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A uniqueness criterion for fractional iteration®

by B. A. REzNick (Pasadena, Calif.)

Abstract. The uniqueness of solutions to the functional equation fN(z) = h(z).
Let hypothesis (H) denote the following assumptions on a real function &:

(HY h is of class C* in [0,a),0 <a < oo, k' (0) =8 with 0 <8< 1, h'(z) > 0 in
(0, @) and 0 < h{z) < = in (0, a).

THEOREM 1. Suppose the functions f, g, and h each satisfy hypothesis (H), and that,
further, b’ is monotone in a subinterval [0, b) of [0, a). If f¥(x) = ¢V (z) = h(x), then
f =g on [0, a).

THEOREM 2. Suppose fN (z) = h(x), where f and h satisfy hypothesis (H). Suppose
Sfurther that he C3, b’ (x) < 0 and (A" (x))2 > b/ (z) b’ () on [0, a). Then f’ is decreasing.
The proofs to Theorems 1 and 2 are both elementary.

1. Introduction. The question of uniqueness in the solution of the
functional equation
(1) (@) = k(=)
is of some interest. Let k be a real function with the following properties:

(H) & is of class Ctin [0,a), 0 <a<< oo, ' (0) =s with 0 <8< 1,
h'(z) >0 in (0,a) and 0 < h(z) < z in (0, a).

Kuczma [1] proved that if h fulfils hypothesis (H), and f is a strictly
increasing C! solution of equation (1), then f satisfies in (0, a) the differential
equation:

(A) (@) = Vs-G(z, f(),
where s = f'(0) and

W (W (@)
L )

Using a uniqueness theorem for solutions of equation (A), Kuczma and
Smajdor [3] proved that if h satisfies hypothesis (H), then equation (1)
has a unique increasing C' solution provided h satisfies one of three addi-
tional hypotheses.

G(w’ y) =
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1° 0 < ¢ <1 and the limit

) s"
lim

n—>00 1;70 X (h‘(a:))

exists, is continuous and different from zero in (0, a).

2° 0<s<1andb(x) =s8+0("),2—>0,5>0.

3°s =land h'(z) = 1 —A(u+1)a*+ 0 (2**°%), £ > 0+, where A, 6, u
are positive constants, d < u.

In this paper, a theorem closely related to that quoted from [1] will
be discussed regarding uniqueness of solutions to equation (1). Additionally,

a criterion for the preservation of concavity under fractional iteration
will be described.

2. Uniqueness.

THEOREM 1. Suppose the functions f, g, and h each satisfy hypothesis
(H) and that, further, b’ is monotone in a subinterval [0, b) of [0, a). If
(@) = g¥(@) = h(a), then f = g on [0, a).

Proof. Note first that the conditions fe C1[0, a) and 0 < f(z) < x for
ze [0, a) imply f(0) = 0, and similarly, g(0) = h(0) = 0. Taking the deriv-
ative of equation (1), for f and g, we obtain:

N-1

2) [[7f @) =¥ @),
i=0
N-1 .

(3) [] 9 (¢ @) =¥ ().
=0

Putting # = f(z) into equation (2) and dividing

@)  W{f)
(@) W(z)

(4)
Similarly,
g'(h(z)) _ Mg(a)
g'(®) k(@)

There is no difficulty in dividing, as all derivatives are non-zero.
Note also, that as 0 < A(t) <t for all te [0, a), lim A" (f) = 0.
* n—00

(8)

Now consider the subinterval [0, ) on which 2’ is monotone. If
f(2) >g(a) for all 2 (0,d), then h(z) = f¥(z) >g(f*~(2)) > ¢*(~*(a))
>... >gN“(f(a:)) > g¥(x) = h(x). A similar contradiction results from
the assumptions that g(x) > f(x) for all xe(0,b). Thus, there exists
zy¢ (0, b) for which f(z,) = g(x,).
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Suppose now that f(y) = g(y). From equations (4) and (5), we con-
clude that:
(6) fv) _ g (k)

() g ()
But, as f(y) = g(y), h{f(y)) = h(g(y)), and since h commutes with

f and g, f(h(y) =g(h(y). Thus, f(y) =g(y) implies that f(h™(y))
= g(h™(y)) for all m. Hence,

;) _ g ()
I (P™(y)) g (F™(y) °

Multiplying equation (7) for m = 0,1, ..., k—1, we obtain
Fir@) _ o (W)

(7)

8
® I ) g9'(y)
Taking the limit as k — oo, and cross-multiplying,
f'y) _ f(0)
®) 7@ g0

But, from (2), (3), and the hypotheses, when z = 0, (' (0))¥ = (¢’ (0))Y
= h'(0). As f'(0) >0 and ¢'(0) >0, we see that f'(0) = g’'(0). Thus,
if f(y) = g(y), then f'(y) = g'(¥).

