1980

FASC. 2

ASYMPTOTIC BEHAVIOUR OF ONE-DIMENSIONAL FLOWS THROUGH POROUS MEDIA

BY

TADEUSZ ŚLIWA (WROCŁAW)

Let $Q = \{(x, t): 0 \le x \le 1, t \ge 0\}$ and let Γ be the boundary of Q. Consider the boundary value problem of the first type for the equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2 \varphi(u)}{\partial x^2},$$

where φ is a given function satisfying certain condition to be specified in the sequel, with the following initial and boundary data:

(2)
$$u(x, 0) = u_0(x) \text{ for } 0 \le x \le 1,$$
 $u(0, t) = m, \quad u(1, t) = M \text{ for } t \ge 0,$

m and M being non-negative constants.

We assume that

- (i) u_0 is continuous and non-negative in the interval (0, 1), and $u_0(0) = m$, $u_0(1) = M$;
- (ii) $\varphi \in C^5((0, +\infty))$, $\varphi(u) > 0$, $\varphi'(u) > 0$, $\varphi''(u) > 0$ for u > 0, $\varphi(0) = \varphi'(0) = 0$, $\varphi^{(5)}$ satisfies the Lipschitz condition on every interval $\langle a, b \rangle$, $0 < a < b < \infty$;
 - (iii) $\varphi(u_0(x))$ is Lipschitz continuous on (0, 1);
 - (iv) $[\varphi'(u)]^2/\varphi''(u)$ is bounded for bounded u.

Definition. Let u be a non-negative continuous function defined on Q and satisfying (2). The function u is called a weak solution of problem (1), (2) if

(1) $\varphi(u(x, t))$ has a strong derivative with respect to x which is locally square-integrable in Q;

(2) for each function $f \in C_0^1(Q)$ which vanishes at x = 0 and x = 1 we have

$$\iint_{\Omega} \left[\frac{\partial f}{\partial t} u - \frac{\partial f}{\partial x} \frac{\partial \varphi(u)}{\partial x} \right] dx dt + \int_{\Omega}^{1} f(x, 0) u_{0}(x) dx = 0.$$

Oleřnik et al. [1] have shown that if conditions (i)-(iv) hold, then problem (1), (2) has a unique weak solution u. Furthermore, in a neighbourhood of each point in $Q \setminus \Gamma$ at which u is positive, all derivatives which appear in the equation are continuous and satisfy this equation in the classical sense (Theorems 3 and 4 in [1]).

Now observe that the function

$$u(x,t) = \varphi^{-1}((1-x)\varphi(m) + x\varphi(M))$$

is a solution of (1), independent of t, for which u(0, t) = m and u(1, t) = M. The following problem arises (1): do the conditions u(0, t) = m and u(1, t) = M imply

(3)
$$\lim_{t\to\infty} u(x,t) = \varphi^{-1}((1-x)\varphi(m) + x\varphi(M))$$
?

A positive answer to this question gives the following

THEOREM. Assume (i)-(iv) and let u(x, t) be a weak solution of problem (1), (2). Then (3) holds for $x \in (0, 1)$.

Proof. We consider separately two cases:

- (A) $u_0 > 0$ on $\langle 0, 1 \rangle$,
- (B) $u_0 \geqslant 0$ on $\langle 0, 1 \rangle$.

Case (A). Since $u_0 > 0$, it follows from Theorem 11 in [1] that u(x,t) > 0 in Q. Consequently, all derivatives in $Q \setminus \Gamma$ which appear in (1) are continuous and the equation is satisfied in the classical sense.

