On the structure of Mellin distributions

by Grzegorz Łysik (Warszawa)

Zdzisław Opial in memoriam

Abstract. The notions of a Mellin order and transformational Mellin order of Mellin distributions are investigated. A structure theorem for Mellin distributions is given. The Mellin convolution is studied.

Throughout the paper, we use the notation, definitions and results on the Mellin transformation stated in paper [2].

1. Transformational Mellin order of a Mellin distribution. In this section, we give definitions of the Mellin order and transformational Mellin order of a Mellin distribution and study relations between them.

For the definition that a distribution $U \in \mathfrak{M}'_{(\omega)}$ is of Mellin order $\leq m, m \in \mathbb{N}_0$, see [2].

DEFINITION. Let $U \in \mathfrak{M}'_{(\omega)}$, $m \in \mathbb{N}$. We say that U is of Mellin order $\leq -m$ and write $MO(U) \leq -m$ if distributions $V_{jl} = \tilde{D}^l_j U$, j = 1, ..., n, l = 0, 1, ..., m are of Mellin order ≤ 0 .

For a given distribution $U \in \mathfrak{M}'_{(\omega)}$, denote by K the set $\{k \in \mathbb{Z}: MO(U) \leq k\}$.

Let

$$m = \begin{cases} -\infty & \text{if } K = \mathbb{Z}, \\ +\infty & \text{if } K = \emptyset, \\ \min K & \text{otherwise.} \end{cases}$$

Then we say that U is of Mellin order m and write MO(U) = m.

LEMMA 1. Let $\omega \in (\mathbf{R} \cup \{-\infty\})^n$. If f is a measurable function on J such that

$$\int\limits_{J}|x^{a}f(x)|\,dx<\infty\quad \ for\ every\ a>\omega,$$

then $U_f \in \mathfrak{M}'_{(-\omega-1)}$ and $MO(U_f) \leq 0$, where

$$U_f[\varphi] = \int_J f(x)\varphi(x)dx$$
 for $\varphi \in \mathfrak{M}_{(-\omega-1)}$.

Proof. Let $\varphi \in \mathfrak{M}_{(-\omega-1)}$. Then there exists $a < -\omega - 1$ such that $\varphi \in \mathfrak{M}_a$. We derive

$$|U_f[\varphi] \leqslant \int_I |x^{-a-1}f(x)| dx \cdot \varrho_{a,0}(\varphi) \leqslant C_a \cdot \varrho_{a,0}(\varphi) \quad \text{since } -a-1 > \omega.$$

LEMMA 2. Let $m \in \mathbb{N}$ and let f be m times differentiable on J. Write

$$f_{jp}(x) = \left(x_j \frac{\partial}{\partial x_j}\right)^p f(x)$$
 for $x \in J$, $j = 1, ..., n$, $p = 0, ..., m$.

Let

$$\int_{J} |x^{a} f_{jp}(x)| dx < \infty \quad \text{for every } a > \omega, j = 1, ..., n, p = 0, ..., m.$$

Then

(1)
$$\frac{\partial^p f(x)}{\partial x_j^p} \bigg|_{x_j = r_j} = 0 \quad \text{for} \quad j = 1, \ldots, n, \ p = 0, \ldots, m-1$$

if and only if

$$\tilde{D}_{j}^{p}U_{f} = U_{f_{jp}}$$
 for $j = 1, ..., n, p = 1, ..., m$.

The proof goes along the same lines as that of Lemma 3 from [2].

From Lemmas 1 and 2 we get

PROPOSITION 1. Let f be the same as in Lemma 2. Then $U_f \in \mathfrak{M}'_{-\omega-1}$ and if condition (1) holds then $MO(U_f) \leq -m$.

DEFINITION. Let $U \in \mathfrak{M}'_{(\omega)}(J)$, $s \in \mathbb{R}$. We say that U is of transformational Mellin order $\leq s$ and write $TMO(U) \leq s$ if for every $a < \omega$ there exists a constant C = C(a) such that

(2)
$$|(MU)(z)| \leq C \langle z \rangle^{s} r^{-Rez} \quad \text{for } \operatorname{Re} z \leq a,$$

where $\langle z \rangle^2 = 1 + |z_1|^2 + \dots + |z_n|^2$.

