Some relations between Toeplitz and singular integral operators on odd spheres

by A. Gamble and J. Janas (Kraków)

Abstract. The work contains a characterization of various C^* algebras (modulo compact operators) generated by singular integral operators (with a continuous symbol) on odd spheres. These characterizations depend on the analogous results for Toeplitz operators on odd spheres.

Let $S = \{z \in C^n | z| = 1\}$. Denote by $L^2(S)$ the Hilbert space of all square summable functions with respect to the Lebesgue measure on S. Let us denote by $H^2(S)$ the Hardy subspace of $L^2(S)$ of all functions which are radial boundary values of holomorphic functions in $B = \{z \in C^n | z| < 1\}$. See for example [2]. It has been proved by Koranyi and Vagi in [4] that the orthogonal projection operator P of $L^2(S)$ onto $H^2(S)$ is given by a singular integral operator. More precisely, we have for $z \in S$ and $f \in L^2(S)$

(1)
$$Pf(z) = f(z)/2 + P.V. \int (1 - \overline{w} \cdot z)^{-n} f(w) dw, \quad \text{where } \overline{w} \cdot z = \sum_{i=1}^{n} \overline{w}_{i} z_{i}$$

and dw is the normalized Lebesgue measure on S. Here the symbol P.V. means a principal value integral. See [4] for the definition. We are going to give some applications of Toeplitz operators to some singular integral operators, depending on relation (1). Namely, we will describe some C^* algebras generated by singular integral operators (with kernels given by the Szego kernel $(1-\bar{w}\cdot z)^{-n}$). It seems that our results can be also obtained by a direct computation, but we have wanted to emphasize the relation of Toeplitz operators to singular integral operators (which is well known for n=1).

In what follows for a given operator T we denote by T^* the adjoint operator and by [A, B] = AB - BA the commutator of operators A and B. Let $S_1 f(z) = P.V. \int (1 - \overline{w} \cdot z)^{-n} f(w) dw$, $f \in L^2(S)$. Then we can rewrite (1) in the form

$$P = \frac{1}{2}I + S_1.$$

PROPOSITION 1. For any $\varphi \in C(S)$ (the algebra of continuous functions on

S) the commutator $[S_1, L_{\varphi}]$ is compact in $L^2(S)$, where L_{φ} denotes the operator of multiplication by φ in $L^2(S)$.

Proof. Let $z_i: S \ni z = (z_1, ..., z_n) \to z_l$ be the coordinate function. Using the approximation by polynomials in z and \overline{z} (the Stone-Weierstrass theorem) and the symmetry of z_i 's it is sufficient to prove that $[S_1, L_{z_l}]$ is compact. Since $S_1|_{H^2} = \frac{1}{2}I$, we have for each $f \in L^2(S)$

$$(S_1 L_{z_i} L_{z_i} S_1) f = S_1 (z_i P f + (I - P) z_i f) - z_i S_1 (P f + (I - P) f)$$

$$= \frac{1}{2} z_i P f + S_1 z_i (I - P) f - \frac{1}{2} z_i P f - z_i S_1 (I - P) f$$

$$= (P - \frac{1}{2} I) z_i (I - P) f - \frac{1}{2} z_i (P - I) f = P z_i (I - P) f.$$

Writing $Pz_i(I-P) = ((I-P)\bar{z}_i P)^*$ we conclude that the operator $Pz_i(I-P)$ is compact by Lemma of [3]. The proof is complete.

From the above result we easily get

PROPOSITION 2. Let $\varphi \in C(S)$. We define the operator

$$S_{\varphi}f(\xi) = P.V. \int (1 - \overline{\xi} \cdot w)^{-n} \varphi(w) f(w) dw, \quad \xi \in S, f \in L^{2}(S).$$

If $\psi \in C(S)$, then the commutator $[S_{\varphi}, L_{\psi}]$ is compact.

Proof. Applying Proposition 1 the result follows immediately by the equality $[S_{\varphi}, L_{\psi}] = [S_1, L_{\varphi\psi}] + L_{\psi}[L_{\varphi}, S_1]$. The proof is finished.

