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Third note on the general solution
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In our two previous papers ([5], [6]) we described the general so-
lution of the functional equation

(1) plf(@)] = G(ma 9’(97)) y

where ¢ is the unknown function: in [5] under the assumption that
f[f(x)] = z, in [6] under hypothesis that f(x) is invertible. Now we are
going to take up this subject again. We shall drop the condition of the
invertibility of f(«x), making instead more restrictive assumptions re-
garding the funetion G(z, y).

Let E and £ be two arbitrary non-empty sets, independent of each
other. In the whole of this paper we shall assume that:

(i) The function f(x) is defined in the set £ and
(2) f(E)CE.

(ii) The function G(z, y) is defined in the set F x & and, for every
fixed 2, ¢ B, G(xy, y) maps the set = onto itself in a one-to-one manner.

Although the condition on @ is rather strong, it is fulfilled in many
important cases, such as for instance the case of the linear equation

¢[f(2)] = bo(x) @ () + by(2)

provided that by(z) # 0 in E.

In §1 we shall study the iteration of the function f(z). In § 2 we
shall introduce a family of functions ,g.(x, ¥) and we shall establish some
properties of these functions. § 3 contains the main result: the con-
struction of the general solution of equation (1) in the class & of functions
that are defined in ¥ and assume values from £. In § 4 we shall apply
this result to some special cases: the Abel equation, the Schréder equation
and the equation of automorphic functions.

§ 1. The iterates of f(z) are defined by
f®) ==, f"H(w):f[fn(w)]’ n=0,1,2,.., zeB.
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According to (2) the functions f*(z) are defined in E for every integer
n=0.

Let {f; '(z)}, A € 4, be the family of all inverse functions to f(z), i.e. the
family of all the functions defined in f(Z) and fulfilling the condition

(3) fifie) =2z for xef(E).

The condition f;'[f(x)] = # in general is not fulfilled.

We define f;™(), » > 0, as the nth iterate of the function f; '(z).
The function f;"(x) is defined in a suitable subset of E, which may be
empty (). In order to be able to write some formulae uniformly, we shall
sometimes write f;(r) instead of f"(x) if » > 0. Of course, if #» > 0, then
fi(z) = f"(x) does not depend om A.

1If /(@) = x5, »> 0, there always exists an index Ae A (in general
not unique) such that f; ™(w,) = x,. It is enough to put f; [f(z,)] = f “(x,)
for j =1, ..., n, and then to extend f;' onto f(E) to an inverse function
to f(x).

For z,,x, ¢ E we write x, « , whenever there exist integers » > 0,
m > 0 such that f*(x,) = f™(x,). The relation ¢ is reflexive, symmetric
and transitive, and therefore the set E can be split into disjoint sets such
that z,, z, belong to the same set if and only if z, ¢ z,. These sets will
be called cycles. The cyele containing an z, ¢ E will be denoted by C(x,), i.e.

Clwy) ={x: ze E, x5},
Consequently

(4) C(z,) = C(x,) 1if and only if o, ¢ @, .

For any positive integer k¥ we denote by Ej the set of those z ¢ F
for which there exists an integer ¢ > 0 such that

(5) @) = fi=)

(here ¢ may depend on ) and (5) does not hold for a smaller ¥ with any
integer ¢. Further we put

(6) E0=E—QlEk.

Consequently E, is the set of those z ¢ E for which
fr¥a) « fw) foralli>0, k>1.

Suppose that e Ex, k¥ > 1. Among integers ¢ > 0 such that (5)
holds there exists a smallest. It will be denoted by J (). Thus the func-

() E.g. if B = (—o0,0) u (0, + ), f(z) = ', then f1'(x) = ex(x) V7, z (0, o),
where [ei(z)]* = 1. (The family of functions e;(z), and consequently also that of fune-
tions f;'(z), has cardinality 2°%) For e¢i(z) = —1 the function fi,(x) is not defined
for any z ¢ E.
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tion J(x) is defined in the set U Ey and is characterized by the fo]lowmg

k=1
property.
LEMMA 1. If v e By, k> 1, then

@) =f@) for ixd(@),
@) + fe)  for i< J(®).