The substitutions $\overline{u}_0 = \varphi(u_0)$ and $\overline{u} = \varphi(u)$ transform (1), (2) into

$$\frac{\partial \overline{u}}{\partial t} = \varphi'(\varphi^{-1}(\overline{u})) \frac{\partial^2 \overline{u}}{\partial x^2},$$

(5)
$$\overline{u}(x,0) = \overline{u}_0(x) \quad \text{for } x \in \langle 0,1 \rangle,$$

$$\overline{u}(0,t) = \varphi(m), \quad \overline{u}(1,t) = \varphi(M) \quad \text{for } t \geqslant 0.$$

From the inequality $\varphi'(u) > 0$ valid for u > 0 we infer that the transformation $u \to \overline{u}$ is one-to-one. Thus, instead of (3) it suffices to prove that

(6)
$$\lim_{t\to\infty} \overline{u}(x,t) = (1-x)\varphi(m) + x\varphi(M) \quad \text{for } x \in \langle 0,1 \rangle.$$

⁽¹⁾ For the asymptotic behaviour of similar though different problems see [2] and [3].

Take two functions $u_{0,1}, u_{0,2} \in C^3(\langle 0, 1 \rangle)$ which satisfy the conditions

(7)
$$0 < u_{0,1}(x) \le u_0(x) \le u_{0,2}(x)$$
 for $x \in (0, 1)$,

(8)
$$u_{0,i}(0) = m, \quad u_{0,i}(1) = M \quad (i = 1, 2),$$

(9)
$$\overline{u}_{0,i}^{\prime\prime}(0) = \overline{u}_{0,i}^{\prime\prime}(1) = 0 \quad (\overline{u}_{0,i} = \varphi(u_{0,i}), i = 1, 2),$$

(10)
$$\overline{u}_{0,1}(x) \leqslant (1-x)\varphi(m) + x\varphi(M) \leqslant \overline{u}_{0,2}(x)$$
 for $x \in \langle 0, 1 \rangle$,

(11)
$$\overline{u}_{0,1}^{\prime\prime}(x) \geqslant 0 \quad \text{for } x \in \langle 0, 1 \rangle,$$

(12)
$$\overline{u}_{0,2}(x) \leqslant A$$
, $|\overline{u}'_{0,2}(x)| \leqslant 2B$ for $x \in \langle 0, 1 \rangle$,

where

$$A = \sup_{x \in \langle 0,1 \rangle} \overline{u}_0(x),$$

and B is a Lipschitz constant for \overline{u}_0 .

Let u_i (i = 1, 2) be the weak solutions of (1) corresponding to the initial data $u_{0,i}$ and having boundary values $u_i(0, t) = m$, $u_i(1, t) = M$, $t \ge 0$.

Inequalities (7), (10) and Theorem 17 in [1] imply

$$u_1(x,t) \leqslant \varphi^{-1}((1-x)\varphi(m)+x\varphi(M)) \leqslant u_2(x,t)$$
 for $(x,t) \in Q$.

Thus, putting $\bar{u}_i = \varphi(u_i)$, i = 1, 2, we have

$$\overline{u}_1(x, t) \leqslant (1-x)\varphi(m) + x\varphi(M) \leqslant \overline{u}_2(x, t) \quad \text{for } (x, t) \in Q.$$

Therefore, it is enough to show (6) for \overline{u}_1 and \overline{u}_2 .

By (8), (9) and Lemma 1 in [1], the functions \bar{u}_i , $\partial \bar{u}_i/\partial t$, $\partial \bar{u}_i/\partial x$, $\partial^2 \bar{u}_i/\partial x^2$ are continuous on Q. Furthermore, in the domain Q all derivatives of \bar{u} which appear in the equations obtained by differentiating (4), with $\bar{u} = \bar{u}_i$, four times with respect to x and once with respect to t, are continuous.

To prove (6) for $\overline{u} = \overline{u}_1$ we need the following

LEMMA 1. The function \bar{u}_1 defined as above has the following properties:

(13)
$$\frac{\partial \overline{u}_1(x,t)}{\partial t} \geqslant 0, \quad \frac{\partial^2 \overline{u}_1(x,t)}{\partial x^2} \geqslant 0 \quad \text{for } (x,t) \in Q.$$

- (14) The functions $\partial \overline{u}_1(0, t)/\partial x$ and $-\partial \overline{u}_1(1, t)/\partial x$ are non-decreasing for $t \ge 0$.
- (15) For $x \in \langle 0, 1 \rangle$ and T > 0,

$$\left|\frac{\partial \overline{u}_1(x,T)}{\partial x} + \varphi(m) - \varphi(M)\right| \leqslant \frac{K}{T},$$

where
$$K = \int_0^1 \varphi^{-1}((1-x)\varphi(m) + x\varphi(M))dx$$
.

