these spaces are of peculiar interest. For
illustration let us mention few of them (cf. also Remark 3). Proofs can be

found in [30, Chapter 3].
If0<p<x,0<g<oo,and —o0 <s <o then

S S S
(22) Bp,min(p.q) < Fp.q < Bp,max(p.q)'

If 1 <p<oo then
(23 By, cL,cB;,.
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Moreover,

(24) B%,<cCcB’ ..
If0<p<o, 0<g< o and 0 <s < o0, then

(25) By}"? c B, o

and (if p < o0)

(26) F'MP c B, .

Let us note that the spaces
C"=1{f|I D°feC,0< ol <m} and W ={f|D°feL,,0<|al<m},

m=0,1, ..., are not contained in the two scales B}, and F;, as special
cases. Furthermore, the space

Lipl = {f| feC, S\:plhl'1 14, f ()| Cl| < 0}

is not included. We have the strict embeddings
2n B!, , = C' cLipl c By, .

3. Direct approximation theorems

3.1. Direct results for F;

Let feD'(T,) and let y =y (&) eL (R, be defined for all £ eR,, with ¥ (0)
= 1. We introduce the means

(28) Mfx=Y .p(%)f‘(k)d**, y=1,2,...
keZ,

This makes sense at least in D'(T,). If y has compact support then the MY f
are trigonometric polynomials, otherwise periodic functions (distributions). In
this section we assume that

9 F 'y eL,(R).
Then (28) can be reformulated as
MUf(x)=c((F 'y ")*f)x

(cf. (7) for feL,, 1 <p < o). Clearly, M¥ f - f in D'(T,).
Let h(¢)eS(R,) and H(¢)eS(R,) be functions satisfying

h©=1 if g <1,
supph < {¢] 1§ < 2},
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HQ =1 if12<¢<2,
suppH < i¢] 1/4 <[] < 4.

THeOREM 1 ([28, Theorem 11]). Let y be defined on R, such rhar'w(O) =1
and F~ 'Yy eL,(R,). Let ¢ >0 and 7 > n such that

(30) |F=1 (& (1 = V)| < e+~

and

31 sup  |F Yy QOHEO)W| e T+ *
I=-L-L+1...

for all y €R, and natural numbers L with positive constants ¢, ¢;, independent of
vlfnjr.o po w,nfr.- g< x, and 0 < s < 6 then there exists a positive
constant ¢ such that

(32) I vt ()= MY LRI ™I L|| < cllf 1Pl

v=1

Jor all f€F,, ~L, (modified if ¢ =oc by supv*|...|).

Remark 6. Let us discuss the conditions (30) and (31). If (30) is satistied
for some « > n then the function on the left-hand side belongs to L, (R,) and
hence |x|”“(1 —y(x)) is continuous in a neighbourhood of 0. Consequently,

1=y (x)=0(x°) (x| =0

is a necessary condition to apply our theorem. Moreover, if 1 —y(x) x |x|"°
then o, corresponds to the saturation order of the approximation process
‘MY, in L, (1 <p< o), cf. P. L. Butzer, R. J. Nessel [6, 12.4]. This shows
that we cannot expect (33) for s > a,. Note that we are not able to deal with
the case s = g, by our methods. Conditions (30) and (31) can be replaced by

(30) 117 (1 =¥ () h() eBi . (R,)
and \
(31 sup (W' HE) B (R < x,

I=-L~-L+1,...

respectively, where B} , (R,) denotes the non-periodic Besov space. (30), (31),
(30r), (31") stand for regularity conditions of the involved functions. The larger
the number / the larger the admissible range of parameters p and g.
Moreover, (31) and (31') are satislied if ¢ is infinitely differentiable in R,— 0!
and

(31") sup |x|*|D*y (x)| < ¢; < ©
Ix| 2

for all &, |af <A+1 and all §,6 > 0. If the generating function Y has
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additionally compact support then
(33) WF~ ) () < c(1+]y)~*
implies (31) (and F~ 'y eL,(R,). If y(£) =1 in a neighbourhood of 0 then

(33) implies also (30) for all ¢ > 0. Moreover, (33) is satisfied if Y €B1{*:(R,)
for some ¢ > 0.

3.2. Direct results for B},

Turorev 2 ([28, Theorem 3)). Ler W (E) be a function satisfying the
assumptions of Theorem 1 with real numbers ¢ >0 and 7 > n.