Proof. The second of the above relations results from the detin_ition
of J(x), the first from the fact that for ¢ >J = J(x) we have f¥=)

= 171" @)1 = 171 (@] = f(@).

Now we shall prove the following

LeEMMA 2. If xye Ex, k > 0, then C(x,) C Ej.

Proof. Suppose that x,e Ex, k¥ > 1. Thus there exists an ¢ such
that

(7) FH (@) = fiay) .

Let z € C(z,). Consequently there exist integers » > 0, m > 0 such that

f"(@) = f"(x). Thus we have "™ (&) = 1 “[{™(x)] = f‘*"[f (@)] = 11"+ (@0)]
= 1"If (@)1 = 1" (@)] = fI™(@)] = f*™(@), ie. [T a)=f""(x). Here
k cannot be replaced by a smaller one, for otherwise a similar argu-
ment would show that alse % in (7) is not minimal. Thus z ¢ E;, which
proves that C(z,) C Eg.

Now, if z, € £, and x € O(x,), then x ¢ E,, for otherwise x would have
to belong to an E, k > 1, and on account of what has already been proved
we would have by (4) C(z,) = C(x) C Ex, which is impossible in view
of (6). Consequently C(z,) C E,, which completes the proof.

- LEmma 3. If for an z,¢ E and for an n> 0 fy"(x) = f,."(20), then
fi (@) = fu (o) for all i < n.

Proof. It results from the fact that f[f; “(z)]1= f; " («) (cf. formula (3)).

LemmA 4. If oy, x, € B, and for some non-negative integers n, m, p, q,
we have

(8) @) = @) and @) = (Y@ ,
then n—m = p—gq.

Proof. For argument’s sake let us suppose that p > n. Then we
have

fizs) = (@) = P (@)] = P [M(w)],

ie.
(9) oM@ = (@) -

Since z, ¢ E,, we obtain hence p—n+m = q, i.e. n—m = p—q.
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LEMMA 5. If @y, 23€¢ By, k > 1, and for some mnon-negative integers
n,m, p, q relation (8) holds, then there exisis an inleger r such that
(10) (n—m)—(p—q) = 1k .

Proof. As in the proof of Lemma 4 we obtain relation (9). We may
write

p—nt+tm—q=rk+s,
where r is an integer (positive, negative, or zero) and
(11) 0<s<k.
Thus (9) becomes
fq.+fk+s(ma) = fUa,) ,

whence we get for ¢ = J(x,)

f{+q+rk+a(wa) — fi+4(w2) .

By Lemma 1 we obtain hence

fH () = [ ay)
which, in view of (11) and of the definition of the sets Ej, implies 8 = 0.

Hence (10) results.
If ,:2, and 2,, 7, € E,, we put

D(zy, ;) = n—m,

where n, m are such that f*(z;) = f™(«s). According to Lemma 4 the
funetion D(w,, 2,) is unambiguously defined. '

§ 2. It follows from hypothesis (ii) that there exists a unique function
G '(w, y) inverse to G(x,y) with respect to . The function G~ Y(z, y) is
defined in F x Z, like G(z, ¥). Now we define functions ¢.(z, y) by the
relations

o(Zy Y) =Y,
(12) In1(@, Y) = G[ﬁ(w)i gn(z,y)], n=0,1,2,.,
lgn—l(m’ y) = G-l[ﬁ_l(w)a ).91:(5'7, y)] ’ n =0, _]-y —21 oo

For n > 0 instead of ,ga(z, y) we shall often write simply g.(x, y), since
in this case :ga(z, ¥) is independent of A.

