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Let @ = {(#,1):0< # <1,¢>0} and let I" be the boundary of Q.
Consider the boundary value problem of the first type for the
equation
ou  Jp(u)

(1) 5 prrat

where ¢ i8 a given function satisfying certain condition to be specified
in the sequel, with the following initial and boundary data:

(3) u(z, 0) =uo(@) for 021,
u(0,t) =m, u(l,t)=M fort=>0,
m and M being non-negative constants.
We assume that

(i) u, is continuous and non-negative in the interval {0,1), and
%o(0) = m, up(1l) = M;

(ii) ¢ € C*((0, + o)), @(u)>0, ¢'(¥)>0, ¢''(u)>0 for u>0,
@(0) = ¢'(0) = 0, ¢'* satisfies the Lipschitz condition on every interval
{a,b), 0<a<b< oo

(iii) @(ue(x)) is Lipschitz continuous on <0, 1);
(iv) [¢'(#)]*/¢’’ (w) is bounded for bounded .

Definition. Let » be a non-negative continuous function defined
on @ and satisfying (2). The function % is called a weak solution of prob-
lem (1), (2) if

(1) p(u(=, t)) has a strong derivative with respect to  which is locally
square-integrable in @Q;
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(2) for each function f e Cj(@Q) which vanishes at # = 0 and 2 =1
we have

ff[ a(p(u)]dwdwff(w, 0)uy(2)de = 0.

Oleinik et al. [1] have shown that if conditions (i)-(iv) hold, then
problem (1), (2) has a unique weak solution u. Furthermore, in a neigh-
bourhood of each point in @\ I" at which u is positive, all derivatives which
appear in the equation are continuous and satisfy this equation in the
classical sense (Theorems 3 and 4 in [1]).

Now observe that the function

u(z,t) = ¢ (1 —2)p(m)+29(H))

is a solution of (1), independent of ¢, for which #(0,t) = mand (1,t) = M

.The following problem arises ('): do the conditions u(0,¢) = m
and «(1,?) = M imply
(3) limu(s, t) = ¢~H(1~o)p(m)+2p( )1

A positive answer to this question gives the following

THEOREM. Assume (i)-(iv) and let u(x, t) be a weak solution of prob-
lem (1), (2). Then (3) holds for x e {0, 1).

Proof. We consider separately two cases:

(A) 4> 0 on (0,1,

(B) =0 on <0, 1>.

Case (A). Since %, > 0, it follows from Theorem 11 in [1] that
u(w,t) > 0 in Q. Consequently, all derivatives in @\ I' which appear
in (1) are continuous and the equation is satisfied in the classical sense.

The substitutions %, = ¢(u,) and % = ¢(u) transform (1), (2) into

ou
(4) = =9l @ ))a,,

i(x,0) = %y(x) for x€40,1),
(0,1 =¢@(m), u(l,t)=¢(M) forit=>0.
From the inequality ¢’(u) > 0 valid for ¥ > 0 we infer that the trans-

formation % — % is one-to-one. Thus, instead of (3) it suffices to prove
that

(6) lim#(z,t) = (1 —-z)p(m)+2p(M) for €0, 1).

i—00

(5)

(}) For the asymptotic behaviour of similar though different problems see [2]
and [3].
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Take two functions u, ,, %, , € C*(<0, 1)) which satisfy the conditions

(7) 0 < %, (%) < %Up(2) <y 5(®) for xe0,1),
(8) %pi(0) =m, (1) =M (i =1,2),
(9) Ts(0) = Tys(1) =0 (T = @(uy,), ¢ =1,2),
10) %, (@) < (L—2)p(m)+2p(M) < Tyy(e) for 20,1,
(11) Ty, (%) >0 for x €(0,1),
(12) %o (®) <A, |U,(#)<2B for ze40,1),
where

A = sup %,(2),

2<(0,1)

and B is a Lipschitz constant for #%,.

Let 4, (1 =1, 2) be the weak solutions of (1) corresponding to the
initial data %, and having boundary values u;(0,?) =m, w,(1,¢t) = M,
t=0.

Inequalities (7), (10) and Theorem 17 in [1] imply

% (@, 1) < @7'((1 —2)p(m) +2p(M)) < #y(z, 8)  for (v,1) €Q.
Thus, putting %; = ¢(%;), t =1, 2, we have
% (2, 1) < (1 —2)p(m) +2p(M) < Uy(2,t) for (2,1) Q.

Therefore, it is enough to show (6) for %, and %,.

By (8), (9) and Lemma 1 in [1], the functions %, 6%;/dt, 0%,/oz,
0*u, |02 are continuous on Q. Furthermore, in the domain @ all derivatives of %
which appear in the equations obtained by differentiating (4), with ¥ = %,
four times with respect to # and once with respect to ¢, are continuous.

To prove (6) for # = %, we need the following

LEMMA 1. The fundtion %, defined as above has the following properties:

0y (x, ) &, (2, t)
(13) ——-5t-’—>o, T;o for (z,t) €Q.
(14) The functions ou,(0,t)/0x and —0u,(1,t)/0» are non-decreasing
for 1= 0.
(16) For 2x€0,1) and T > 0,
Oy (x, T K
T ) s gtm) 9 (i) | < -,

where K = [ ¢~'((1 —2)g(m) +ap(M))do.
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Proof of (13). Differentiating - both sides of equation (4), with
% = u,, with respect to ¢ and substituting

v(x,t) = 3'?7-1(;:, d ’
we obtain
w97 (w)) IR s
16 = P —_—
(16) % @ ol ) g

It follows from (8), (11) and (4) that o|.> 0. Now, applying the
minimum principle to (16), we obtain v(z,t) > 0 for (»,t) €@, which
gives

