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Let
(1) f&) =) ane
n=0
and
(2) g(2) = sz

be two integral functions. We consider the class of functions defined as

(3) f(2) % g(2) = Z Anbaz™ .

It has been proved that this class is contained in the class of integral
functions.
It is known [1] that

Ms

(4) %) % g% = > n*(n—1)"...(n—s+1)’anby2"""

n=38

is,an integral function of the same order as f(2) ¥ g(2). Let [ f(2) *g(z)]‘”

denote the s-th derivative of f(z) % g(2). Then

(5) [f(2) %917 = D n(n—1)...(n—s-+1)anba" ",

n=§
[f(=z) % g(z)]“” is an integral function of the same order as f(z)% g(2)
(31, p. 35).

We shall denote by u(r, s), u*(r, 8) the maximum terms in the Taylor’s
expansion of f(2) ¥ ¢2) and [f(2)%g(2)]® and by »(r,s), +*(r,s)
their ranks for |2| = r. We shall also denote by p(r, s), ui(r,s) the de-
rivatives of u(r,s), u*(r,s) with respect to », respectively.
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The object of this paper is to obtain some relations between u(r, s)
and u*(r,s) which give us more information about the class of integral
functions defined by (3).

THEOREM 1. If f(2) % g(2) is an integral function of finite order p
and lower order A, then for almost all values of r > 7,

UA(r, )Rl < p(r, 8H1) < BRI ¥(r, 8) |

Proof. It is known [1] that

(6) log u(r, 8) = log u(ry, 3)+f v(x,z)—sdx

for 0 <, <.
Differentiating (6), we get

a7y 8) _ v(r,8)—s
" ulrys) — r

for almost all values of r > 7,.
If »(r,s), »(r,s+1) denote the rank of the maximum term of

f2) % ¢“%2) and feV) % ¢ (z) for |z| =r, respectively, then we

have [1]

u(r, s+1)

(8) {1’(7’, 3)—8}2<r M(,’.’s)

< {v(r,s+1)—s)*.
From (7) and (8) we get

(9) {v(r,y 8) —s}u(r, s) < pulr,s+1)

for almost all values of » > 7,.
Further,

sup logw(r, 0) i *P log(v(r,8)—s)
oo inf  logr i inf logr YN
Therefore by (7)

lul(r? S) > ,r(;_,_n

ulr, s)

for almost all values of r > r, and any ¢ > 0.
Hence

p(r, 84+1) > p(r, 8)ré=+(r, 8)—s)
= v¥(r, 8)... (v*(r, 8)—s -I-l),u"'(r, 8),.(;.—5—1)(,,(,.’ S)—s)

> y"(‘)‘, s)r(a+2)l-c—1 .
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For the second inequality, consider the right-hand inequality of (8),
ulr, s+1)<‘“ ( (r,s+1)—s)*

< [”_(’;i][,,(r, s+, 8

<L y(s+2)9+c—1‘u#(,-’ s) ,

for any ¢ > 0 and r > 7,.
Hence the theorem follows.
THEOREM 2. If 0 <7, < r,, then
7y p*(r1,8)—8 ‘L‘(rz, 3) s(,,-2)v(1'3,s)—s
—= < < g —= .
(10) (7’1) = p(ry, 8) {v(“’ )} "

Proof. From (6) we get

7
log u(ry, 8) < logu(ry, 8)+{»(r, 8)—s} log r_i
for 0 < ry <y,
Therefore,

log (72, #) < #10gv(ry, $)+10gu*(rs, )+ (v(ra, ) —s) log 2 .

From the above inequality, the second inequality of (10) follows.
To prove the first inequality we note that for all r

(11) logu(ry, 8) = logu*(ry, 8) .
Further,

*
(12) log u*(r, 5) = log u*(ry, 8) + ( sy,

T

for 0 < r, < r. Therefore,
(13) log u*(ry, 8) = log u*(ry, 8) + {»*(r,, 8) — s} log? .
1

From (11) and (13) the first inequality of (10) follows.

COROLLARY. If f(2) and g(z) are two integral fumctions fX g is not poly-
nomials and a is a constant (0 < a < 1), then

u*(ar, 8)
M, 9)

For from relation (10) with r, = ar and 7, = r we obtain

ar*an)-8 > /‘*(a"'? $) > 1 aav(r,s)—s .
ui(r, s) {"(ar’ 8)}
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Hence the result follows letting r— oo.
THEOREM 3. If the order o of f(2)% g(z) is less than 1/(s-+2), then

u*(r,0) > u(r,1) > u*(r, 1) > u(r, 2) > ...

> u*(r, 8) > u(r, s+1) > u*(r, s+1)
for almost all values r > r, > 1.

Proof. From the second inequality in Theorem 1, we have for
o < 1/(s+2), u(r,s+1) < p*(r, s) for almost all values r > r, > 1. Again,
u*(r, 8 +1) < u(r, s+1). Therefore,

pr(r, 8) > pu(r, s+1) > p(r, s +1).

Similarly, g*(r,1) > u(r, 2) for almost all values r>r,>1 if
e <1/(s+2) < 1/(s+1). Repeating the process for s—2,s—3, ... we get
the required result.

CoROLLARY 1. If f(2) and g(2) are two integral functions of orders p,
(0<p,<1) and g, (0 < g, < 1/(841)), respectively, then

p(r, 0) > u*(r, 0) > p(r,1) > p*r,1) >
> uM(r, s) > pu(r, s+1) > u*(r, s+1)

for almost all values r > ry > 1.