The function ,g.(z,y) is defined for @ ¢ E, y ¢ £ whenever fi(z) is
defined. For % > 0 iga(®, y) = ga(®, y) is defined in the whole of £ x Z.
As an easy consequence of Lemma 3 we obtain the following

LEMMA 6. If for an x, € E and for an integer n we have f3(xy) = fu(x,),
then 1gn(%y, Y) = ugn(o, y) for y e 5.
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Let us note also the following lemmas.
Levma 7. If a0, b >0, or a <0, b <0, then

(13) Wa+b(Ty Y) = 29l F2(@), 296(2, ¥)],

provided that one of the terms is defined (2)
Proof. We shall prove (13) for a < 0, b < 0; the proof in the other

case is similar. For ¢ = 0 (13) is obvious. Suppose that (13) holds for
an ¢ < 0 and every b < 0 and that ;g,.5-1(2, ¥) is defined. We have by (12)
Garo-1(@, ¥) = GTTHT @), garal(@, Y)]
=G lfg-'-b ! (@), Aga‘ﬁ(w)y (@, y))]
= G_llﬁ_l(fg(w))a lga(fg(m)7 go(@, y))] y
and again by (12) we obtain

sJatb—1(@y ¥) = s9aslfol®), :95(2, ¥)],

i.e. relation (13) for a—1, b. Now, the left-hand side of (13) is defined
if fi7%«) is defined, and the right-hand side of (13) is defined if f3(fi())
is defined, which ammounts to the same.

This completes the proof.

LEvmA 8. If a >0 and f;[f%(x)] = z, then

G—df(®), galz, ¥)] =y .

Proof. For a = 0 the lemma is trivial. Suppose it true for an a > 0
and let

(14) R @] ==.
Hence (cf. (3)) f7[f* T @)] = f(w), i.e.
(15) | 2 @)] = fa) .

Now we have

(16)  1g-aa[f*" (@), gasi(2, 9)]
—G_llf_a 1(7a+1 ) Ag—a(faH (Z)s Ja+r(@ a?/))]
But by Lemma 7 and formulae (12)
9a+1(Z, ¥) = gdf(®), 0(®, ¥)] = ¢df(2), G(@, ¥)]

(?) This last restriction is essential only if a << 0, b < 0 and should be understood
a8 follows: if one side of (13) is defined, then the other side is also defined and both
are equal.

Annales Polonici Mathematiei XVII 13
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and thus by the induction hypothesis and in view of (15)

(17) Ag—a(fa+1(a7)’ Josa(, y)) = Ag—a(fa(f(w))y gdf(z), G(z, y)]) = G(z,y).
Finally we obtain by (14), (17) and (16)

zg—a-l[fa (%)) gasr(z, ¥)] = _l[w) Gz, y)]l=1vy,

which was to be proved.
For every z ¢ E we define a set V[#] C Z. For z ¢ E, we put V[z] =
Fer ze Ex, k> 1, V[z] is the set of y fulfilling

girx(®, ¥) = gz, ¥) ,

where ¢ = J(x). Because of (6) V(2] is defined for all z ¢ F.
The significance of the sets V'[«] will be shown in the next section.
Now we shall prove the following

LEMMA 9. Suppose that for an x, € E, for some mon-negative iniegers
n,m,p,q and for some parameters A, ue A we have

(18) ’ @] = 29 (w0)]
Then for every y € V[x,)]

(19) 3 -mlf" (@) 5 Gn(@o, )] = ﬂg—q[fp(%)’ gn(Tos )] -

Proof. I. At first we suppose that we have
(20) n—m=7p—q.

Without loss of generality we may assume that p > n. Then we have
also ¢ > m and

2T (@0)] = £ ™1™ (P ()] -
By (18) we get hence
(21) fa P (20) = fM(o)

i.e.

