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On the structure of Mellin distributions

by GRrRzZeEGORZ Lysik (Warszawa)

Zdzistaw Opial in memoriam

Abstract. The notions of a Mellin order and transformational Mellin order of Mellin
distributions are investigated. A structure theorem for Mellin distributions is given. The Mellin
convolution is studied.

Throughout the paper, we use the notation, definitions and results on the Mellin
transformation stated in paper [2].

1. Transformational Mellin order of a Mellin distribution. In this section,
we give definitions of the Mellin order and transformational Mellin order of
a Mellin distribution and study relations between them.

For the definition that a distribution UeM,, is of Mellin order
<m, meN,, see [2].

DEFINITION. Let U e, me N. We say that U is of Mellin order < —m
and write MO(U) < —m if distributions V), = ﬁj-U, j=1,...,n, 1=0,
I,...,m are of Mellin order <0O.

For a given distribution UeM,,, denote by K the set {keZ:

MO(U) < k}.
Let
— o0 f K=2,
m=-< 4+ if K=0,
min K otherwise.

Then we say that U is of Mellin order m and write MO(U) = m.
LEMMA 1. Let we(RuU {—oo})". Iffis a measurable function on J such that

fIx*f(x)dx < 00 for every a > w,
J

then U, eM_,_,, and MO(U[) <0, where
U 0] = [f0)o(dx  for peM_yoy.
7
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Proof. Let ¢ €M, _y. Then there exists a < —w—1 such that peIN,.
We derive

U L] < ™7 (x)|dx0a,0(0) < C,'0u0(9) since —a—1> w.
J

LEMMA 2. Let me N and let f be m times differentiable on J. Write
~

“\P
fjp(x)=(xj£)]‘(x) for xedJ, j=1,...,n, p=0,..., m.
J

Let
J‘lxaﬁp(X)ldx<w for every a>w’j=1$"'9 na p__'O,-.-, m.
7
Then
o°f () |
(1) oxr J‘j=”=0 for j=1,...,n,p=0,...,m—1

if and only if
DUf Uy, Jor j=1,...,np=1..,m
The proof goes along the same lines as that of Lemma 3 from [2].
From Lemmas 1 and 2 we get

PROPOSITION 1. Let f be the same as in Lemma 2. Then U, e '_,_,, and if
condition (1) holds then MO(U;) < —m.

DEFINITION. Let U e, (J), seR. We say that U is of transformational
Mellin order <s and write TMO(U) <s if for every a < there exists
a constant C = C(a) such that

(2) (MU)(z)| < C<{z)r"®* for Rez<a

where (z)? = 1+z,1*+ ... +|z,*.

LeMMA 3. Let Ue My, seR, xeNp. If TMO(U) < s then TMO(D*U) <
S+ |of.

LemMMA 4. Let UeM,, seR, meN. If TMODTU)<s+m for j=
1,...,n, then TMO(U) < s.

Proof. Let a<w. For j=1,...,n we have
IM(DTUX2)| = |27IIMU(z)] < C{z)**™r Rz for Rez < a.
So

Z lz"IMU(2)] < Cn{z)**™r " for Rez<a
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Since MU (z) is bounded in bounded subsets of {Rez < a} and (z)"/ )’ |z|™ is
=1

J
bounded in C"\B(0, 1), we get the assertion.

The proof of the following lemma is easy but tedious and therefore will be
omitted.

LEMMA 5. Let acR", ae Nj. The following spaces of linear operators
coincide:

span {x**’D},.,, span {xﬂDﬂ(xa)}ﬂ <a
span {(xD)ﬂ(xa)}ﬁ Sas Span {xa (‘Dx)ﬂ}ﬂ <a-

For aeR" and we(Ru{+o})", we write X, =span{x * Ya..<a>
Xw =) X,. Observe that X, c M,, X, = M.

a<w
PROPOSITION 2. X, is a dense subset of M.
Proof. We can assume that w < . Let oM. Thus e, for

certain b < w. Let b < a < w. Clearly, ¢ € M,. It is sufficient to show that for
every ¢ > 0, me N there exists ne X, such that

3) Y Qaal—1n) <e.
la)<m
Let £ >0, meN. Since C§(J) 1s dense in M, we have
4) Y Qallo—y¥) <e/2 for a certain function y e C§(J).
lal <m

By Lemma 5 we can find constants Cy(a, @), f < a such that

(5) x*tepif = % Cyla, a)x?DP(x**'f)  for every fe C*(R%).

