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DIAGONAL TRANSFORMATIONS

A result of Stoer and Witzgall, concerning transformations by diagonal
mat.nces (in a normed linear space), is generalized in the sense that it applies to
@ Wider class of norms as well as to pairs of vectors that are not strictly positive.

1. Introduction. In 1962 Stoer and Witzgall [6] proved the following
theorem:

THEOREM 1. Given an absolute norm and two positive vectors y > 0 and
X >0, there exists one, and up to positive multiples only one, nonnegative
"onsingular diagonal matrix D > O such that y ™D and D~ 'x form a dual pair.

A few years later, i.e., in 1967, Gries and Stoer [4] generalized the above
thf?Orem in the sense that it applies to other than absolute norms as well as to
Pairs of vectors that are not strictly positive. '

In this paper we obtain further generalizations of Theorem 1 in the
afore-sajd sense; this we achieve by judiciously utilizing a fundamental result of

enger [7], namely, Theorem 2 therein. Finally, we summarize in a very
“ompact form the results obtained herein and elsewhere ([4], [6]) in the case
Where y and x are positive and nonnegative (with coinciding zeros), respec-

ti"fﬂy, and appropriately comment upon them.

?- Background and preliminaries. A norm ||| in a finite n-dimensional
Uclidean real or complex space (R” or C") is a real function with the following
three properties:

|x]] >0  for all x# 0, xeR" (or C"),
flax| = ajix|| for all real numbers « = 0,
lx+yll < x|+ )yl for all x,yeR" (or C").

Such o norm is known as a weakly homogeneous norm.
:The norm ||-||” (defined in the space of all row vectors y¥) dual to the norm
I 3s defined by

R
#pp _ gup ROV

Iy :
x#0 ”x”
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(Note that y? denotes the conjugate transpose of y.)
- A pair of nonzero vectors, y¥ and x, is dual with respect to the norm ||- | if

M Iy#1°1x]| = Rey"x.
Symbolically, this will be written as y%||x.
A norm ||| is strictly homogeneous if

laxll = |elIx]] for all real numbers «, xeR"
or
IBxll = 1Bl x| for all complex numbers B, xeC".
A norm || is absolute if
| %l = Ixlll,  xeR" or €,
where, as usual?
xI = (%4, 1%, -oos b DT = (xg, x5, .05 %)

(Note that xT denotes the transpose of x.)
If the norm ||| is strictly homogeneous, then the right-hand side of (1) is
replaced by |y"x|, and, in general, for any norm,

I¥*IPx] > Re yx,
known as Hoélder’s inequality.
A norm ||| is monotonic if
Ix] < |yt implies x| < iIyll,

where |x| < |y| means |x|<|y), i=1,2,..., n.
* The least upper bound norm of an (n x n)-matrix A, denoted by lub(4), with
respect to the norm |||, is given by

, | Ax|
lub(A4) = su .
W=
It can be shown [1] that for absolute norms
) lub(D) = max|d,],
where
dll
D = dzz. = diag[dll, dzz, seey d"’l]'
-. d :

““nn

The following result now follows:
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LEMMA 1. A norm ||-|| is absolute if and only if
lub(D)=1 VD with |D| =1,

Where |D| is the matrix whose (i, j)-th element is |d;l.
Proof If ||| is absolute, then the result follows from (2).

Conversely, for any x € R” (or C") let D be such that |x| = Dx, and therefore
ID| = 1. Then

lixll] < lub@)lxl = Ix} < ub(D~ Y|} = |II||;
therefore x| = |||x]]l. .
Throughout the rest of the paper 2 will denote the set of all nxn
Donnegative nonsingular diagonal matrices.