LEMMA 3. Let $U \in \mathfrak{M}'_{(\omega)}$, $s \in \mathbb{R}$, $\alpha \in \mathbb{N}_0^n$. If $TMO(U) \leq s$ then $TMO(\tilde{D}^{\alpha}U) \leq s + |\alpha|$.

LEMMA 4. Let $U \in \mathfrak{M}'_{(\omega)}$, $s \in \mathbb{R}$, $m \in \mathbb{N}$. If $TMO(\tilde{D}_j^m U) \leqslant s + m$ for $j = 1, \ldots, n$, then $TMO(U) \leqslant s$.

Proof. Let $a < \omega$. For j = 1, ..., n we have

$$|M(\tilde{D}_i^m U)(z)| = |z_i^m||MU(z)| \le C\langle z\rangle^{s+m} r^{-\text{Re}z}$$
 for $\text{Re}z \le a$.

So

$$\sum_{j=1}^{n} |z_{j}|^{m} |MU(z)| \leqslant Cn\langle z \rangle^{s+m} r^{-\text{Re}z} \quad \text{for} \quad \text{Re} z \leqslant a.$$

Since MU(z) is bounded in bounded subsets of $\{\text{Re } z < a\}$ and $\langle z \rangle^m / \sum_{j=1}^m |z_j|^m$ is bounded in $\mathbb{C}^n \backslash B(0, 1)$, we get the assertion.

The proof of the following lemma is easy but tedious and therefore will be omitted.

LEMMA 5. Let $a \in \mathbb{R}^n$, $\alpha \in \mathbb{N}_0^n$. The following spaces of linear operators coincide:

$$\operatorname{span} \{x^{a+\beta}D^{\beta}\}_{\beta \leqslant \alpha}, \quad \operatorname{span} \{x^{\beta}D^{\beta}(x^{a})\}_{\beta \leqslant \alpha},$$
$$\operatorname{span} \{(xD)^{\beta}(x^{a})\}_{\beta \leqslant \alpha}, \quad \operatorname{span} \{x^{a}(Dx)^{\beta}\}_{\beta \leqslant \alpha}.$$

For $a \in \mathbb{R}^n$ and $\omega \in (\mathbb{R} \cup \{+\infty\})^n$, we write $X_a = \operatorname{span}\{x^{-z-1}\}_{\operatorname{Re}z \leq a}$, $X_{(\omega)} = \bigcup_{a \leq \omega} X_a$. Observe that $X_a \subset \mathfrak{M}_a$, $X_{(\omega)} \subset \mathfrak{M}_{(\omega)}$.

Proposition 2. $X_{(\omega)}$ is a dense subset of $\mathfrak{M}_{(\omega)}$.

Proof. We can assume that $\omega < \infty$. Let $\varphi \in \mathfrak{M}_{(\omega)}$. Thus $\varphi \in \mathfrak{M}_b$ for certain $b < \omega$. Let $b < a < \omega$. Clearly, $\varphi \in \mathfrak{M}_a$. It is sufficient to show that for every $\varepsilon > 0$, $m \in \mathbb{N}$ there exists $\eta \in X_a$ such that

(3)
$$\sum_{|\alpha| \leq m} \varrho_{a,\alpha}(\varphi - \eta) < \varepsilon.$$

Let $\varepsilon > 0$, $m \in \mathbb{N}$. Since $C_0^{\infty}(J)$ is dense in $\mathfrak{M}_{(\omega)}$, we have

(4)
$$\sum_{|\alpha| \leq m} \varrho_{a,\alpha}(\varphi - \psi) < \varepsilon/2 \quad \text{for a certain function } \psi \in C_0^{\infty}(J).$$

By Lemma 5 we can find constants $C_{\beta}(a, \alpha)$, $\beta \leq \alpha$ such that

(5)
$$x^{a+\alpha+1}D^{\alpha}f = \sum_{\beta \leq \alpha} C_{\beta}(a, \alpha) x^{\beta}D^{\beta}(x^{a+1}f) \quad \text{for every } f \in C^{\infty}(\mathbb{R}^n_+).$$

Let
$$C = C(a, m) = \sum_{|\alpha| \leq m} \sum_{\beta \leq \alpha} |C_{\beta}(a, \alpha)| r^{|\beta|}$$
.