Note that $S_{\varphi} = S_1 L_{\varphi}$.

PROPOSITION 3. For any φ , $\psi \in C(S)$ the commutator $[S_{\varphi}, S_{\psi}]$ is compact.

Proof. We can write $[S_{\varphi}, S_{\psi}] = S_1 L_{\varphi}[S_1, L_{\psi}] + S_1 L_{\psi}[L_{\varphi}, S_1]$ and the above claim follows by Proposition 1.

The above proposition proves that the operator S_{φ} is essentially normal. In order to describe the C^* algebra generated by the family $(S_{\varphi})_{\varphi \in C(S)}$ we will also need the following proposition.

Proposition 4. Let $\mathscr A$ be the C^* algebra generated by the family $(S_{\varphi})_{\varphi \in C(S)}$. The algebra $\mathscr A$ is irreducible.

Proof. Let X be a projection and $XS_{\varphi} = S_{\varphi}X$ for every $\varphi \in C(S)$. Since XP = PX we can write the following decomposition of X with respect $H^2(S) \oplus H^2(S)^{\perp}$: $X = X_1 \oplus X_2$. But if $\varphi = z_i$ (i = 1, ..., n), then $S_{\varphi|H^2} = \frac{1}{2}T_{\varphi}$, where T_{φ} denotes the Toeplitz operator.

We know by [1] that the C^* algebra generated by Toeplitz operators is irreducible. Thus $X_1 = 0$ or $X_1 = I$.

Let us assume first that $X = I \oplus X_2$. Since $XS_{\varphi} = S_{\varphi} X$ we have

$$(I-P) L_{\varphi} Pf = X_2(I-P) L_{\varphi} Pf, \quad f \in L^2(S).$$

For $\varphi \in C(S)$ and $\varphi \perp H^2(S)$ the last equality is reduced (on f = 1) to $X_2 L_{\varphi} = L_{\varphi}$ and this proves that $X_2 = I$.

If $X = 0 \oplus X_2$, then by a similar reasoning we get $X_2(I-P)L_{\varphi}Pf = 0$, for every $\varphi \in C(S)$, $\varphi \perp H^2(S)$, $f \in L^2(S)$. Thus as above we get $X_2 = 0$ and the argument is complete.

Applying the above propositions we are ready to prove the following theorems.

THEOREM 1. The C^* algebra of generated by the family $(S_{\varphi})_{\varphi \in C(S)}$ contains the ideal \mathcal{H} of compact operators in $L^2(S)$ and the sequence

$$(0) \to \mathscr{K} \to \mathscr{A} \xrightarrow{\tau} C(S) \to (0)$$
 is exact,

where $\tau(S_{\varphi}) = \frac{1}{2}\varphi$.

Proof. By Proposition 4 we know that the algebra $\mathscr A$ is irreducible. Thus $\mathscr A\supset \mathscr K$ since $[S_{\varphi},S_{\psi}]\in \mathscr K$, for any $\varphi,\psi\in C(S)$. Therefore by a standard reasoning (see for example [1]) it is sufficient to prove: S_{φ} compact implies $\varphi=0$. Assume that S_{φ} is compact. Denote by $\sigma(S_{\varphi})$ ($\sigma_e(S_{\varphi})$ respectively) the spectrum of S_{φ} (the essential spectrum of S_{φ} respectively). For a given set $Z\subset C$ we denote by $Z^2=\{a^2,a\in Z\}$. Then we can write

$$\sigma(S_{\varphi})^{2} = \sigma(S_{1} L_{\varphi})^{2} \supset \sigma_{e}(S_{1} L_{\varphi})^{2} = \sigma_{e}((S_{1} L_{\varphi})^{2}) = \sigma_{e}(S_{1}^{2} L_{\varphi^{2}} + K)$$
$$= \sigma_{e}(\frac{1}{2} L_{\varphi^{2}}) = \frac{1}{4}\varphi(S)^{2},$$

where $K \in \mathcal{K}$. It follows that $\varphi = 0$ and the proof is complete.