A norm |- || in R" is orthant-monotonic if |x| < |y| implies ||x|| < ||y for all
X, y satisfying x,y, >0, i =1, 2, ..., n, where

T T
X=Xy, Xp5 005 Xp) and  y=(yy, Y3, --05 Va) -
_ Orthant-monotonic norms were first introduced in [4] and extensively
Investigated in [3].
Given xeC", where
x = (xy +ixy, xy +ixy, ..., x,+ixy)T,  xj, xj real,
let .
R ’ ’ ’ " ’” mnmT _ ’”
X = (xls X2s veey Xpgy X1y X253 004 xn) =X ®x ’
Where @ denotes the direct sum of the real vectors x, x” with
X =(xy, X, ..., x0T and x"=(x{, x5, ..., x)7. |
Now, given a norm ||:|| in C", a corresponding norm ||| in R?" is defined
by
Ix’@®x"|lg = Ix"+ix"| = lIx|

for all vectors x® of R?".

A norm |- || in C" is orthant-monotonic if and only if the corresponding norm
Ilg in R?" is orthant-monotonic. '

We observe that absolute norms (or, equivalently, monotonic norms [17])
are orthant-monotonic; moreover, all absolute norms are strictly homogeneous,
however this is not true for all orthant-monotonic norms.

A norm ||| is symmetric [2] if, for all permutation matrices P and all
Vectors xeR" (or C"),

I1Pxll = flx.

SMbolically, this will be denoted by |x]|p.
In the sequel, P will always denote a permutation matrix irrespective of
Whether this is explicitly stated or not, and PT will denote the transpose of P.
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A coordinate subspace is a subspace spanned by a proper subset of the set
of axis vectors {e,, e,, ..., e,}. Hereinafter u, and u, as well as v, and v, will
always denote elements of coordinate subspaces of R" or C"

A norm ||-|| is subspace monotonic if, for every permutation matrix P and
any x = P(u,;®u,)eR" (or C"),
llu, @0lp < Ixil = llu, @usllp.

(Cf. monotone in [5].)

We observe that all absolute (monotonic) norms are subspace monotonic.

We next present certain results relating to properties of the classes of
norms we have considered herewith.

The following lemma establishes the relationship between orthant-mono-
tonic and subspace-monotonic norms.

LEMMA 2. A norm ||-| in R" is orthant-monotonic if and only if it is subspace
monotonic.

Proof. Assume that ||-| is orthant-monotonic. Then the result follows,
since |u; @0| < |u; Du,| and u, ®0 and u, Pu, lie in one common orthant at
least.

Conversely, suppose that the norm |-| is subspace monotonic and,
furthermore, let x, yeR" be in the same orthant, with |x| < ly|. If x = y, then
the result is trivially true. Assume, therefore, that x and y differ in exactly
k components, 1 < k < n. Then there exists a sequence of vectors

X = x((.))’ x(l)’ . x(k—l), x(k) e y

with x differing from xU*Y in exactly one component and, in addition,
x| < [x4* 1Y) for all j in {0, 1, ..., k—1}.

In order to prove the result, it is necessary to show that, for all j,
Ix? < [xY*V|; therefore, it suffices to show that |x|| < |ly| when x and
y differ in only one component. Assume now that

| x=P(X®n), y=PE®O, XecR"' n0cRk,
with ‘|| < 0] and 70 > 0. Then, on setting A = /0,
x = AP(X@®0)+(1-)P(x®0), Aie[0,1),
and, since the norm ||| is subspace monotonic,
Xl < AUyl +(1 = DI£DO0p < lIyll.

The above lemma does not hold if the norm ||-|| is defined in C™. The
ensuing example illustrates this point.

ExampLE 1. The norm |-l defined by

“x“ = maX{|x1|, Ile, le—x2|}

- 2 . g - .
in C* is subspace monotonic but not orthant-monotonic.
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From the necessity part of the proof of Lemma 2 it is easily seen that if the
Borm |-|| in C" is orthant-monotonic, then it is subspace monotonic also.

The next two lemmas deal with properties of subspace monotonic norms;
these results were originally stated in [2], p. 313, without formal proofs. These
are now provided herewith for the sake of completeness.

LEMMA 3. If a norm ||-| in R" (or C") is subspace monotonic, then the dual
horm |-{? is subspace monotonic also.