1 (@)1 = £ "1 ()]

and
R (@0)] = £ "1 (#00)] -

On account of Lemma 6 we obtain

(22) 19-mlf(®0) y In(@ay Y)] = WG-mlf"(%0) s Gn(20, ¥)] -
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Now we have by Lemma 7 and by (21)
WI-d (@0} 9o(@0s ¥)) = wf-mlfx U (@0)]s - mlf*(%0) s 92(@0s )])
= I-m(I"(@0) s s —@—mlI"(@0) , G(Z0s ¥)]) -

Applying again Lemma 7 we obtain in view of (20)

9o(Zas Y) = Go—nll" (@) s Gn(To, ¥)] = Ga-mlf™ (%)) Gn(o, ¥)] .

Further we obtain from (21)
(o) = 7M@)
1IN (@o))] = (o) -

Hence we obtain by Lemma 8

and

29— @-mlf* (o) y gp(Tos )]

= #g—(q-m)(fq_m[fn(wo)]y q—m[f"(mo)a gn(wo: y)]) = gn(woy ?I) ’
and finally

wg-of* (@) 5 Go(@oy ¥)] = ug-mlf" (%) , Gn(0, ¥)] ,

whence in view of (22) we obtain relation (19).

II. Now let us suppose that (20) does not hold. Then by Lemma 4
there exists a k¥ > 1 such that z, ¢ Ex and by Lemma 5 there exists an
integer r such that (10) holds. Without loss of generality we may assume
that r > 0.

Let us put 7 =dJ(x,) and let us choose an index w e A such that

(23) 12 (2e)] = F2 90 ()]

Since p—¢q = (p +7)— (¢ +1%), we have on account of the first part of the
proof

(24) I f* (@) 5 Go(Tos ¥)] = wg—(q+i)[fp+i(mo)7 p+i(%oy ¥)] -
Now we shall prove that for every integer 8 > 0 we have

(25) Fo+i+5:(Zoy Y) = 9p+i(Zos Y) -

For s = 0 relation (25) is trivial. Suppose it true for an s > 0. We have
by Lemma 7

(26) Go+irier0i@oy Y) = Gororlf  (To)s Gt (Tos ¥)] .
13+



186 ' M. Kuezma

But since i = J(@,) and ¥ € V[x,], we have f"T¥(x,) = f(@,) and gir1(Zo, ¥)
= g¢(x,, ¥). Thus applying again Lemma 7 and making use of the in-
duction hypothesis, we obtain from (26)

Io+ir@e+0r(Toy ¥) = gp+ak[f‘(wo)7 9oy ¥)] = Gpriter(Toy ¥) = Gp+i(Zo, ¥) ,

which proves that (25) is valid for all integers s > 0.
Since ¢ = J (x,), we have

(27) @) = 1P (@)
(cf. Lemma 1), and hence
(28) fo @O g = fo U ()]

Relations (18), (23) and (28) give

T M (@e)] = f2 4P ()]

Now, we have by (10)
(p+e+7rk)—(g+%) =p—g+rk=n—m,

and in view of the first part of the proof

3g-ml (@), Gn(To, ¥)] = wy—(q+i)[fp+i+rk(wo): Ip+i+rilToy Y)]

whence by (27), (256) for s = r, and (24) we obtain relation (19). This
completes the proof.

Let us write
B = {z: V[z] # O}.
We shall prove the following
LeEMMmA 10. We have f(E*) C E*.

Proof. We must prove that if for an z, we have V{z,) # 9, then
also V[f(z,)] # 9. If x, € E,, this is trivial (cf. Lemma 2). So let us assume
that x,€ Ex, k¥ > 1, and that there exists a y, e V[w,]. We shall show
that then y, = g,(x,, y,) belongs to V[f(z,)].

Since z, € Ky and y, € V[z,], we have

(29) 9i+ 1oy Yo) = 9T, Yo) »

where ¢ = J(x,). We distinguish two cases.