W Ifnfz - p< 72,0 g< 7.,and O < s < a then there exists a positive
constam ¢ such that

(34) (S v U f =M LILIE) " < ellf 1Bl

(modified if ¢ = = by supv*||...|) holds for all f €B; , ~L,. Moreover,

35 (T2 sup IS=MELILAN < cllFIB)

=0 v=2,..20 1

holds for all feB},, L,.

Remark 7. Of course (34) is a trivial consequence of (35). Furthermore,
let us note that

2+ 1
36 |27 X 1f =MoL
\-=2j

< sup ()= MY f ()| L,l

fO-u<<p< x.

Remark 8. Assertions of type (34) (with less restrictive assumptions
concerning ) are well known for 1 < p< o, 0 < ¢ < x. We refer to the
literaturg mentioned in the introduction. However, one of our main goals is
the extension to values p <1 (cf. also J. Peetre [25], p. 258). This requires
the stronger conditions (30) and (31).

4. Inverse approximation theorems

4.1. Inverse results for F; ,

THeorem 3 ([27, Theorem 1], [28, Theorem 2]). Ler y (&) be defined on
R,. continuous at the point 0 and let Y (0) = 1.
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(i) Let suppy be compact and let Y be infinitely differentiable in a
neighbourhood of 0, except at the point 0 itself. If 0 <p < o0, 0 <q < o0,
0 <s < o0 then there exists a positive constant ¢ such that

GD IR < eI ILI+(E v 1S (= MY S o) 1L )

holds for all feL,nP'(T,).

(i) Let F-*y eL,(R,) and let (31) be satisfied for some number A > n.
Let y be infinitely differentiable in R,— {0} and let d be a natural number such
that

WE/d—-y @I #0 if 1<il<2.

If Wi<p<oo, nfA<q< oo and max(0, n(l/min(p, g)—1)) <s < oo then
(37) holds true for all f €F;,.

Remark 9. If 1 <p <o and 1 <gq < oo then assumption (31) can be
omitted in part (ii). Then (37) holds true for all 1 <p<o00,1 <g< 0,0<s
<o and all feL,nD’(T) with finite right-hand side (cf. [28, Remark 6)).

4.2. Inverse results for B},

THEOREM 4 ([27, Theorem 2] and [28, Theorem 4]).

(i) Let Y be a function satisfying the assumptions of part (i) of Theorem 3.
If0<p< 0, 0<g< o0, 0<s <o then there exists a positive constant ¢
such that

(38) 1Bl < (I ILI+( T v~ I f (=M £ (ILI9))
v=1
holds for all feL,nD’(T,). Furthermore,
39) If1Bll
® 2J+1 q
<eliLi+(x 2l ¥ 1 ()= MY £ O L))
j=0 v=2

for all 0 <u < oo (modified if q = ).

(ii) Let ¥ be a function satisfying the assumptions of part (ii) of Theorem
3.Ifn/A<p< o, 0<q< 0, and n(1/min(1, p)—1) <s < co then (38) holds
Jor all feB,,. If /A <p< 0, 0 <q< 0, 0<u<o, and n(l/min(1, p, u)
—1) <s <o then (39) holds for all f €B:,, (modified if q = o).

Of our special interest are estimates of type (38) and (39) in the case of p
= . The following corollary is an immediate consequence of (39).

CoRrOLLARY. Let Y be a function satisfying the assumptions of part (i) of
Theorem 3. If 0 <q < 0, 0 <5 < 00, then there exist positive constants ¢ and
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¢’ such that
. .2j+1_1 1/
0) ||If1B%, oll < c(lIf |Lll+ .S;IF 2277 Y 1f =M f (%19 "IL,||)
Jj=0,1,... v=2J

<AL+ E 1179~ MY £ L),

Remark 10. Besides the regularity conditions the Tauberian conditions
“¥ (&) >0 in a neighbourhood of 0” in part (i) and “|y (¢/d)—y (&) # O for
1/2 < |é| < 27 in part (ii) of Theorems 3 and 4 are crucial assumptions in our
proofs. For the use of Tauberian conditions in this sense we refer to H. S.
Shapiro [31], J. Peetre [25, Chapter 1] and H. Triebel [43], [45].