Proof of (13). Differentiating both sides of equation (4), with $\overline{u} = \overline{u}_1$, with respect to t and substituting

$$v(x, t) = \frac{\partial \overline{u}_1(x, t)}{\partial t},$$

we obtain

(16)
$$\frac{\partial v}{\partial t} = \frac{\varphi''(\varphi^{-1}(\overline{u}_1))}{\left[\varphi'(\varphi^{-1}(\overline{u}_1))\right]^2} v^2 + \varphi'(\varphi^{-1}(\overline{u}_1)) \frac{\partial^2 v}{\partial x^2}.$$

It follows from (8), (11) and (4) that $v|_{\Gamma} \ge 0$. Now, applying the minimum principle to (16), we obtain $v(x, t) \ge 0$ for $(x, t) \in Q$, which gives

$$\frac{\partial^2 \overline{u}_1(x,t)}{\partial x^2} \geqslant 0.$$

Proof of (14). It follows from (13) that $\overline{u}_1(x, t)$ is non-decreasing with respect to t for each $x \in \langle 0, 1 \rangle$. Hence, for t > t' > 0 and $x \in \langle 0, 1 \rangle$ we have the inequalities

$$\frac{\overline{u}_1(x,t) - \overline{u}_1(0,t)}{x} \geqslant \frac{\overline{u}_1(x,t') - \overline{u}_1(0,t')}{x}$$

and

$$\frac{\overline{u}_1(1,t)-\overline{u}_1(x,t)}{1-x}\leqslant \frac{\overline{u}_1(1,t')-\overline{u}_1(x,t')}{1-x}$$

which prove (14).

Proof of (15). Let $D = \{(x, t): 0 \le x \le 1, 0 \le t \le T\}$. Then from Green's formula we get

$$\int_{\partial D} u_1 dx + \frac{\partial \overline{u}_1}{\partial x} dt = \int_{D} \int \left(\frac{\partial u_1}{\partial t} - \frac{\partial^2 \overline{u}_1}{\partial x^2} \right) dx dt = 0.$$

Hence

$$\int_{0}^{T} \left[\frac{\partial \overline{u}_{1}(1,t)}{\partial x} - \frac{\partial \overline{u}_{1}(0,t)}{\partial x} \right] dt = \int_{0}^{1} \left[u_{1}(x,T) - u_{0,1}(x) \right] dx.$$

Since $u_1(x, T) \leqslant \varphi^{-1}((1-x)\varphi(m) + x\varphi(M))$ and $u_{0,1} \geqslant 0$, we have

$$\int_{0}^{T} \left[\frac{\partial \overline{u}_{1}(1, t)}{\partial x} - \frac{\partial \overline{u}_{1}(0, t)}{\partial x} \right] dt \leqslant K.$$

From (13) and (14) it follows that the integrand in this inequality is non-negative and non-increasing. Thus

$$0\leqslant rac{\partial \overline{u}_1(1\,,\,T)}{\partial x} - rac{\partial \overline{u}_1(0\,,\,T)}{\partial x} \leqslant rac{K}{T}\,.$$

The inequality in (15) follows from the last inequality, from

$$\frac{\partial \overline{u}_{1}(0, T)}{\partial x} \leqslant \frac{\partial \overline{u}_{1}(x, T)}{\partial x} \leqslant \frac{\partial \overline{u}_{1}(1, T)}{\partial x}$$

which is valid for $x \in (0, 1)$, and from

$$\frac{\partial \overline{u}_1(\xi,T)}{\partial x} = \overline{u}_1(1,T) - \overline{u}_1(0,T) = \varphi(M) - \varphi(m)$$

valid for some $\xi \in (0, 1)$.