1. ¢ = 0. Then we have by Lemma 1 11 (#,)1 = f(2,), which shows
that J(f(w,)) = 0. Further, acccrding to Lemma 7 and relation (29),

gk(f(wO)i ?/1) = g/ (%0) y 9:(%0,s Yo)] = Gr+1(Toy Yo)

= g1[fk(wo)1 I(Zos Yo)] = (%o Yo) = Y1
which means that y, € V[f(x,)] .
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2. ¢>0. Then, by Lemma 1, 4 (o)1= £ [ ()] and for j < i—1
P41 (@e)] # Ff(2,)]. Consequently J (f(#p)) = i—1. Thus, according to
Lemma 7 and relation (29),

gi—1+k(f(wo), ?/1) = gi—1+x[f (@) y 1oy Yo)] = G+ () Yo)
= Ji(%a, Yo) = Gi—1[F(@0) s 91(Tos Yo)] = gi—l(f(wo)y yl) ’
which means that y, € V[f(2,)]. This completes the proof.

§ 3. In the present section we shall describe a construction of the
general solution of equation (1) in F under the assumption that the
functions f(z) and G(z,y) fulfil conditions (i) and (ii).

At first we shall prove the following

LeEMMA 11. Suppose that a function @(x) satisfies equation (1) in E.
Then for every m >0 and 1e¢ A we have

(30) e[f"(x)] = gulz, p(z)) ,
(31) olfr "(®)] = i9-n(2, ¢(@)) ,

provided that f; ™(x) is defined.
Proof. We prove only relation (31); the proof of (30) is somewhat

simpler. For » = 0 relation (31) is obvious. Suppose it true for an n > 0.
Then we have on account of (1)

elfi"(@)] = o[f(i" " (@)] = G¢(H" (@), e[ (@)])
i.e. by (31) (induction hypothesis)
G (@), plfi " (@)]) = 9-al(z, @(2)) .
Hence, in view of hypothesis (ii) and relations (12)
’?J[ﬁ.—n—l(m)] = G_I[fl—n_l(m)a i.g—-n(a;’ ‘P(w))] = lg—n—l(wi ‘P(m)) ’

which proves that (31) is valid for all » > 0.

LEMMA 12. Suppose that a function ¢ € @ satisfies equation (1) in E.
Then for every x, e E we have ¢(x,) € V[z,).

Proof. For x, ¢ E, this is obvious, so suppose that z,e Eg, k > 1.
Put i = J(x,). Consequently ¥z, = f¥(x,) and

olf ¥ (@)1 = plf(@0)] -

Hence we obtain according to Lemma 11

.‘]i+k(ﬂ’oa ‘P(wo)) = gt(%, ‘P(%)) y
which means that ¢(x,) € V[z,].
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COROLLARY. The condition
(32) Vigl #9 for zeFE

18 mecessary for ihe exwistence of a solution belonging to the class @ of equa-
tion (1) in E.

If condition (32) is not fulfilled, we must replace the set E by the
set E*, in which V[z] # . Lemma 10 guarantees that if the function f(x)
fulfils hypothesis (i) in E, then it fulfils this hypothesis also in E*. Therefore
in the sequal we may assume that V[z] # @ in E.

For an arbitrary subset ¥ of the set £ we define Y[F] as the class
of functions ¢(x) which are defined in ¥ and such that for arbitrary z, ¢ F
o(x,) € V[x,]. In view of Lemma 12 every solution of equation (1) in E
belongs to the class ¥Y[E].

Let A be a set which contains exactly one element (3) of every eycle
contained in E. We write

(33) a(x) =An~ C(x).

The funection a(x) is unambiguously defined in F whenever the set A
has been fixed.