Remark 11. For an improvement of the last part of (40) in the case
1 <q <o we refer to W. Sickel [35, Theorem 7] (cf. [30, Theorem 3.7.3/2]).
5. Approximation and strong summability by partial sums

5.1. Equivalence theorems
Let feD'(T,). We put

(41) =Y ... Y fie, v=1,2,..,
eyl <v Iyl <v
42 S$f@=Y fle= v=1,2,..
lk] <v

Clearly, S2 f and S2 f denote partial sums of the Fourier series of f with
respect to summation on cubes and balls. Choosing ¥ in (28) as the
characteristic function of the open cube Q = {x| |x;| <1,i=1, ..., n} or the
unit ball B = {x| |x| <1} we obtain S2 f and S2 f as special cases, respective-
ly. Unfortunately, the direct results of Section 3 can not be applied, because
F~1y does not belong to L, (R,). However, the assumptions of parts (i) of
Theorems 3 and 4 are satisfied. Hence the inverse statements (37)+40) hold
true for S2 and S2. Moreover, using the Fourier multiplier properties of
characteristic functions on cubes we can prove direct results for 1 < p < oo,
0 <s < o. We have the following

THeEOREM 5 ([26] or [30, Theorem 3.7.1]). Let 1 <p <o and 0<s
< o0,

() If 0 <q < co, then
43 SeBp =S ILI+H(E v IS (=SS ILIY " < o0
v=1

23 — Banach Center t. 22
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() If 1 <4 < x, then
@4 feF =IfILI+[(T v 1 () =52 £ (19| L,|| < co.
v=1

Furthermore, the right-hand sides of (43) and (44) are equivalent (quasi-)

and F3, ., respectively.

erarc 4 s
norms in B P.q>

P-4

5.2. Strong approximation (summability)

Now, we are concerned with the one-dimensional case and with the case
p=x. Weput S,f=82f=S52f Let feL,, 0 <P, u <oo. We introduce
the so-called strong means

(45) ha(fs By w, ):= (078 Y VHIS, £ (0 —f (919"
v=1

Strong approximation deals with the rate of convergence of
h,(f, B, u,x) >0 if n—oo.

For the historical background we refer to the book by L. Leindler [15].
Obviously,

l8a(f, B, u, X)|Loll = O (n™?")

is equivalent to
(X =18, f~f (1) ™ L) < o0
v=1

This justifies to call (3) a problem of strong approximation (summability). In
particular, (44) can be considered as an equivalence theorem concerning
strong summability in the L,-norm, 1 <p < . In the case p = o0 we are
able to establish the following results.

Tueorem 6 ([27, Theorem 5 and Corollary 4]). Let 0 <u < o0, 0 <5’
<7, and let feL (T,).
(W) If 0 <gq < xc, then

(46) f€eB, (Th)
2j+l;1

Y-S NEM ML) <.

v=2J

<|If ILo(TI+( Y 24|27
j=0
() If ¢ = x, then
(47)  feB% o(Ty)

2J+1

¢Lvllfle(Tl)IH_=s(:1!> 2927 L =S NI Lo (T < .

v=2J
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Remark 12. The theorem is due to L. Leindler [12, Lemma 6] (cf. also
[14, Lemma 1]). The inverse parts in (46) and (47) are also consequences of
the Corollary and (39). They hold true in the higher dimensional case, too.

Remark 13. Let us add few remarks on relations to classical results. As
a consequence of (47) we obtain (after. some calculation)

(48) lha(f, B, u, )| L (Tl = O(n™*) = f B, . (T))
if 0 <s <ffu, 0 <u <o, 0 <B <oo. Furthermore, (47) implies
(49) IBa(f, B, t, )| Lo (Tl = O (n™P¥) = f € B (Ty).

These are well-known statements which can be found in L. Leindler [15]. The
converse of (49) is not true (L. Leindler [13]). However, (46) with g = u and s
= B/u shows

(50) S €BYE(T) = |Iha(fs B, u, X) | Lo (Tl = O(n~#1).

It is proved in W. Sickel [35, Theorem 7] (cf. also [30, Theorem 3.7.3/2])
that (49) can be improved if u > 1. Namely, we have

(1) Wha(f, B, u, X)| Lo (T = O(n™PM) = f e FEl,(T)).
Here F%,(T) stands for the dual space of Fi%“(T;), 1/u+1/u =1. Note that
(52) Bf(Ty) = Fii(T) < BE(T)),

cf. [30, Theorem 3.5.6] and the embedding (22). If we choose ¢ = 1 in (46)
then we obtain

o 2it1-g
53 X X S-S NN (T|| < o0 <= f B, (Ty)
j=0 v= 2j
for all u, 0 <u < oo, and s, 0 <s < o0. Having in mind the embeddings (27)
and Proposition 1 this is an improvement of L. Leindler [12, Theorem 5] (cf.
also L. Leindler [14, Theorem A]). Finally, let us mention that the above

inverse results ((49), (51), and “=" in (48) and (53)) carry over to the multiple
case. This, follows from (39), (40), and Remark 11.

and F3

»q Yia means

6. Characterizations of B}
MY f(x), v=1, 2, ..., has the meaning of (28). In the following examples we
shall apply the results of Sections 3 and 4 to derive approximation theorems
of Jackson and Bernstein type for classical means. We are interested in the
following equivalences

(54)  feBp=IfILI+(E v IS (0= MEf LI < o,
v=1
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(55) feB; ,<|fIL,
2jt1-y

HE 227 % 1F0-MY LR ™MLY <o,
j=0

v=2J
(56)  feF IS ILI+|(T v 1S ()= MY £(19) “IL,|| < oo
v=1
(modified if g = o0 and/or u = o).