Since $x^{a+1}\psi(x)$ is a smooth function in \overline{J} , by the Weierstrass theorem we can find a polynomial $w(x) = \sum_{\gamma \in N_0^n} b_{\gamma} x^{\gamma}$, $b_{\gamma} \in C$, such that

(6)
$$\sup_{|a| \leq m} \sup_{x \in J} \left| D^{\alpha} \left(x^{a+1} \psi(x) - w(x) \right) \right| < \varepsilon/2C.$$

Let $\eta(x) = x^{-a-1}w(x) = \sum_{\gamma} b_{\gamma} x^{\gamma-a-1} \in X_a$. Using (5) for the function $f = \psi - \eta$ and (6), we get

(7)
$$\sum_{|\alpha| \leq m} \varrho_{a,\alpha}(\psi - \eta) < \varepsilon/2.$$

From (4) and (7) we get (3) by the triangle inequality.

Theorem 1. Let $U \in \mathfrak{M}'_{(\omega)}$, $m \in \mathbb{Z}$. If $MO(U) \leq m$ then $TMO(U) \leq m$.

Proof. It follows from Lemmas 3 and 4 that it is sufficient to prove the theorem for $m \in N_0$. So we assume that $m \in N_0$.

Suppose $MO(U) \le m$. Let $a < \omega$. Using (1) from [2] for the function $\varphi(x) = x^{-z-1}$, Re $z \le a$, we derive

(8)
$$|(MU)(z)| \leqslant C \cdot \sum_{|\alpha| \leq m} \varrho_{a,\alpha}(x^{-z-1}) \leqslant C \cdot r^a \cdot \sum_{|\alpha| \leq m} |W_{\alpha}(z)| r^{-\operatorname{Re} z},$$

where $W_{\alpha}(z) = \prod_{j=1}^{n} \prod_{k=1}^{\alpha_{j}} (-z_{j} - k)$. Since $|W_{\alpha}(z)| \leq C(\alpha) \langle z \rangle^{|\alpha|} \leq C(\alpha) \langle z \rangle^{m}$ for $|\alpha| \leq m$, we obtain estimation (2). For $\omega \in (\mathbf{R} \cup \{-\infty\})^n$, let us write

$$\mathfrak{M}_{[\omega]} = \bigcap_{a \geq \omega} \mathfrak{M}_a,$$

$$\mathring{\mathfrak{M}}_{[\omega]} = \{ \varphi \in \mathfrak{M}_{[\omega]} \text{ satisfying (1) for } j = 1, \ldots, n, \ p = 0, 1, \ldots \}.$$

We can reformulate Theorem 2 from [2] in the following manner.

THEOREM 2. Let $\omega \in (\mathbf{R} \cup \{-\infty\})^n$. Then

iff $U_f \in \mathfrak{M}'_{(-\omega-1)}$ is of transformational Mellin order $-\infty$. $f \in \mathfrak{M}_{[\omega]}$

Remark 1. Note that the if part already follows from Proposition 1.

Let us denote by $L_{(\omega)}$, $\omega \in \mathbb{R}^n$, the set of operators $P(\tilde{D})$, where P is a polynomial such that $P(z) \neq 0$ for $\text{Re} z < \omega$.

Proposition 3. Let $P \in L_{(\omega)}$ be of the form $P(\tilde{D}) = P_1(\tilde{D}_1) \cdot \ldots \cdot P_n(\tilde{D}_n)$. Let $k = \min \deg P_i, s \in \mathbb{R}, f \in \mathfrak{M}'_{(\omega)}$.

If $\mathsf{TMO}(f) \leq s$ then there exists $U \in \mathfrak{M}'_{(\omega)}$ such that $\mathsf{TMO}(U) \leq s - k$ and $P(\tilde{D})U = f.$

Proof. Let

$$G(z) = \frac{Mf(z)}{P(z)} \in \mathcal{O}(\operatorname{Re} z < \omega).$$

Since for $\text{Re } z \leq a < \omega$ we have the estimation $\langle z \rangle^k \leq C_a |P(z)|$, the rest of the proof follows from Theorem 1 [2].