f<a

Let C=Cla,m)= ) Y |Chla,a)r?.
lal €m p<a B
Since x°*!i)(x) is a smooth function in J, by the Weierstrass theorem we
can find a polynomial w(x) = ) bx’, b,eC, such that

yeNQ

(6) sup sup |D*(x* "'y (x) —w(x))| < &/2C.

la| €m xeJ
Let n(x)=x"""'w(x)=)Ybx""*'eX,. Using (5 for the function
7
f=y¥—n and (6), we get
(7 Y Qualy—n) <e/2.

lal €m
From (4) and (7) we get (3) by the triangle inequality.
THEOREM 1. Let UeM,,,,, meZ. If MO(U) < m then TMO(U) < m.
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Proof. It follows from Lemmas 3 and 4 that it is sufficient to prove the
theorem for meN,. So we assume that meN,.

Suppose MO(U) < m. Let a < w. Using (1) from [2] for the function
p(x) =x"2"', Rez < a, we derive

(8) (MUY < C* ) Qaax™*7) < Cor™ 3 (W, (2)Ir ",

laj €m laj<m

where W, (z) = [] l—JI (—z;—k).
j=t1k=1
Since |W.(z)] < C(a)<z)"" < C(a){z)™ for |¢| < m, we obtain estimation (2).

For we(Ru {—0})", let us write

My = () W,

9.211[(0] = {peMy,, satisfying (1) for j=1,...,n, p=0,1,...}.
We can reformulate Theorem 2 from [2] in the following manner.
THEOREM 2. Let we(Ru {—o0})". Then
feﬂfR[m] iff U;eM_u_y is of transformational Mellin order — .
Remark 1. Note that the if part already follows from Proposition 1.

Let us denote by L, weR", the set of operators P(D), where P is
a polynomial such that P(z) # 0 for Rez < w.

PROPOSITION 3. Let PeL,, be of the form P(D)= P (D, - ... P,(D,).

Let k= min degP;, seR, fe M,
i=1,...,n
If TMO(f) < s then there exists U e M, such that TMO (U) < s—k and
PD)U =.

Proof. Let

M/(z)

G(z) = PQ)

eO(Rez < w).

Since for Rez < a < o we have the estimation (z)* < C,|P(z)|, the rest of the
proof follows from Theorem 1 [2].

For a general Pe L, we have only the following

ProOPOSITION 4. Let PeL,, seR, feM,. If TMO(f) < s then there
exists UeM,, such that TMO(U) <s and P(D)U ={.

Proof. It is sufficient to note that 1/P(z) is a bounded holomorphic
function for Rez < a for every a < w and use Theorem 1 [2].
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2. Structure theorem for Mellin distributions. In this section we give
a characterization of Mellin distributions from M.

LEMMA 6. Let yeC§(J), J =(0, r]". Then
© suplx'(x)l < Y, [T'DY(7)]l Lay)-
xeJ ye(0,1}n
Proof For n=1 we have the formula

x x

xy(x) = [y’ ()dr+ [y (r)dr.
0 0
Hence

w0l < [l @lde + [ @lde  for xel,
1) 0

and, taking supremum, we get (9).
For n > 1, the proof goes by induction with respect to n.

PROPOSITION 5. Let aeR", Ue,. Then there exist me N, and bounded
functions h, for |a| < m such that

(10) U= Y D*x*h) in M,
la| <m

Proof. Let UeN,. Then there exist constants C > 0, pe N, such that
(11) [ULe]l < Cmaxggq.(p) for ¢eCF(J).

lal<p
Take any ¢eCgy(J). Let Y(x)=x"""D%(x). By Lemma 5 we get
Y(x) =Y CBXxD)’(x*¢(x)). Thus applying Lemma 6 to the function y and

f<a

using Lemma 5 we derive

Qa (@) = suplx'y(x)|

xeJ
< Y D ¥ CBKDP o)y
yef0, 1} p=a
< ﬂ<Z+ C,B||(zD¥(* o (2)||1cy-
Hence, by (11) we get -
(12) U[p]l < C, max |[eDY (o)) for @eCP().

lal<p+n

Letm=p+n, N =card{a: |of < m} = (m+"). We define (!) the operator
n

C5 ()29 - Ap = {(TD) (1)} 1oy <m-

(*) This part of the proof is similar to the proof of the structure theorem for distributions
from §'. See e.g. [3].
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Note that A: C§ — ACP is one to one and A(C§(J)) = (L}(J))". We also
define the functional
A(CT D)2y - TY] = U4 Y]