6.1. Classical de la Vallée-Poussin means
Let f eD'(T;). We put

12v—1
(57) va(x)=; Y S (¥, v=1,2,..
u=v
It is not difficult to see that V, f(x) = MY f(x), v=1, 2, ..., where
1 if |§ <1,
(58) YO =<92- if 1<ll<2,
0 if |&] > 2.

One can show that y (&)eBi ,(R,) (cf. [27, 5.2]). Hence by Remark 6
Theorem 1, and Theorem 2 apply with 4 =2 and 0 < ¢ < o0. Trivially, the
assumptions of parts (i) of Theorems 3 and 4 are satisfied. Using Remark 7
we obtain the following equivalences.

THeoreM 7 ([27, Theorem 6]). Yy (&) has the meaning of (58). Let
SeL,(T).

@) If 1/12<p< o0, 0<g< 00, and 0 <s < oo then (54) holds.

@) If1/12<p<00,0<u<<p<<,0<qg<o0,and 0 <s < oo then (55)
holds.

(i) If 1)2<p<o0, 1/2 <q< 0, and 0 <s < oo then (56) holds.

Remark 14. For characterizations of type (54) and (56) for the means V,
we refer also to P. Oswald [23]. Further characterizations of the spaces B},
1 < p < oo, with the help of de la Vallée-Poussin means can be found in S.
M. Nikol'skii [22, Chapter 8] (cf. also P. L. Butzer, R. J. Nessel [6], W.
Trebels [39]). (55) with p = oo corresponds to (46) and (47) with V, instead
of S,. Hence, Remark 13 applies to V,. Results of type (49) with V, instead of
S, have been obtained by L. Leindler, A. Meir [16].

6.2. Generalized de la Vallée-Poussin means

Let feD'(T). Let ¥ =y (£) be a continuous function defined on R,, such
that
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Yy =1 if | <1,

(59) { . .
suppy¥ <&l I€] < 2}.

Then M¥f, v =1, 2, ..., are called generalized de la Vallée—Poussin means. In
the same way as in 6.1 we derive the following equivalences.

TreoreM 8 ([27, Theorem 7]). Let Y €B} . (R,), 4 > n, such that (59) is
satisfied. Let f eL,(T,). ,
(@) If /A <p< oo, 0<qg< o0, and 0 <s <oo then (54) holds.
() IfnfA<p< 0, 0<u<p< o, 0<qg<o,and 0 <s < o then (55)
holds.
@ii) If nf/A <p < oo, nfA<q< o0, and 0 <s < oo then (56) holds.

Remark 15. Theorem 8 is a generalization of Theorem 7. Using smooth
means instead of partial sums (cf. Theorem 5) we are able to extend our
considerations to values p (and g) less than 1. In particular, if y is C* with
(59) then the full range 0 < p < o, 0 < ¢ < o is covered (cf. also P. Oswald
[23] and [30, Chapter 3]).

6.3. Riesz means
Let 0 <f <o and 0 <y < oo be real numbers. We put

(I—[gP  if 18 <1,
0 if 18> 1.

The related means M'f"" f,v=1,2,..., are called the Riesz means of f
(Bochner—Riesz if y =2, Fejér if =y =n=1). The functions ¥, ,, (), k
=1, 2, ..., satisfy the assumptions (33) (and hence (31)) as well as (30) with
‘A =B+(n+1)/2 and ¢ = 2k (cf. [27, Lemma 4] and J. Peetre [25, p. 215]).
Therefore we can apply the results of Section 3 and Section 4 if g > (n—1)/2.
This leads to the following theorem.

THeoreM 9 ([27, Theorem 8]). Let (n—1)/2 <f <0, k=1,2,...,¢
has the meaning of (60) with y = 2k. Let f eL,(T,).
(W) If 2n/2B+n+1) <p< o0, 0 <g< 00, 0 <s <2k then (54) holds.
(i) If 2n/2B+n+1)<p< oo, O <u<p<ow, 0<g< o, and 0<s
< 2k then (55) holds.
@) If 2n/2B+n+1) <p < o0, 2n/(2f+n+1) <qg< o0, 0 <s < 2k then
(56) holds.