For a general $P \in L_{(\omega)}$ we have only the following

PROPOSITION 4. Let $P \in L_{(\omega)}$, $s \in \mathbb{R}$, $f \in \mathfrak{M}'_{(\omega)}$. If $TMO(f) \leq s$ then there exists $U \in \mathfrak{M}'_{(\omega)}$ such that $TMO(U) \leq s$ and P(D)U = f.

Proof. It is sufficient to note that 1/P(z) is a bounded holomorphic function for Re $z \le a$ for every $a < \omega$ and use Theorem 1 [2].

2. Structure theorem for Mellin distributions. In this section we give a characterization of Mellin distributions from $\mathfrak{M}'_{(\omega)}$.

LEMMA 6. Let
$$\psi \in C_0^1(J)$$
, $J = (0, r]^n$. Then

(9)
$$\sup_{x \in J} |x^1 \psi(x)| \leq \sum_{\gamma \in \{0,1\}^n} \|\tau^{\gamma} D^{\gamma} \psi(\tau)\|_{L^1(J)}.$$

Proof. For n = 1 we have the formula

$$x\psi(x)=\int_0^x\tau\psi'(\tau)d\tau+\int_0^x\psi(\tau)d\tau.$$

Hence

$$|x\psi(x)| \le \int_{0}^{r} |\tau\psi'(\tau)| d\tau + \int_{0}^{r} |\psi(\tau)| d\tau \quad \text{for } x \in J,$$

and, taking supremum, we get (9).

For n > 1, the proof goes by induction with respect to n.

PROPOSITION 5. Let $a \in \mathbb{R}^n$, $U \in \mathfrak{M}'_a$. Then there exist $m \in \mathbb{N}_0$ and bounded functions h_α for $|\alpha| \leq m$ such that

(10)
$$U = \sum_{|\alpha| \leq m} \tilde{D}^{\alpha}(x^{a}h_{\alpha}) \quad \text{in } \mathfrak{M}'_{(a)}.$$

Proof. Let $U \in \mathfrak{M}'_a$. Then there exist constants C > 0, $p \in N_0$ such that

(11)
$$|U[\varphi]| \leqslant C \max_{|\alpha| \leqslant p} \varrho_{\alpha,\alpha}(\varphi) \quad \text{for } \varphi \in C_0^{\infty}(J).$$

Take any $\varphi \in C_0^{\infty}(J)$. Let $\psi(x) = x^{a+\alpha}D^{\alpha}\varphi(x)$. By Lemma 5 we get $\psi(x) = \sum_{\beta \leq \alpha} C_{\alpha}(\beta)(xD)^{\beta}(x^{a}\varphi(x))$. Thus applying Lemma 6 to the function ψ and using Lemma 5 we derive

$$\varrho_{a,\alpha}(\varphi) = \sup_{x \in J} |x^{1}\psi(x)|
\leq \sum_{\gamma \in \{0,1\}^{n}} ||\tau^{\gamma}D^{\gamma} \sum_{\beta \leq \alpha} C_{\alpha}(\beta)(\tau D)^{\beta} \tau^{a} \varphi(\tau)||_{L^{1}(J)}
\leq \sum_{\beta \leq \alpha+1} C_{\alpha}(\beta) ||(\tau D)^{\beta} (\tau^{a} \varphi(\tau))||_{L^{1}(J)}.$$

Hence, by (11) we get

(12)
$$|U[\varphi]| \leq C_2 \max_{|\alpha| \leq p+n} ||(\tau D)^{\alpha} (\tau^{\alpha} \varphi(\tau))||_{L^1(J)} \quad \text{for } \varphi \in C_0^{\infty}(J).$$
Let $m = p+n$, $N = \text{card}\{\alpha: |\alpha| \leq m\} = \binom{m+n}{n}$. We define (1) the operator

$$C_0^{\infty}(J)\ni\varphi\to A\varphi=\{(\tau D)^a(\tau^a\varphi)\}_{|\alpha|\leqslant m}.$$

⁽¹⁾ This part of the proof is similar to the proof of the structure theorem for distributions from S'. See e.g. [3].