For all z, by combining equations (4) and (5), we obtain
I (h(x)) _ K (f(@) @)
g'(h@)  Hig@) @

This is true, in particulatr, for & = hA™(y), so, as h commutes with f
and g,

(10)

a fmiw) _ MA@ fEme)
g K (Emew) 9Em)

By multiplying these together for m = 0, ..., k, we obtain
riw) _ fw | X Emrw)
g+y) 9w LLw(rm(g)

(12)

Suppose that for ye[0,b),f (¥) = ¢'(y), but f(y) # g(y), without
loss of generality, f(y)>g(y). Then, as y < b, i™(f(y)) and A™(g(y))
fall within the domain of monotonicity of A’. Further, as k is an increasing
function, k”‘(f(y)) > h™(g(y)). Thus, either every term in the product
in (12) is greater than 1, or every term is less than 1. Taking k¥ — oo in
(12), the left-hand side converges to f'(0)/¢'(0), which we have already
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established to be 1. Further, by assumption, f'(y) = g'(y), so that the
infinite product must converge to 1. But, as the terms are uniformly either
greater than 1, or less than 1, we get a contradiction: Hence, if f'(y) = ¢’ (¥),
then f(y) = g(¥). '

Combining the above, we have that for ze [0, b], f(z) = g(z) if and
only if f'(») = g’ (x). Further, there is an x, s 0 for which f(xz,) = g(z,).
Let 8 = {r:ze [0, z,] and f(x) = g(x)}. As f and ¢ are continuous, 8§ is
closed, and as 0e S, zy¢ S, the set T = [0, z,]\ S is open. Suppose T #* @,
then as T is open, write 7' = | (¢;, d;), @ union of disjoint open intervals.
Let (¢, d) be one of those intervals. Then ¢¢ T, d¢ T as the intervals are
disjoint. Hence ce S,de 8, so f(¢) =g(c) and f(d) = g(d). But then,
by Rolle’s Theorem, He, ¢ < e < d, such that f'(e) = g'(¢). Hence f(e)
= g(e), so0 ee S, but ee(¢,d) = T, a contradiction. Thus, T is void, and
8 = [0, z,].

Now let K = min|a, inf({z: f(z) +# g(x),#>0})]. If K <a, then
f(z) = g(x) for 0 <z < K, and f(K) = g(K) by continuity. As f(K) < K
and ¢g(K)< K, by continuity again, there is & >0 such that f(¢) < K
and ¢g(t) < K when 0 <t< K+¢ As K < a, by its definition, there is
ue (K, K+¢) for which f(u) # g(u), say, f(u) > g(u). But, on [0, K],
f =g,50f¥! = g™, and both functions are increasing. Thus, as f(U) < K
and g(U) < K, fV7'(F(u))>F""(g(u). But, fY'(g(w)) =g""(g(u).
That is, f~(u) > ¢~ (), or h(4) > h(u), a contradiction. Therefore, K = a,
and the theorem is proved.

3. Concavity. In case the functions f and » satisfy equation (1) and
hypothesis (H), and if, further, f’ is decreasing on [0, a), then A’ is de-
creasing as well. For, by equation (2), »'(x) is the product of N terms,
each of which is positive and decreasing. As for the converse, Kuczma
and Smajdor [2] proved the uniqueness of concave solutions to equation
(1), given that h is concave, that there is a unique concave increasing
solution. (Actually, they proved it for k convex as well.) The following
is a partial solution to the existence question:

THEOREM 2. Suppose f¥(x) = h(z), where f and h satisfy hypothesis
(H). Suppose further that heC? h''(x) <0 and (k' (x))* >h'(x)h'" (x)
on [0, a). Then, [’ is decreasing.

Proof. Note that the hypotheses of Theorem 2 imply those of Theorem
1, so that the function f is unique. By equation (4), for any « and y, we
have

(13) Fir@) _w(f) fr@) _w{fe)

F@ — k@ fly) K
Thus, as f(z) < x and b’ decreasing, f’ (k(z)} > f’ (x) for all z. Repeating
for h(x), h2(z), ..., h™(z), we obtain f’ (k™ (x)) > f’ (x). Taking m to infinity,

s = f'(0) > f'(x). Hence 1 > f'(x).
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Let

hl
(14) @(z) = _(f(_"”))

kb (x)
As he G, fe C1, and k' # 0, we see that ¢e C1, indeed,

B @)k (f(@))f’ (@) =B (@) (f@))
(% (@))?

Now, h'(x) >0, " (f(z)) < 0, and f'(z) <1, so,

W (@) (f(@) = @) (f(@)

(15) 9’ () =

(16) ¢'(2) >

(1 (@)
That is,
n el e
Consider y(z) = ”:_((m)) Then,
(18) v (@) = (" @) =B (@) (@)

(v (@))?
But, by hypothesis, (h'(x))2>h'(x)h'" (2); therefore v () > 0.
Hence, by (17),

(@) (f(@)

(19) ¢’ (z) >(w(w)—w(f(w))) W@

And, as x> f(2), h''(%) <0, h"”(f(»)) <0, the right-hand side is
positive, hence ¢’ (z) > 0. Now pick z, and «, in [0, a) with z, < x;. Then,
by the above ¢(z,) < ¢(2,). That is,

K (f(wo)) b (f(wl))
20) W) o R(a)

But, by equation (13), and transposing,

(=)  f (h 371))
(&) I (@) <f (h(a’o)

As zy < x,, B¥(zo) < BE(x,) for kK =1,2,..., and so (21) becomes

@) [ (h’m(wl))
22 .
(22) I () = I (hm(wo))
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Let m — oo, h™(x,) - 0, h™(x,) - 0, therefore,
(4 (4 0

3) Fle) 110 _
J' (@) ~ f(0)

So, if #, < @, then f'(z,) < f'(x,). Hence, f’ is decreasipg.
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