THEOREM 1. Suppose that hypotheses (i) and (ii) are fulfilled and
Viz] # O for x € E. Let A be a set containing exactly one element (3) of every
cycle contained in E. Then to every funclion g(x) belonging to the class ¥[A]
there exists exactly one function @(x) which belongs to the class @, satisfies
equation (1) and fulfils the condition

(34) (@) = pof@) for wed.
This function is given by the formula
(35) (@) = ig-m(f"[a(@)], ga[a(x), pofa(x))]) ,

where the function a(x) is defined by (33), and the integers n,m >0 and
the index A e A are chosen in such a manner that

(36) j{"'[f"(a(:v))] =,

Proof. Since by (33) = ¢ a(x), there exist n, m and A fulfilling (36).
In view of Lemma 9 the right-hand side of (35) is independent of the
choice of n,m, A fulfilling (36). Consequently the function ¢(z) is by
formula (35) unambiguously defined in the whole of E and evidently
belongs to the class @. We must prove that ¢(z) satisfies equation (1)
in E, fulfils condition (34) and is the unique function with these pro-
perties.

(®)) Here we make use of the axiom of choice.
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Let us fix an z ¢ ¥ and n, m, 2 such that (36) holds. Since x ¢ f(z),
we have (cf. (4) and (33)) a(x) = a[f(x)]. Hence, according to (36)

M alf @)])] = f()

and consequently

(37) o[} (@)] = 1g-mss(f"[a(2)], gala(x), gola(a))]) .
On the other hand

(38) Go, p(@) = G{r™("(a(@)]), 19-m{f'a(@)], gafa (), pola(@)])}
But we have by (12)

-n(f"[2(2)], gafa(2), pofa(@))])
= 0@, -mo{Ta(@)], gafa (@), gelata)])]

whence
(39) Ag—m+1(fn[a(m)]; gn[a'(w)y Q’O(a’(w))])

= G{f{m(f“[a(m)]) ’ Ag_,,,(f”[a(:v)], gﬂ[a(w)’ ?’o(a(w))]): .
From (37), (39) and (38) we obtain

o[f(x)]) = G(z, p(2)) ,

which proves that ¢(x) satisfies equation (1).

If zeA, then a(®) =« and (36) holds for m = n = 0. Then (35)
becomes ¢(x) = @y(x), i.e. condition (34) is fulfilled.

Lastly, let ¢(z) be any function belonging to the class @, satisfying
equation (1) in ¥ and fulfilling (34). Let us fix an arbitrary « ¢ F and
n, m, A such that (36) holds. Then we have by Lemma 11 and condition (34)

<p[f"(a(w))] = gn[a'(w)’ ?’(a (.’D))] = gn[a(m)r ?’o(a'(m))] ’

and again by Lemma 11

(@) = p(fi "[f"(a(@))]) = 9-nlf"Ta(@)], ¢[f"(a(@))])
= 1g-m(f"[a(@)], gala(2), po(a(2))}) ,

which means that ¢(x) coincides with function (35). This completes the
proof. )

Remark. According to Lemma 12, formula (35) gives the general
solution of equation (1) when ¢, ranges over ¥[4].
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The following theorem is an immediate consequence of Theorem 1,
and Lemma 12.

THEOREM 2. Under hypotheses (i) and (ii) relation (32) is a necessary
and sufficient condition of the existence of a solution belonging to the class &
of equation (1) in E.

§ 4. We shall illustrate the above results by three examples.

ExampLE 1. Let £ be an Abelian group (written additively) in which
the following condition is fulfilled:

(iii) For any integer n # 0 and any y ¢ & the equation ny = 0 has
the unique solution y = 0.

Let ¢ # 0 be an element of Z. We consider the Abel equation (cf. [1])

(40) elf(@)] = p(z) +-¢,

where f(z) is a function fulfilling hypothesis (i). Here G(z,y) =y +e¢,
and so hypothesis (ii) is fulfilled, since £ is a group. The functions ,g,(x, ¥)
are given by

(@, Y) =y +ne

and are independent of # and A. It follows from (iii) that
Viz]=90 for xel ] Ex,
k=1

and of course V[z] # @ for z ¢ E,. Thus Theorem 2 implies the following

—

THEOREM 3. If f(x) fulfils hypothesis (i) and = is an Abelian group
fulfilling condition (iii), then equation (40) has in E a solulion assuming
values in 5 if and only if f(x) % © (4) for every x ¢ E and every integer
j>0.