Note that $A: C_0^{\infty} \to AC_0^{\infty}$ is one to one and $A(C_0^{\infty}(J)) \subset (L^1(J))^N$. We also define the functional

$$A(C_0^{\infty}(J))\ni\psi\to T[\psi]=U[A^{-1}\psi].$$

Due to (12), T is continuous on $A(C_0^{\infty})$ in the norm $(L^1)^N$. By the Hahn-Banach theorem there exists a continuous extension \tilde{T} of T to the whole $(L^1)^N$. So by Riesz theorem there exist functions $\tilde{h}_{\alpha} \in L^{\infty}(J)$ for $|\alpha| \leq m$ such that

$$\widetilde{T}[\{\sigma_{\alpha}\}_{|\alpha| \leqslant m}] = \sum_{|\alpha| \leqslant m} \widetilde{h}_{\alpha}[\sigma_{\alpha}] \quad \text{for } \sigma_{\alpha} \in L^{1}.$$

Hence, for $\varphi \in C_0^{\infty}(J)$

$$U[\varphi] = T[A\varphi] = \tilde{T}[\{(\tau D)^{\alpha}(\tau^{a}\varphi)\}_{|\alpha| \leq m}] = \sum_{|\alpha| \leq m} (-1)^{|\alpha|} x^{a}(Dx)^{\alpha} \tilde{h}_{\alpha}[\varphi],$$

and on the basis of Lemma 5 this is equal to

$$\sum_{|\alpha| \leq m} (xD)^{\alpha} (x^a h_{\alpha}) [\varphi],$$

where for every α , $|\alpha| \leq m$, the function h_{α} is a linear combination of \tilde{h}_{β} , $|\beta| \leq m$. Since $C_0^{\infty}(J)$ is dense in $\mathfrak{M}_{(a)}$, we get (10) with $h_{\alpha} \in L^{\infty}(J)$.

Since $\mathfrak{M}'_{(\omega)} = \bigcap_{a < \omega} \mathfrak{M}'_a$ and functions $x^a h$ with h bounded belong to $\mathfrak{M}'_{(a)}$, we obtain

THEOREM 3. Let $\omega \in (\mathbf{R} \cup \{+\infty\})^n$. In order that U belongs to $\mathfrak{M}'_{(\omega)}(J)$ it is necessary and sufficient that for every $a < \omega$ there exist $m \in \mathbb{N}_0$ and functions $h_a \in L^{\infty}(J)$ for $|\alpha| \leq m$ such that (10) holds in $\mathfrak{M}'_{(a)}$.

Remark 2. If $U \in \mathfrak{M}'_{(\omega)}$ is of Mellin order $\leq k < \infty$, then the m in (10) can be taken independently of a, namely m = k + n.

3. Example. The aim of this section is to construct a distribution $U \in \mathfrak{M}'_{(0)}$ of Mellin order $+\infty$. We shall restrict ourselves to dimension one (the passage to higher dimensions is simple).

The proof of the following lemma is simple and we omit it.

LEMMA 7. Let $s \in \mathbb{R}$, $k \in \mathbb{N}_0$. Then

$$\left(x\frac{d}{dx}\right)^{k}(\sin x^{s}) = \sum_{j=0}^{k} B_{k,j} \cdot s^{k} \cdot x^{js} \cdot \sin\left(x^{s} + \frac{1}{2}j\pi\right),$$

where the coefficients $B_{k,j}$ are defined by the relations

$$B_{k,k} = 1$$
 for $k = 0, 1, ...,$
 $B_{k,0} = 0,$ $B_{k,1} = 1$ for $k = 1, 2, ...,$
 $B_{k+1,j} = jB_{k,j} + B_{k,j-1}$ for $k = 2, 3, ..., j = 2, ..., k$

and satisfy the inequality

$$\sum_{j=0}^k B_{k,j} \leqslant k!.$$

Corollary 1. Let s < 0, $k \in N_0$. Let

$$g_{k,s}(x) = s^{-k} \cdot x^{-ks} \cdot \left(x \frac{d}{dx}\right)^k (\sin x^s) \quad \text{for } x \in (0, 1].$$

Then

$$\sup_{x\in(0,1]}|g_{k,s}(x)|\leqslant k!.$$

Example 1. Let $a_k = -1/k!$ for $k \in \mathbb{N}$. Let

(13)
$$U(x) = \sum_{k=1}^{\infty} \left(x \frac{d}{dx} \right)^k (\sin x^{a_k}) \quad \text{for } x \in (0, 1].$$

Then $U \in \mathfrak{M}'_{(0)}$ is of Mellin order $+\infty$.