Let us write the inequality from (15) in the following way:

$$\varphi(M)-\varphi(m)-\frac{K}{t}\leqslant \frac{\partial \overline{u}_1(x,t)}{\partial x}\leqslant \varphi(M)-\varphi(m)+\frac{K}{t} \qquad (t>0).$$

Now, integrating these inequalities with respect to x over (0, x) and taking into account the condition $\overline{u}_1(0, t) = \varphi(m)$, we obtain

$$\varphi(m) + x(\varphi(M) - \varphi(m)) - \frac{K}{t} \leqslant \overline{u}_1(x, t) \leqslant \varphi(m) + x(\varphi(M) - \varphi(m)) + \frac{K}{t}$$

from which (6) follows immediately.

Now we prove (6) for $\overline{u} = \overline{u}_2$. For this purpose let us put

$$w(x, t) = \overline{u}_2(x, t) - (1 - x)\varphi(m) - x\varphi(M).$$

It follows from (4) that w(x, t) satisfies the equation

(17)
$$\frac{\partial w}{\partial t} = p(x, t) \frac{\partial^2 w}{\partial x^2},$$

where $p(x, t) = \varphi'(\varphi^{-1}(w + (1-x)\varphi(m) + x\varphi(M)))$.

LEMMA 2. If the function r(x, t) is a solution of the equation

$$\frac{\partial r}{\partial t} = q(x) \frac{\partial^2 r}{\partial x^2}$$

with q satisfying the inequalities $p(x, t) \ge q(x)$ for $x \in \langle 0, 1 \rangle$, $t \ge 0$, and $r|_{\Gamma} \ge w|_{\Gamma}$, $\partial^2 r/\partial x^2 \le 0$ in Q, then $w(x, t) \le r(x, t)$ for $(x, t) \in Q$.

Proof. Put h = r - w. Subtracting (17) from (18), we obtain

$$\frac{\partial h}{\partial t} = p \frac{\partial^2 h}{\partial x^2} + (q - p) \frac{\partial^2 r}{\partial x^2}.$$

Since

$$|h|_{arGamma}\geqslant 0, \quad |p\geqslant 0, \quad (q-p)rac{\partial^2 r}{\partial x^2}\geqslant 0,$$

it follows from the minimum principle that

$$h(x, t) = r(x, t) - w(x, t) \geqslant 0$$
 for $(x, t) \in Q$.

LEMMA 3. The inequality

$$p(x,t) \geqslant C(x-x^2)$$

holds, where a positive constant C depends only on A,

$$A = \sup_{(x,t)\in Q} \overline{u}_2(x, t).$$

Proof. Due to our assumptions on φ , we can write

$$\frac{z}{\varphi^{-1}(z)} = \frac{\varphi(\varphi^{-1}(z))}{\varphi^{-1}(z)} = \varphi'(\xi) \leqslant \varphi'(\varphi^{-1}(z))$$

with some ξ , $0 < \xi < \varphi^{-1}(z)$. Consequently, we have

$$\varphi'(\varphi^{-1}(z))\geqslant \frac{z}{\varphi^{-1}(z)}.$$

Hence

$$p(x,t) = \varphi'\left(\varphi^{-1}\left(w + (1-x)\varphi(m) + x\varphi(M)\right)\right)$$

$$\geqslant \frac{w + (1-x)\varphi(m) + x\varphi(M)}{\varphi^{-1}\left(w + (1-x)\varphi(m) + x\varphi(M)\right)} \geqslant \frac{x\varphi(M)}{\varphi^{-1}(A)} \geqslant \frac{\varphi(M)}{\varphi^{-1}(A)}(x-x^2).$$

Let us consider a special case of Lemmas 2 and 3 in which

$$r(x, t) = E(x-x^2)e^{-2Ct}$$
.