Remark 16. In general, the function |x|~7(1 -y, ,(x)) is not C® at the
point 0. Hence the claim in [27, Lemma 4] can not be applied to arbitrary
numbers y. However, one proves that |x|~*(1—y,,(x))€B]’}(R,) in a
neighbourhood of 0. Moreover, Y, , satisfies (30) and (31) for A<
min(f+n/2, y+n) and o = y. Hence the assertions of the theorem remain

(60) Ypy () =(1 —I;l’)’i = {
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true for general M¥#7 if 1 < p< o (1 <q< o in the case of (iii)) with y
instead of 2k. For values p (and ¢ in (iii)) less than 1 we obtain additional
restrictions, which seem to be unnatural. Furthermore, it is easy to see that
the theorem applies to y=8=1and n=1, 2.

Remark 17. By our methods we can not deal with the case s = y which
corresponds to the saturation order of the Riesz means (at least if p > 1), cf.
P. L. Butzer, R. J. Nessel [6, Chapters 12, 13], W. Trebels [39, Theorem 4.7].
Moreover, B =(n—1)/2 corresponds to Bochner’s critical index, cf. E. M.
Stein, G. Weiss [37, Chapter 7]. The question arises whether Theorem 9
remains true for some f < (n—1)/2 if 1 < p < oo. Partial results concerning
(54) can be found in W. Trebels [39, 5.2] and the references given there. For
characterizations of type (54) (with 1 < p < o) for Riesz means we refer also
to J. Lofstrom [20], R. M. Trigub [46], P. L. Butzer, R. J. Nessel [6], and to
the comparison theorems by H. S. Shapiro [32], [33] and J. Boman, H. S.
Shapiro [4].

6.4. Abel-Poisson means

Let 0 <y < 0. We put

(61) ¥, =e ¥, eR,.

The related means Mf" f, v=1,2,..., are called Abel-Poisson or Abel-
Cartwright means (Abel if y = 1 and Gauss—Weierstrass if y =2). If y =2k, k
=1, 2,... then ¥, satisfies (30) and (31) with ¢ =y for all A > 0. In the
general case we obtain ¢ = y and A < n+7y. Furthermore we can apply parts
(i) of Theorems 3 and 4. This leads to the following theorem.

THeOReM 10 ([28, Theorem 5]). Let 0 <y < oc. . has the meaning of
(61).
() If nf(n+y) <p< oo, 0<qg<cc, and n(l/min(1l, p)—1) <s <y then
the quasi-norm on the right-hand side of (54) is equivalent to || f|Bj .
(i) If nf(n+y) <p< oo, 0<u<<p<x, 0<qg< oo, and n(1/min(1, u)
—1) <'s <y then the quasi-norm on the right-hand side of (55) is equivalent to
NS 1Bl
(i) If nf(n+7) <p <o, nf(n+y) <q < o, n(l/min(1, p, g)—1) <s <7y
then the quasi-norm on the right-hand side of (56) is equivalent to || f|F; Il
(v) If v =2k, k =1,2,..., then n/(n+7) can be replaced by 0 in (i)(ii1).

Remark 18. The theorem, Remark 9, and Remark 16 show that Abel-
Poisson and Riesz means (for sufficiently large numbers ) with fixed y have
similar approximation properties in the sense of (54)«(56). For 1 < p<
and assertions of type (54) this is known by the so-called comparison
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theorems (cf. H. S. Shapiro [32], [33], P. L. Butzer, R. J. Nessel [6], W.
Trebels [39] and the literature cited there). However, note that there are
negative results for pointwise comparison (cf. W. Dickmeis, R. J. Nessel, E.
van Wickeren [7]). For the characterization of B}, , 1 < p < o, in the sense
of (54) by Abel-Poisson means we refer also to B. I. Golubov [10].

Remark 19. Concerning results on approximation by Bessel-potential
means (Y (&) = (1+|¢|>)~#2, B > 0) we refer to [28, Theorem 6]. In this case
(30) and (31) are satisfied for 6 =2 and 0 <A < o0. Characterizations via
(C, a)-means can be found in [29].

Added in proof: Theorem 9 holds true for all y, 0 <y < c0. Theorem 10

is true for all p, g with 0 < p, g < oo. This follows from the revised version
of [28].
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