Proof. First of all we shall prove that $U \in \mathfrak{M}'_{(0)}$. To this end we take any $\varepsilon > 0$. Let $i \in \mathbb{N}$ be such that $i! \ge 1/\varepsilon$. We observe that

$$U_1(x) = \sum_{k=1}^{i} \left(x \frac{d}{dx} \right)^k (\sin x^{a_k}) \in \mathfrak{M}'_{(0)}.$$

Applying Lemma 7 for $s = a_k$, we get

$$U(x) - U_1(x) = x^{-\epsilon} \cdot \sum_{k=i+1}^{\infty} a_k^k \cdot x^{\epsilon + a_{k-1}} \cdot g_{k,a_k}(x)$$

and $\sup_{x \in (0,1]} |g_{k,a_k}(x)| \leq k!$.

Since $\varepsilon + a_{k-1} \ge 0$ for $k \ge i+1$, the numerator is bounded. Hence, $U - U_1 \in \mathfrak{M}'_{(-\varepsilon)}$ and $U \in \mathfrak{M}'_{(-\varepsilon)}$. Since $\varepsilon > 0$ was arbitrary, we have $U \in \mathfrak{M}'_{(0)}(^2)$.

Let us suppose to the contrary that U is of finite Mellin order $m \, \subset N_0$. Let $\varepsilon = 1/(m+3)!$. By Theorem 4 and Remark 2 there exist bounded functions $h_{k,\varepsilon}$, $k = 0, \ldots, m+1$, such that

(14)
$$U = \sum_{k=0}^{m+1} \left(x \frac{d}{dx} \right)^k (x^{-\epsilon} h_{k,\epsilon}) \quad \text{in } \mathfrak{M}'_{(-\epsilon)}.$$

Let us write

$$f_{k,j}(x) = x^{ja_k} \sin(x^{a_k} + \frac{1}{2}j\pi), \qquad k \in \mathbb{N}, \ j \in \mathbb{N}_0,$$

$$F_{k,l}(x) = a_k^{k-l} \sum_{i=0}^{k-l} B_{k-l,j} f_{k,j}(x), \qquad k \in \mathbb{N}, \ l = 0, \dots, k.$$

⁽²⁾ Actually, one can prove that $U \in C^{\infty}((0,1])$.

By Lemma 7, $F_{k,l}(x) = \left(x \frac{d}{dx}\right)^{k-l} (\sin x^{a_k})$. The functions $f_{k,j}$, $k \in \mathbb{N}$, $j \in \mathbb{N}_0$ are linearly independent, so since $B_{k-l,j} \neq 0$ for $k \neq l$, the functions $F_{k,l}$, $k \in \mathbb{N}$, $l = 0, \ldots, k$, are also linearly independent. We observe that $x^{\epsilon} \times \sum_{k=m+4}^{\infty} F_{k,0}(x)$ is a bounded function and that the functions $x^{\epsilon}F_{k,l}(x)$, $k = m+2, m+3, l = 0, 1, \ldots, m+1$ are unbounded. So the decomposition (14) is impossible with bounded $h_{k,\epsilon}$, which proves that U is of Mellin order $+\infty$

Remark 3. For U as in Example 1, the degree of the polynomial P from Theorem 1 in [2] indeed depends on b < 0.

4. The Mellin convolution. In this section we study the Mellin convolution which can readily be analysed by means of the Mellin transformation. The Mellin convolution in dimension n = 1 was studied in [1] (Section 11.11) for distributions of finite Mellin order.

Throughout this section we use the following notation.

For $x, y \in \mathbb{R}^n_+$, we write $xy = (x_1y_1, \dots, x_ny_n)$, $J^1 = (0, r^1]$, $J^2 = (0, r^2]$, $J = (0, r^1r^2]$, ω^1 , $\omega^2 \in (\mathbb{R} \cup \{+\infty\})^n$.

We shall show in Theorem 4 that the following definition is correct.