THEOREM 2. The C^* algebra \mathcal{B} generated by the family $\{S_{\varphi}, L_{\psi}|_{\varphi,\psi\in\mathcal{C}(S)}\}$ is commutative modulo the ideal \mathcal{K} , i.e. the sequence

$$(0) \to \mathcal{K} \to \mathcal{B} \xrightarrow{\varrho} C(S) \to (0)$$
 is exact,

where $\varrho(S_{\varphi}) = \frac{1}{2}\varphi$, $\varrho(L_{\psi}) = \psi$.

Proof. The proof of this theorem is similar to that of Theorem 1, by using Propositions 2, 3 and 4.

In the following notation the bar denotes the complex conjugation. Now we will give a characterization of the C^* algebra (modulo the ideal of compact operators) generated by the compressions to $H^2(S) \oplus \overline{H_0^2(S)}$ of operators L_{φ} ($\varphi \in C(S)$) and the projection $\tilde{P} = I \oplus 0$. Here $H_0^2(S) = \{f \in H^2(S), f(0) = 0\}$. It seems that this characterization is new for n > 1.

Let $Q: L^2(S) \to H_0^2(S)$ be the orthogonal projection. By a direct computation or applying Theorem VIII of [2] we know that for any polynomial $p(z_1,...,z_n)$ the operator PL_PQ is compact. If

$$\widetilde{L}_p = \begin{pmatrix} T_p, & PL_pQ \\ 0, & QL_pQ \end{pmatrix}$$

is the compression of L_p to $H^2(S) \oplus \overline{H^2_0(S)}$, then the commutator

$$[\tilde{P}, \tilde{L}_p] = \begin{pmatrix} 0, & PL_pQ \\ 0 & 0 \end{pmatrix}$$
 is compact.

Now we prove that the commutators $[\tilde{L}_{z_i}, \tilde{L}_{z_j}]$ and $[\tilde{L}_{z_i}^*, \tilde{L}_{z_i}]$ are compact for i, j = 1, ..., n. We have

$$\tilde{L}_{z_i} = \begin{pmatrix} T_{z_i}, & R_i \\ 0, & S_i \end{pmatrix}$$
, where $R_i = PL_{z_i}Q$, $S_i = QL_{z_i}Q$.

Thus we get

$$\begin{split} & [\widetilde{L}_{z_i}, \ \widetilde{L}_{z_j}] = \begin{pmatrix} T_{z_i z_j}, & T_{z_i} R_j + R_i S_j \\ 0, & S_i S_j \end{pmatrix} - \begin{pmatrix} T_{z_i z_j}, & T_{z_j} R_i + R_j S_i \\ 0, & S_j S_l \end{pmatrix}, \\ & [\widetilde{L}_{z_i}^*, \ \widetilde{L}_{z_i}] = \begin{pmatrix} T_{z_i}^* T_{z_i}, & T_{z_i} R_i \\ R_i T_{z_i}, & R_i^* R_l + S_i^* S_i \end{pmatrix} - \begin{pmatrix} T_{z_i} T_{z_i}^* + R_i R_i^*, & R_i S_i \\ S_l R_i^*, & S_i S_i^* \end{pmatrix}. \end{split}$$

Since $[T_{z_i}^*, T_{z_i}]$ and R_i are compact, it is enough to prove the compactness of $[S_i, S_j]$ and $[S_i^*, S_i]$. In order to do that it is sufficient to show the compactness of $(I-Q)L_pQ$, where p is an arbitrary polynomial. Note that for any $f \in \overline{H_0^2(S)}$ we have

$$\overline{Qpf} = T_{\overline{p}}\overline{f} - P(\overline{p}\overline{f})(0).$$

Thus denoting $P(\bar{p}\bar{f})(0)$ by $\tilde{f}(0)$ we have

$$\begin{aligned} &\|\overline{(I-Q)pf}\|^2 = \|\bar{p}\bar{f} - T_{\bar{p}}\bar{f} + \tilde{f}(0)\|^2 \\ &= \|\bar{p}\bar{f} - T_{\bar{n}}\bar{f}\|^2 + 2Re(\bar{p}\bar{f} - T_{\bar{n}}\bar{f}, \tilde{f}(0)) + \|\tilde{f}(0)\|^2 = \|(I-P)\bar{p}\bar{f}\|^2 + \|\tilde{f}(0)\|^2. \end{aligned}$$