Due to (12), T is continuous on A(C§) in the norm (L')¥. By the
Hahn—Banach theorem there exists a continuous extension T of Tto the whole
(LY. So by Riesz theorem there exist functions &, e [ (J) for |¢| < m such that

THomemdl = Y, h,lo,] for o,el.

|z] €m

Hence, for ¢ e C§(J)
Ulp] = T[A¢] = T{(tD\ (@)} <m] = 3, (—1)*x{Dx)h,[¢],

la|<m

and on the basis of Lemma 5 this is equal to

Y. (xDy(x°h)(¢],

la|<m
gvhere for every a, |¢f < m, the function h, is ﬁ linear combination of
hg, 1Bl < m. Since Cg'(J) is dense in M), we get (10) with h,e L* (J).

Since M, = () M and functions x*h with h bounded belong to My,,, we

a<w

obtain

THEOREM 3. Let we(Ru {+ o0})". In order that U belongs to My, (J) it is
necessary and sufficient that for every a < w there exist me N, and functions
h,e L* (J) for || < m such that (10) holds in M.

Remark 2. If UeIN,, is of Mellin order < k< oo, then the min (10) can
be taken independently of a, namely m = k+n.

3. Example. The aim of this section is to construct a distribution U € M,
of Mellin order + co. We shall restrict ourselves to dimension one (the passage
to higher dimensions is simple).

The proof of the following lemma is simple and we omit it.
_LeEMMA 7. Let seR, keNy. Then
d\ k .
(x—) (sinx®) = Y By ;- s*x*sin(x’ +%jn),
dx i=o
where the coefficients B, ; are defined by the relations
B..=1 for k=0,1,...,
Bk,0=09 Bk,l =1 for k= 1, 2,...,
Bk+l,j=jBk,j+Bk.j—l for k=2, 3,...,j=2,...,k
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and satisfy the inequality

k
Y B,;<k
i=0

COROLLARY 1. Let s <0, keN,. Let

Gis(x) = s_"°x_"’-(x£)k(sinx‘) for x€(0, 1].
dx

Then
sup |gis(x)| < k

xe(0,1)
EXAMPLE 1. Let a, = —1/k! for keN. Let
© k
(13) Ux)y= ) (xi) (sinx®™) for xe(0, 1].

k=1\ dx
Then UeMy, is of Mellin order + co.

Proof. First of all we shall prove that U eI, To this end we take any
e>0. Let ie N be such that i! > 1/e. We observe that

U,(x)= Z': (x %)k (sinx®) e Mo,

k=1

Applying Lemma 7 for s = q,, we get

Ux)—U,(x)=x""* i aﬁ-x”""“-gk.ak(x)

k=i+1

and Sup |giq, (¥)| < k

xe(0,1]

Since e¢+a;,_, >0 for k> i+1, the numerator is bounded. Hence,
U-U,eM_, and UeM;_,,. Since ¢ > 0 was arbitrary, we have U e Mo,(?).

Let us suppose to the contrary that U is of finite Mellin order m N,,. Let
e = 1/(m+3)!. By Theorem 4 and Remark 2 there exist bounded fr-ctions
Been k=0,... , m+1, such that

m+1 d k
(14) U= E (x—) (x"°h,) in M_,,.
Let us write
S (%) = xPsin(x™ + L jm), keN, jeN,,

Fk,(x —ak ZB,‘ 'JﬁJ(X), :;t"":'N, l=0,...,k.

() Actually, one can prove that UeC™((0,1]).
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k=1
By Lemma 7, F; i(x) = (x %) (sinx™). The functions f; ;, ke N, jeN,

are linearly independent, so since By,_,; #0 for k # [, the functions F,,,
keN,1=0,...,k, are also linearly independent. We observe that x°x

Y, Fio(x) is a bounded function and that the functions x°F,(x),
k=m+4
k=m+2, m+3,1=0,1,...,m+1 are unbounded. So the decomposition
(14) is impossible with bounded h, ., which proves that U is of Mellin order

+ 0.

Remark 3. For U asin Example 1, the degree of the polynomial P from
Theorem 1 in [2] indeed depends on b < 0.