Proof. For any permutation matrix P, consider any vector
y = P(v;®v,)eR" (or C").

Ifv, =0, then (v, ®0)¥|2 < yH|iP, so suppose that v, # 0 and let x be dual to
©, ®0YIPT. Next, let x = P(u,®u,), where u, and v, are in the same
Coordinate subspace. Then '

I, @0 IR 1IxIl = Revfu, < Iy"I1°llu, @01, < Iy"IPIxI

On using Holder’s inequality and the fact that the norm |-| is subspace
Monotonic. Since x # 0, it follows immediately from the above that ||-||? is
Subspace monotonic.

Next we present a characterization of subspace-monotonic norms in terms
of dual pairs of vectors.

LEMMA 4. Let the norm |-| be subspace monotonic and let
* = P(u,®0) # 0 in R" (or C") be given. Then, for any vector y* which is dual to
X, Where y® = (v, @v,)"P7, with u, and v, in the same coordinate subspace, the
vector (v, @O)YPT is also dual to x.

Proof. Let y¥ = (v,®v,)?PT be any vector dual to x = P(u, ®0) # 0. By
the duality of the vectors y¥ and x, the Hélder inequality and Lemma 3, it
follows that

Iy#I1P)x]l = Rev¥u, < (v, @O)FIRIx] < Iy*I°lxl;
therefore
(v, @Oy PT||P||x|| = Rev¥u,.

The following lemma generalizes Theorem 9 in [1].

. LEMMA 5. If the norm |- || is subspace monotonic, then the axis vectors e;,
t=1,2,..., n, are self-dual, namely,
el I1°le;ll = 1.

The lemma follows immediately from Lemma 4.

Finally, we introduce another norm which will feature prominently in the
final section of the paper where we summarize the results presented here and
elsewhere ([4], [6]) and discuss them in some detail.

7 ~ Zastos. Mat. 202
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Consider any (weakly homogeneous) norm in C” with the property that for
all x

€) x| = |Rex|, xeC".
The following two lemmas now follow immediately.

LEMMA 6. If any (weakly homogeneous) norm |- || in C" satisfies (3), then the
dual norm ||| satisfies (3) also.

The proof is analogous to that of Lemma 3.

LemMmA 7. If any (weakly homogeneous) norm in C" satisfies (3), then the
dual of any real vector is also real.

The proof is analogous to that of Lemma 4.

From the above, if ||| z. denotes the restriction of ||| (in C™) to R", it
follows that |- ||g. is identical to the restriction of ||-|? to R"; therefore,

@4 - Vgex<y¥ix Vy,xeR"

3. Generalizations. We now present various generalizations of Theorem
1 in the sense that it applies to other than absolute norms and to pairs of
vectors that are not strictly positive. '

In [4] Gries and Stoer proved that Theorem 1 obtains for all norms in R",
including weakly homogeneous norms. Then, by using this result, they proved
the following generalization of Theorem 1:

THEOREM 2. Given an orthant-monotonic norm in R" and two nonzero
nonnegative vectors y,x € R", with matching zeros, there exists De 2 such that
y'D| D~ 'x. Furthermore, the diagonal elements d; of D for which y,, x; are
positive are uniquely determined up to positive multiples, whilst those for which y;,
X; are zero are arbitrary numbers.

We observe that, because of Lemma 2, Theorem 2 obtains for subspace
monotonic norms in R".

From the definition of orthant-monotonic norms in C", given in the
previous secfion, it is easy to show that Theorem 2 implies Theorem 1, and,
furthermore, that Theorem 2 obtains for orthant-monotonic norms in C” (see
[4]). |

It is noted here that the said generalizations obtain for weakly homo-
geneous norms also, provided that the norm is orthant-monotonic. -

We now drop the requirement that D be nonnegative, and proceed to
prove that the afore-said theorems obtain for even wider classes of norms in C”.
First, we state the following fundamental result, due tg Zenger [7]:

THEOREM 3. Let o, >0, i=1,2,...,r, r<n, be any numbers, and let
Piys --., P,€C" be a set of r linearly independent vectors. Then, given any (weakly
homogeneous) norm in C", there exists a dual pair wi||z such that

r
W IIPlzll = w2z = ¥ «,,
i=1
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Where » — Zﬂipi and wiBp, =a; for i=1,2,...,r.
In {7] the numbers o; are scaled so that

Yoo =1.
i=1

Two further generalizations of Theorem 1 are now established in the form
of Theorems 4 and 5.