In the case where = = R is the group of real numbers, this is a known
result of R. Tambs Lyche ([10]).

In order to give the general solution of equation (40) let us fix a set 4
containing exactly one element of every cycle contained in E. We define
the function a(z) by (33) and the function d(z) by

(41) d(x) = D(a(z), @) .

THEOREM 4. If f(x) fulfils hypothesis (i), £ 8 an Abelian group
fulfilling condition (iii) and fx) #x for B and j> 0, then to every
function @ (z) defined in A and taking values from E there exists exacitly
one functions @(x) satisfying equation (40) in E and condition (34). This
function is given by

¢(2) = pla(z)] +d(z)c .

() Let us note that if for an = ¢ F relation (5) holds, then for o* = f*(x) we have
fr@*) = =*.
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The above theorem results directly from Theorem 1. For = =
Theorem 4 was also found by R. Tambs Lyche ([10]).

ExAMPLE 2. Let £ be a vector space over a number field K, and
Jet 8 = 0 be a number from the field K which is not a root of unity. We
consider the Schroder equation (cf. [9])

(42) p[f(2)] = sp(a),

where f(x) is a function fulfilling (i). The function G(z,y) = sy fulfils
hypothesis (ii), since K is a field and s # 0. The functions ,g.(x, y¥) are
given by

lgn(ma ’!I) = 8"y

and are independent of x and A. It follows from the condition that s is
not a root of unity that

Viz]= {8} for wel)Es,
k=1

where 6 is the null element of Z=.

We fix a set 4 containing exactly one element of every cycle con-
tained in F, and define the functions a(z) and d(z) for z e E, by (33)
and (41), respectively. From Theorem 1 we obtain

THEOREM 5. If f(x) fulfils hypothesis (i), then to every fumction g,(z)
defined in A and taking values from Z there exists exactly one function ¢(x)
satisfying equation (42) in E and condition (34). This funclion is given by

0 for =xe D By,
p(x) = k=1

8¥@gla(x)] for xekE,.

Theorem 5 improves our earlier result ([7], theorem 1.1).

—
(i

ExampLE 3. Let £ be an arbitrary non-empty set. We consider
the equation of automorphic functions (cf. [4])

(43) elf(@)] = ¢(o) ,

where f(x) is a function fulfilling (i). The function G(z, y) = y evidently
fulfils hypothesis (ii). We have for every = ;g.(x,¥) = ¥y and thus

Vig] = & for zeFE.

Let A be a set containing exactly one element of every cycle con-
tained in Z and define the function a(x) by (33). Thus a(x,) = a(w,) if
and only if @, ¢ 3. Formula (35) takes the form

¢(@) = gfa(@)],
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whence it follows that if x, ¢ x,, then ¢(2,) = ¢(z,). Hence we obtain (°)

THEOREM 6. Suppose that the function f(x) fulfils hypothesis (i). A func-
tion p(x) salisfies equation (43) in E if and only if it is constant on every
cycle contained in H.

This is an improvement of a result of S. B. Predié ([8]).

Automorphic functions play an important part in the theory of
functional equations. There are some results to the effect that the general
golution of the linear functional equation of nth order

(44) lf"(@)] = bo(@)p[f" (@) + ... +bns(2) p(2) +ba()

can be expressed by some particular solutions of (44) and at most » arbi-
trary solutions of equation (43) (cf. [2], [3], [4]).

(*) Theorem 6 can be proved without the use of the axiom of choice. In fact,
if @(z) satisfies (43) and f*(z,) = f™(z)), then ¢(z) = @[*(m)] = @[/™(za)] = @(za).
The «if”* part of Theorem 6 is trivial. ’
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