0", (@, 1) >0
On?
Proof of (14). It follows from (13) that %,(w, t) is non-decreasing

with respect to ¢ for each # € (0, 1). Hence, for t > ¢’ > 0 and # € {0, 1)
we have the inequalities

uy(», t) —u,(0,1) > Uy (x, t') —u,(0, t')
& = &
and
Uy (1, 1) —u,(x, 1) < ?71(11")-'—‘1(@’ )
=
l1—2 l—a

which prove (14). ’
Proof of (15). Let D = {(#,?): 0<2<1, 0<¢t<T}. Then from
Green’s formula we get

Juldw+ aﬁ‘at=£f(ﬁ,—ﬁ’-)dmdt=

0w

Hence

T 1
a_l lat 3_1 0,t

Since u,(2, T) < ¢~ (1 —a)p(m)+2p(M)) and %,, >0, we have

T
04, (1, 1) 0u,(0, 1)
of[ - ]dt<K.
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From (13) and (14) it follows that the integrand in this inequality
is non-negative and non-increasing. Thus

o (1,T) 0w,(0,T) K
< — <—.
ox oz T
The inequality in (15) follows from the last inequality, from
0u, (0, T) < ouy (x, T) < ou,(1, T)

0

ox = o0x o
which is valid for z € {0, 1), and from
ou, (£, T)

e = (1, T) % (0, T) = g(M) —g(m)

valid for some £ €(0,1).
Let us write the inequality from (15) in the following way:
K  ou,(x,t)
— _g —7
P(M) —p(m) — — < —

Now, integrating these inequalities with respect to z over {0, 2)
and taking into account the condition %,(0,?) = ¢(m), we obtain

K
<p(M)—pm)+  (t>0).

K K
¢(m)+a(p(H) —p(m) — — < (@, ) < p(m) +2(p(H) —p(m)) + —
from which (6) follows immediately.
Now we prove (6) for @ = %,. For this purpose let us put
w(x, t) = Uy(z, 1) — (1 —2)p(m) —2p(M).
It follows from (4) that w(xz, t) satisfies the equation
ow Pw
(17) 7.=P(~’”, el
where p(,1) = ¢'(¢7 (0 + (1 —2)p(m) -+ 2p(H))).
LeMMA 2. If the funotion r(x,t) is a solution of the equation

or >’r

(18) 7 = 1@ os

with q satisfying the imequalities p(z,t) > q(z) for ¢ € (0,1>, t >0, and
rip = wlp, &Prijor* <0 in Q, then w(z,1t) < r(x,t) for (z,1) €Q.
Proof. Put A = r —w. Subtracting (17) from (18), we obtain

h _ b P
a Par TP g
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Since

hlr = 07 P = 07 (q —P)

g; ~ >0,
it follows from the minimum principle that
h(z,t) =r(z,t) —w(o,t) >0 for (o,1) Q.
LeMMA 3. The inequality
p(z,t) > C(z—a?)
.holds, where a positive constant C depends only on A,

A = Sup 172(.’0, t).
(z,8)eQ

Proof. Due to our assumptions on ¢, we can write

2 _ole”'(2)
¢ (2) ¢ (2)
‘with some &, 0 < £ < ¢~'(2). Consequently, we have

= ¢'(§) < ¢'(¢7(2))

¢’ (p7Y(2)) = I;FT(T)'
Hence
P(@,1) = ¢'(¢7w+ (1L —2)p(m) +2p(M)))
w+(1—a)p(m)+ap(M) _ 2p(M)  o(H)
T ¢ w+(1—2)p(m)+op(M) T ¢7HA) T 97 (4)
Let us consider a special case of Lemmas 2 and 3 in which

r(@,t) = E(x—ax?)e™ 2%,

(z —2?%).

The function r satisfies the equation

—_— = — 2 .
% C(z a:)aw"

Let F be a real number so large that for » € {0, 1) the inequality
w(2,0) < E(v»—a2?)

"holds. The existence of ¥ is gnaranteed by (8), (12) and by the definition
-of w.

It follows fron Lemmas 2 and 3 that

E
0<w(,1) < e 6%,
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whence

E
[Zs(@, 1) — (1 —2)p(m) —2p(M)| < -0

and, consequently, (6) holds for %,.

Case (B). Let {#;(x)} be any sequence of positive functions con-
vergent on {0,1) to %,(x).

We assume that for any n (n =1, 2,...)
> mt, wpeC®(K0,1)), |(w)I<2B, (#)"(0)=(7p)"(1) =0,

B being the Lipschitz constant for the function %,.
Let @"*(x,t) (n =1,2,...) be a solution of equation (4) for which

(2, 0) = uy(@), u"(0,1) = uz(0) = p(m,),
u*(1,t) = uy(l) = @(M,) for xe(0,1), t=>0.

In a way similar to that in the proof of Theorem 4 in [1] we may
show that the limit

u(2,t) = lim ¢~ }(@"(z, t))

exists and that it is a weak solution of problem (1), (2).
From the proof of our theorem for case (A) it follows immediately
that the convergence

lg;l;u“(w, 1) = ¢ (1 —2)p(m,) +2p(M,)) (u* =g~ (@)
is uniform with respect to », which means that for any ¢ > 0 there exists
a T > 0 such that
|*(@, 1) —¢™((1 —@)p(m,) —2p(M,))| < &
for #e€<0,1), t>T and n =1, 2,... This inequality implies
limu(a, 1) = g~((1—a)p(m)+ap(M)) for 20,1,

which completes the proof of the Theorem.
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