THEOREM 4. Given any (weakly homogeneous) norm in C" and two nonzero
vectors y,xeC", with |y, Ix| >0 and arg(x) =arg(y), i=1, 2, ..., n, there
€xists D with |D|e @ such that y"D| D x.

Proof. Let the set of linearly independent vectors referred to in Theorem
be axis vectors, namely,

{pll i= 1’ 2’ AR r} = {ejIjGH},

Where H s a subset of {1, 2, ..., n} and the cardinality of H is r. Correspond-
Ingly, renumber, if necessary, the a; referred to in Theorem 3 so that «; > 0 for
'€H. Next, let «, = 0 for i¢ H. Then, from Theorem 3 it follows that there
®Xists a dual pair, w? and z, such that

n
() WPzl =wiz = Y @, Wz=op i=1,2,...,m,
i=1

Where, a5 usual, w; denotes the complex conjugate of w;, the i-th component of
the vector w.

Now let y and x be nonzero vectors in C* with matching zeros and with
Arg(x,) = arg(y)), i =1, 2, ..., n. Furthermore, let

H={il y,x;#0} and o;=3yx, i=12,...,n,
50 that o, > 0 for ie H. Then, from (5} it follows that
(6) IWEIP izl = whz = yfx, Wz =, i=1,2,...,n.
Next, let D = (d,) be a nonsingular diagonal matrix defined by

i - x;/z; for ieH,
i for i¢ H.

Then ;= p-1x, and from (6) it follows that w,=d,j, for ieH. If the
Cardinality of H is n, then w¥ = y#D and the result follows.

THEOREM 5. Given any (weakly homogeneous) norm in C*, which is subspace
™Monotonic, and two nonzero vectors y,xeC" with matching zeros and
ag(x) = arg(y),i=1, 2, ..., n, there exists D with |D|€ @ such that y*D||D~x.

Proof. This is exactly the same as that of the previous theorem except

at the cardinality of H is less than n, in which case w¥ = y#D + g, where q is
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any vector in C" with q; = 0 for ie H. Since wf||z, it follows from Lemma 4 that
yED|z if ||-|| is subspace monotonic.

4. Examples, discussion and conclusions. We begin this section by giving
two examples which in a sense, as we shall see, complement the results
presented herein and elsewhere ([4], [6]).

ExaMPLE 2. Let ||-| be the strictl.y homogeneous norm on C? defined by
%]l = max {[x; —x,|, |x,l}.
It can then be verified that its dual is given by

(7) 1YH1° = 1yl 41y, + .,

and it is easily seen that (3) obtains; so, for real y, ||y|R. is also given by the
expression on the right-hand side of (7). Since

12, 07 =2> |2, hF|| = 1,

it is clear that ||-|| and ||z, are not subspace monotonic.

By virtue of the remarks in the last paragraph of this section, Theorem
1 holds for ||, and it is easy to derive explicitly the scaling matrix D.-
However, Theorems 2 and 5 fail to hold for ||| and | -| ., since these norms
are not subspace monotonic.

Finally, this example shows that, in general, Lemma 5 does not hold for
nonsubspace-monotonic norms.

ExAMPLE 3. Let |-|| be the strictly homogeneous norm on C? defined by

(8) "x" = max{|x1|, |x2|a le*iX2|}.
Forreal x, |[x(lg, = \/|x|* +|x,/|?, 50 || |z is absolute. From (8), putting either
x; =0 or x,=0, we immediately see that |-| is subspace monotonic.