The function r satisfies the equation

$$\frac{\partial r}{\partial t} = C(x-x^2) \frac{\partial^2 r}{\partial x^2}.$$

Let E be a real number so large that for $x \in (0, 1)$ the inequality

$$w(x,0)\leqslant E(x-x^2)$$

holds. The existence of E is guaranteed by (8), (12) and by the definition of w.

It follows from Lemmas 2 and 3 that

$$0\leqslant w(x,\,t)\leqslant \frac{E}{4}\,e^{-2Ct},$$

whence

$$|\overline{u}_2(x,t)-(1-x)\varphi(m)-x\varphi(M)|\leqslant \frac{E}{4}e^{-2Ct}$$

and, consequently, (6) holds for \overline{u}_2 .

Case (B). Let $\{\overline{u}_0^n(x)\}$ be any sequence of positive functions convergent on $\langle 0, 1 \rangle$ to $\overline{u}_0(x)$.

We assume that for any n (n = 1, 2, ...)

$$\overline{u}_0^n \geqslant \overline{u}_0^{n+1}, \quad \overline{u}_0^n \in C^{\infty}(\langle 0, 1 \rangle), \quad |(\overline{u}_0^n)'| \leqslant 2B, \quad (\overline{u}_0^n)''(0) = (\overline{u}_0^n)''(1) = 0,$$

B being the Lipschitz constant for the function \overline{u}_0 .

Let $\overline{u}^n(x,t)$ (n=1,2,...) be a solution of equation (4) for which

$$egin{aligned} \overline{u}^n(x,\,0) &= \overline{u}^n_0(x), & \overline{u}^n(0,\,t) &= \overline{u}^n_0(0) &= \varphi(m_n), \ \overline{u}^n(1,\,t) &= \overline{u}^n_0(1) &= \varphi(M_n) & ext{for } x \in \langle 0,\,1 \rangle, \; t \geqslant 0. \end{aligned}$$

In a way similar to that in the proof of Theorem 4 in [1] we may show that the limit

$$u(x, t) = \lim_{n\to\infty} \varphi^{-1}(\overline{u}^n(x, t))$$

exists and that it is a weak solution of problem (1), (2).

From the proof of our theorem for case (A) it follows immediately that the convergence

$$\lim_{t\to\infty} u^n(x,t) = \varphi^{-1}((1-x)\varphi(m_n) + x\varphi(M_n)) \qquad (u^n = \varphi^{-1}(\overline{u}^n))$$

is uniform with respect to n, which means that for any $\varepsilon > 0$ there exists a T > 0 such that

$$\left|u^{n}(x,t)-\varphi^{-1}((1-x)\varphi(m_{n})-x\varphi(M_{n}))\right|<\varepsilon$$

for $x \in (0, 1)$, t > T and n = 1, 2, ... This inequality implies

$$\lim_{t\to\infty} u(x,t) = \varphi^{-1}((1-x)\varphi(m) + x\varphi(M)) \quad \text{for } x \in \langle 0,1 \rangle,$$

which completes the proof of the Theorem.

REFERENCES

- [1] О. А. Олейник, А. С. Калашников и Чжоу Юй-Линь, Задача Коши и краевые задачи для уравнений типа нестационарной фильтрации, Известия Академии наук СССР, серия математическая, 22 (5) (1958), р. 667-704.
- [2] Н. В. Хуснутдинова, О поведении решений краевых задач и задачи Коши для уравнения типа нестационарной фильтрации при неограниченном возрастании времени, Труды Казанского авиационного института 64 (1961), р. 47-63.

[3] — О проведении решений задачи Коши и краевых задач для некоторых квазилинейных уравнений при неограниченном возрастании времени, in: Материалы 1-й конференции молодых научных работников, г. Казань, Физико-техническая и математическая секция, Казань 1959.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WROCŁAW

Reçu par la Rédaction le 8. 6. 1977; en version modifiée le 19. 5. 1978