DEFINITION. For i = 1, 2 let $U^i \in \mathfrak{M}'_{(\omega^i)}(J^i)$. Let $\omega = \min(\omega^1, \omega^2)$. Then the formal definition

(15)
$$U[\varphi] = U_x^1 [U_y^2 [\varphi(xy)]] \quad \text{for } \varphi \in \mathfrak{M}_{(\omega)}(J)$$

defines correctly $U \in \mathfrak{M}'_{(\omega)}(J)$. We denote this functional U by $U^1 *_m U^2$ and call it the *Mellin convolution* of U^1 and U^2 .

THEOREM 4. Under the assumptions of the above definition, the Mellin convolution $U^1 *_m U^2$ exists and belongs to $\mathfrak{M}'_{(m)}(J)$.

Proof. Without loss of generality we may assume that $\omega^i < \infty$, i = 1, 2. (If $U^1 *_m U^2$ exists then supp $U^1 *_m U^2 \subset J$.) Take $\varphi \in \mathfrak{M}_{(\omega)}(J)$. It is sufficient to show that the function $\psi(x) = U_y^2[\varphi(xy)]$, x > 0 belongs to $M_{(\omega)}(J^1)$. There exist $a < \omega$ and bounded functions $\varphi_a(s)$, $\alpha \in N_0^n$ such that

(16)
$$s^{\alpha+1}\varphi^{(\alpha)}(s) = s^{-\alpha}\varphi_{\alpha}(s).$$

Let $a < b < \omega$. We shall show that $\psi \in \mathfrak{M}_b(J^1) \subset \mathfrak{M}_{(\omega)}(J^1)$. Since $U^2 \in \mathfrak{M}'_{(\omega)}(J^2)$, there exist constants C > 0, $m \in \mathbb{N}$ such that

(17)
$$|U^{2}[\varphi]| \leq C \cdot \sum_{|\beta| \leq m} \sup_{y} |y^{b+\beta+1} \varphi^{(\beta)}(y)| \quad \text{for } \varphi \in \mathfrak{M}_{b}(J^{2}).$$

For α , β , $\delta \in \mathbb{N}_0^n$, $\delta \leq \beta$ let us denote

$$C_{\alpha}(\beta, \delta) = \prod_{i=1}^{n} {\beta_{i} \choose \delta_{i}} \alpha_{i}(\alpha_{i} - 1) \dots (\alpha_{i} - \beta_{i} + \delta_{i} + 1),$$

$$C_{\alpha}(\beta) = \sup_{\delta \leq \beta} C_{\alpha}(\beta, \delta), \quad K_{\alpha}(\beta) = \sum_{\delta \leq \beta} \sup_{s} |\varphi_{\alpha + \delta}(s)|.$$

For x > 0, applying the Leibniz formula, we derive

$$|x^{b+\alpha+1}\psi^{(\alpha)}(x)| \stackrel{(17)}{\leqslant} C \sum_{|\beta| \leqslant m} \sup_{y \in J^2} |y^{b+\beta+1}D_y^{\beta} (x^{b+1}(xy)^{\alpha} \cdot \varphi^{(\alpha)}(xy))|$$

$$= C \sum_{|\beta| \leqslant m} \sup_{y \in J^2} |\sum_{\delta \leqslant \beta} C_{\alpha}(\beta, \delta)(xy)^{b-\alpha} \cdot \varphi_{\alpha+\delta}(xy)|$$

$$\stackrel{(16)}{\leqslant} C \sum_{|\beta| \leqslant m} C_{\alpha}(\beta) x^{b-\alpha} \cdot \sup_{y \in J^2} |y^{b-\alpha} \cdot \sum_{\delta \leqslant \beta} \varphi_{\alpha+\delta}(xy)|$$

$$\stackrel{(16)}{\leqslant} C \sum_{|\beta| \leqslant m} C_{\alpha}(\beta) \cdot K_{\alpha}(\beta) \cdot (r^2)^{b-\alpha} \cdot x^{b-\alpha}.$$

So for every $\alpha \in N_0^n$, $\varrho_{b,\alpha}(\psi) < \infty$. Thus $\psi \in \mathfrak{M}_b(J^1)$ and for $\varphi_j \to 0$ in $\mathfrak{M}_{(\omega)}(J)$, we have $\psi_j \to 0$ in $\mathfrak{M}_b(J^1)$.