4. The Mellin convolution. In this section we study the Mellin convolution
which can readily be analysed by means of the Mellin transformation. The
Mellin convolution in dimension n = 1 was studied in [1] (Section 11.11) for
distributions of finite Mellin order.

Throughout this section we use the following notation.

For x, yeR%, we write xy = (x,yy, ..., X,.5,), J* = (0, r'], J2 = (0,r],

J=(0, r'r*], o', w*e(Ru {+0})".

We shall show in Theorem 4 that the following definition is correct.

DErFINITION. For i = 1, 2 let U'e M, (J?). Let w = min(w!, w?). Then the
formal definition

(15) Ulel = U;[Ule(xy]] for peM,J)
defines correctly U e M,,,(J). We denote this functional U by U' x,, U? and call
it the Mellin convolution of U' and UZ2.

THEOREM 4. Under the assumptions of the above definition, the Mellin
convolution U' %, U? exists and belongs to M, (J).

Proof. Without loss of generality we may assume that o' < o0, i = 1, 2.
(If U x,, U? exists then supp U! x,, U? < J.) Take ¢ e M, (J). It is sufficient to
show that the function y(x) = U}[@(xy)], x > 0 belongs to M ,,(J'). There
exist a < w and bounded functions ¢,(s), xe N3 such that

(16) s (s) = 5%, (5).

Let a<b<w. We shall show that yeM,(J') <M, (). Since
U?eM,,(J?), there exist constants C >0, me N such that

(17) U ell< C ) supy*™ Mo y)|  for peMy(J?).

1Blsm y
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For a, B, e NG, 6 < f let us denote

Ctp. = 11 (D=1 @—p+8+ .

i=1 i

Co(B) =supC,(B,8), K.(B)= ). suplpqss(s).

o< B 5<f s

For x > 0, applying the Leibniz formula, we derive

amn
|xb+a+l'ﬁ(¢)(x)1 <C Z suplyb+ﬂ+ng(xb+l(xy)a.(p(a)(xy))|
1Bl <m yeJ?
(16)

= C Z Supl Z C.:(B’ 6)(xy)b—°'¢a+a(XY)|

1Bl<m yeJ?2 858

<C Y CAx* " sup|y® ™ T @ass(y)

1Bl€m yeJ? 5<p
SC ), CB) K (B)-(r*)y~e-x>~e.
1Blsm

So for every aeNp, 0pq(%) < 0. Thus YeM(J') and for ¢, -0 in
M)(J), we have y; -0 in M,(J').

PROPOSITION 6. Let UeM,(JY), V), VeM,yy(J?) for jeN,, o=
min(w', w?). If V; =V in M,y(J?) then Ux, V,—> Ux,Vin M,(J).

THEOREM S. Under the assumption of Theorem 4
M (U, U)z) = (M,,U)2)-(M,.U*(z) for Rez < w.

Proof. It is sufficient to put ¢(s) =s~*! in (15).
COROLLARY 2. The Mellin convolution is commutative and associative.
COROLLARY 3.

D¥U* », U?) = (D*UY +, U? for ae N},

xS(U' %, U?) = (xUY) *,, (x*U%)  for seR".
ExaMpLE 2. If UeM,(J), aeN§ then U x,6 = D*(x*U).
By Theorem 5 we obtain

PROPOSITION 7. Under the assumptions of Theorem 4 if TMO(U') < &',
i=1,2 then TMO(U! *,U?) < s’ +52.

From Proposition 7 and Theorem 2 we get
COROLLARY 4. If UeMiy)(JY), @M _ -1 (J2) then U x,, @My _,_ ().
ExampLE 3. Let ¢, C&((0, 1)) for je N be such that

@; >0, suppo;c[1-277,11", [ ox)dx=1.
(0,1)
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Then for every we(Ru {+0})", @; -4, in M, (0, 1]).
ProrosITION 8. ‘.‘31[_,,,_.](.1) is a dense subset of M, (J).

Proof. Let ¢;eC§ ((0,1)) be a sequence such that ¢; — d, in M, ((0, 1]).
Let U e M,,,(J). Let us write U; = U »,, ;. Since ¢, € ifll[_u,_,]((O, 1]), it follows
from Corollary 4 that Uje iﬁl[_w_.](.l). By ‘"Proposition 6 we get
Uj» Us,d, =U in Miu,(J).

The author would like to thank Professor Z. Szmydt for her helpful advice
during preparation of this paper.
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