However, it is not orthant-monotonic and even fails to satisfy (3), since

I(1+i, 27 =2 < 1, 27} = /5.

As ||-|| is subspace monotonic, Theorem 5 holds; however, Theorems 1 and
2 do not hold. In order to see this, let x=y=(1,1)T and let
D = diag[d,,, d,,] be real and nonsingular. Then

1D~ x| = {dif+d3 2}
and
D[P 5 (ELHiV/3)dys 424y,

I(£1+i/3,2)7|
Hence, for all real D,

dol  \Y2(1d,| ldyal\
"yTD”l)lD 1 ” /(I 11‘+|_2_2_+1) ( 11 40227 22 2 6
iyl ldy ] aiTida) >V

= (@} +dhatdy d 1,
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8o, as [yTx| = 2, there is no real D such that y"D}||D~x. For this particular norm
eorem 2 does in fact hold if y and x are not strictly positive, since by Lemma
5 the axis vectors are self-dual. However, if we define a norm ||-||, on C* by

I x{l, = max {lela %51, }xq —ix,l, lxsl},

}t 18 not difficult to see that this norm has the same properties as ||| and,
Urthermore, there is no real D such that

(19 1: O)D“lD_l(19 1’ O)T

Next we note that Theorems 4 and 5 hold for y and x being positive and
nonnegatiye (with coinciding zeros), respectively. For y and x nonnegative, the

TABLE 1
R" ¥, x>0 y,x20,#0
x;=0sy,=0
weakly homogeneous . D=0 iD, Ex. 2
orthant-/subspace monotonic iDb=0 D=0

Iesults obtained herein and elsewhere ([4], [6]) are now summarized in Tables
L'and 2 for the real and complex cases, respectively, and then commented upon.

TABLE 2
n Yy, X = 0, 3‘5 0
C y, x>0 %, = 0<>y, =0
weakly homogeneous 3D, iD>0 3D, Ex. 2
Ex. 3
subspace monotonic ap,ip=0{ 3ID,iD>0
Ex. 3 Ex. 3
orthant-monotonic iDz=0 ip=0

For the various classes of norms and the vectors y and x being positive or
Donnegative (with coinciding zeros), the tables indicate whether or not there
Always exists D such that y”D|D~'x (denoted in the tables by 3D or ID,
Tespectively) and, in the former case, whether or not there always exists such
8 D which is nonnegative (denoted by 3D >0 or AD > 0, respectively). For
those cases in which there may exist no D or no nonnegative D, the number of
®Xample illustrating this is given.
Since Tables 1 and 2 are complete, we conclude that, for the classes of
?}?rms and nonnegative vectors under consideration, the results presented are
€ best possible. We also conclude that, since the norms of Examples 2 and
are strictly homogeneous, the entries for strictly homogeneous norms would
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be exactly the same as those for weakly homogeneous norms, and therefore the
best possible.

Notwithstanding the afore-said best possible results, it is possible to
obtain further improved results if other classes of norms are considered. For
example, consider the class of weakly homogeneous norms with the property
that (3) is satisfied for all xe C". Then, by considering the restrictions of these
norms to R" it follows from (4) that Theorem 1 holds for all weakly
homogeneous norms on C" that satisfy (3). Likewise, Theorem 2 holds for those
weakly homogeneous norms on C” that satisfy (3) and whose restrictions to R”
are orthant-monotonic. It is noted here that all orthant-monotonic norms on
C" satisfy (3), but not all subspace-monotonic norms on C™ have this property,
nor vice versa (see Examples 2 and 3). Additionally, not all norms on C" that
satisfy (3) and whose restrictions to R" are orthant-monotonic (subspace
monotonic) are themselves subspace monotonic. For example, the weakly
homogeneous norm ||-| on C? defined by

[x]| = max{lRexila [Imx,[, [Rex,|, [Im(x, —x,)[}

satisfies (3), ||*|lr. is orthant-monotonic, yet ||| is not subspace monotonic.
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