PROPOSITION 6. Let $U \in \mathfrak{M}'_{(\omega^1)}(J^1)$, V_j , $V \in \mathfrak{M}'_{(\omega^2)}(J^2)$ for $j \in \mathbb{N}_0$, $\omega = \min(\omega^1, \omega^2)$. If $V_j \to V$ in $\mathfrak{M}'_{(\omega^2)}(J^2)$ then $U *_m V_j \to U *_m V$ in $\mathfrak{M}'_{(\omega)}(J)$.

THEOREM 5. Under the assumption of Theorem 4

$$M_r(U^1 *_m U^2)(z) = (M_{r^1}U^1)(z) \cdot (M_{r^2}U^2)(z)$$
 for $\text{Re}\, z < \omega$.

Proof. It is sufficient to put $\varphi(s) = s^{-z-1}$ in (15).

COROLLARY 2. The Mellin convolution is commutative and associative.

COROLLARY 3.

$$\tilde{D}^{\alpha}(U^1 *_m U^2) = (\tilde{D}^{\alpha}U^1) *_m U^2$$
 for $\alpha \in \mathbb{N}_0^n$,
 $x^s(U^1 *_m U^2) = (x^sU^1) *_m (x^sU^2)$ for $s \in \mathbb{R}^n$.

Example 2. If $U \in \mathfrak{M}'_{(\omega)}(J)$, $\alpha \in \mathbb{N}_0^n$ then $U *_m \delta_1^{(\alpha)} = D^{\alpha}(x^{\alpha}U)$.

By Theorem 5 we obtain

PROPOSITION 7. Under the assumptions of Theorem 4 if $TMO(U^i) \leq s^i$, i = 1, 2 then $TMO(U^1 *_m U^2) \leq s^1 + s^2$.

From Proposition 7 and Theorem 2 we get

COROLLARY 4. If $U \in \mathfrak{M}'_{(\omega)}(J^1)$, $\varphi \in \mathfrak{M}_{[-\omega-1]}(J^2)$ then $U *_m \varphi \in \mathfrak{M}_{[-\omega-1]}(J)$.

Example 3. Let $\varphi_j \in C_0^{\infty}((0, 1))$ for $j \in \mathbb{N}$ be such that

$$\varphi_j \geqslant 0$$
, $\sup \varphi_j \subset [1-2^{-j}, 1]^n$, $\int_{(0,1)} \varphi_j(x) dx = 1$.

Then for every $\omega \in (\mathbf{R} \cup \{+\infty\})^n$, $\varphi_i \to \delta_1$ in $\mathfrak{M}'_{(\omega)}([0, 1])$.

PROPOSITION 8. $\mathring{\mathfrak{M}}_{[-\omega-1]}(J)$ is a dense subset of $\mathfrak{M}'_{(\omega)}(J)$.

Proof. Let $\varphi_j \in C_0^{\infty}((0,1))$ be a sequence such that $\varphi_j \to \delta_1$ in $\mathfrak{M}'_{(\omega)}((0,1])$. Let $U \in \mathfrak{M}'_{(\omega)}(J)$. Let us write $U_j = U *_m \varphi_j$. Since $\varphi_j \in \mathfrak{M}_{[-\omega-1]}((0,1])$, it follows from Corollary 4 that $U_j \in \mathfrak{M}_{[-\omega-1]}(J)$. By Proposition 6 we get $U_j \to U *_m \delta_1 = U$ in $\mathfrak{M}'_{(\omega)}(J)$.

The author would like to thank Professor Z. Szmydt for her helpful advice during preparation of this paper.

References

- [1] O. P. Misra, J. L. Lavoine, Transform Analysis of Generalized Functions, North-Holland, 1986.
- [2] Z. Szmydt, The Paley-Wiener Theorem for the Mellin Transformation, Ann. Polon. Math., this volume, 315-326.
- [3] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.
- [4] B. Ziemian, Taylor Formula for Distributions in Several Dimensions, Bull. Pol. Acad. Math. 34(1986), 277-286.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, WARSAW

Recu par la Rédaction le 19.05.1988

•