For, we have ([4], p. 421) 1/¢ > 1/0,+1/0,, Where o (0 < p < o)
is the order of f(2) ¥ g(2). Thus from the given condition ¢ < 1/(s+2).
Hence the result follows from Theorem 3.

THEOREM 4. If v(r,s) and »*(r,s) denote the rank of the maximum
term of the power series of f(z) % ¢“(2) and [f(2) % g(2)]® for |z|=r,
respectively, then

[v*(r, 8+1)-‘3]8+11;‘(1', 8) < 7—%:,—:-)1—) < [»(r, s+1)]s+1,,v(r, s+1).

Proof. From
Oz) % ¢z S’n (n—1)%...(n—s41)%a,b,z""°

n=s
we have

(14)  p(r,8+1) = [p(r, s+1){r(r, s-+1)—1) ... {p(r, s +1) — )] x
X | @oir,041)Dyir,g 4| 7T F 81
< [v(rys+1)...(p(r, s+1)—s)| u*(r, s +1)

< [o(r, 841)...folr, s41) )] LT 8 D)

r
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Again
(15) pl(r, s+1) = [p*(r, s+1)...(o*(r, s+1)—s)],u*r s+4+1)

(" 8)

> [*(r, s4+1)... [p*(r, 3+1)—3”

From (14) and (15) the results follows.
Applications. If f(z) % g(2) is of order ¢ and lower order A, then

y(r, s+1)}1/(3+2)
sup og{r (", 8)

_ @
* ST L 3 1/(s+2)
(b)  lim sup 281 (7’3"‘1)1 81 M (r, )}
reo ogr
{,u r, §-L1)/e+2)
—— 4 limsu pt(r, 8)
=0 + 2 p logr
< o = lim sup 28L& 1)), s 41T
h il logr
Therefore,
{y(r , 8+1)Ma+2)
lim sup T $) — o 1
r—00 logr 3+2
(e) Similarly
{,u r, s-+1)VE+2)
]
. . (r 3) . 1
ll—gimf logr =2 1o
(d) If f(z) and g(z) are of regular growth, then
p(r 8 1)|He+2)
: (T 3) o 1
122 logr =e 1o

Let &(r) be any function non-decreasing and positive for » > r, and

log®(r) = 0(logr) for r—oo.
If p(r,s41) >a%_r_)'"‘(r s) for a sequence of values r-»co, then

from (b) it follows that p > 1/(s+2). Again if the hypothesis holds for
all » > r,, then from (c) we get 1 > 1/(s+2).
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If

\

1 <,u(r, s+1)

S w00

i

for all » > r,, then ¢ = 4 =1/(s+2).
From the above discussions it follows: if ¢ < 1/(s+2), then

W r, 0) > D(r)u(r, 1) > S(r)u*(r, 1) > O*(r)u(r, 2) > ...
> S (r)pt(r, 8)> O r)ulr, s+1) > ST r)ut(r, s+1).

for all r > 7,.
This includes the results of Theorem 3.

THEOREM 5. If f(2) % g(2) is of order g, then

1/8
log{‘u,(r’ 3)}
lim sup i, §) 0
P00 logr =7

Proof. We have

plr, 8) < »(r,s)(p(r,8)=1)...(v(r, s)—s+1) u*(r, 8) .

Therefore,
. * 8
llm sup ]'Og [Ju (7 Y 8)/}“ (7’, 8)] < llnl sup log [‘l’(?", 8)] — &
— logr - logr

Hence the theorem follows.
COROLLARY. If f(2) and g(2) are of regular growth, then

1/8

lim log [u(r, s)/u*(r, s)]

r—00 logr
For
ur(r, $)v*(r, 8) ... [*(r, 8) —s+1) < p(r, 8) .
Therefore,
* 1/s
(16) lim inflog[/‘(r’ $)[u*(r, 8)] =1,

r>00 logr

where A is the lower order of f(z)%g¢g(z). Now it is known that if
f(2) and g(2) are of regular growth, then f(2)% ¢(z) is also of regular
growth.

Hence applying the inequality (16) and the result of Theorem 5, the
corollary follows.
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THEOREM 6. If f(2) and g(z) are two inlegral functions of regular
growth, u(r,s) is the maximum term and »(r,s) is its rank in the Taylor
series of f(z) % ¢°(2), then

[(r, O

p(r, 8)~u(r, 0) e ’

as r—>oo with the ewception of a set of values r of measure zero.
Proof. Differentiating (6) and (12) we have

mirys)  »(r,s)—s and pi(r, 8) _ v*(r,8)—s
’

plrys)y 1 prr,s)or
for almost all values of r except at a set of measure zero.
Now
log {»(r, s)— 8} _ log (»*(r, 8)—s)
— Q = 11 ;
r>00 logr —— logr
hence

(74 8) lll(" 8)
u(r,8) " uir, e

Again it is known ([2], p. 107) that

pi(rys) p*r,s+1) vr,s) 0¥, 0)
prrys) W, s) ro T
Therefore,
(17) Ml(T, -S') va*(’r’ 0) - 1’(7'7 0) .

u(r, s) r 7

Also we have [1]

pl(ry 8)u(r, s41) 172
(7 8) N[ r ] .
Hence
w7, S)N[I‘("v 3+1)]1/2
u(r, s) wu(r, 8)r '
Therefore,

p(r, s+L1=  v(r, 0)
W ~Tar

Taking in place of s the values 0,1, 2, ..., 8—1 and multiplying the
formulae thus obtained we find

oo
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Application.
1/
1o r{l‘(ﬁ 8)
lim # M, 0) — i 082 OF
- logr ro  loOgr

In conclusion, I offer my grateful thanks to Prof. 8. K. Bose for
his guidance in the work.
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