Therefore for $f_k \in \overline{H_0^2(S)}$, $f_k \to 0$ (weakly) we can write

$$||\overline{(I-Q) pf_k}||^2 = ||(I-P) \overline{p}f_k||^2 + ||f_k(0)||^2 \underset{k \to \infty}{\to} 0,$$

by the above mentioned Lemma of [3] and since $f_k(0) \underset{k \to \infty}{\longrightarrow} 0$. Hence the compactness of $(I-Q) L_pQ$ is proved.

Before we formulate the promised description of C^* algebra generated by \tilde{P} and \tilde{L}_p we also need the following

Proposition 5. The C^* algebra generated by \tilde{P} , \tilde{L}_p (p-runs over the set of all polynomials) is irreducible.

Proof. Let A be an orthogonal projection in $H^2(S) \oplus \overline{H_0^2(S)} = H$, such that

(2)
$$A\tilde{L}_p = \tilde{L}_p A$$
 for every polynomial p .

Since also $A\tilde{P} = \tilde{P}A$ we can write $A = X \oplus W$ with respect to the decomposition $H = PH \oplus (I - P)H$. By (2) we know that $XT_{z_i} = T_{z_i}X$, i = 1, ..., n. It follows that $X = T_{\varphi}$ with some φ in the Banach algebra H^{\times} of all bounded and holomorphic functions in the unit ball B. Since X is a projection, $\varphi = 0$ or $\varphi = 1$. Similarly $Wf = \overline{\psi}f$, $f \in \overline{H_0^2(S)}$, $\psi \in H^{\times}$. Let us consider first the case

 $\varphi = 1$. Then, by (2)

$$PL_bQf = PL_bQ\psi f$$
 for any polynomial b in $(z_1,...,z_n)$

and $f \in L^2(S)$. Thus taking the inner product of the above equality (for f = 1) with an arbitrary polynomial g we get

$$\int b\bar{g}dw = \int b\bar{g}\psi dw.$$

Hence $\psi = 1$. If $\varphi = 0$ the repetition of the above reasoning proves that $\psi = 0$. These two cases complete the proof.

Now we are able to prove the last theorem.

Theorem 3. Let $\mathcal G$ be the C^* algebra generated by $\tilde P$ and $\tilde L_{z_i}$, $i=1,\ldots,n$. The following sequence

$$(0) \to \mathcal{K} \to \mathcal{Q} \xrightarrow{\varrho} C(S) \oplus C(S) \to (0)$$

is exact, where $\varrho(\tilde{L}_z) = z_i \oplus z_i$ and $\varrho(\tilde{P}) = 1 \oplus 0$.

Proof. Let π be the canonical projection of $L(H^2 \oplus \overline{H_0^2})$ onto $L(H^2 \oplus \overline{H_0^2})/\mathscr{K}$. By the above reasoning we know that the elements $\pi(\tilde{P})$ and $\pi(\tilde{L}_{z_i})$ (i=1,...,n) are normal and commute. Since \mathscr{Q} is irreducible and $\mathscr{Q} \cap \mathscr{K} \neq \{0\}$ it follows that $\mathscr{Q} \supset \mathscr{K}$. The standard reasoning [1] proves that for the commutator ideal \mathscr{I} of \mathscr{Q} we have $\ker \varrho = \mathscr{I} = \mathscr{K}$. The proof is complete.

References

- [1] L. A. Coburn, Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973), p. 433-439.
- [2] R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), p. 611-635.
- [3] J. Janas, An application of the theorem of Rudin to the Toeplitz operators on odd spheres, Math. Z. 150 (1976), p. 185-187.
- [4] A. Koranyi, S. Vagi, Singular integrals on homogeneuos spaces and some problems of classical analysis, Annali della Scoula Normale superiore di Pisa Clas. Scienze 25 (1971), p. 575-648.

Reçu par la Rédaction le 21. 03. 1979

