FASC. 1

LINEARIZATION OF A CONTRACTIVE HOMEOMORPHISM

 \mathbf{BY}

LUDVIK JANOS (GAINSVILLE, FLA.)

Let X be a topological space and $\varphi \colon X \to X$ a continuous selfmapping of X. We say that φ is linearized in L by Φ if there exists a topological embedding $\mu \colon X \to L$ of the space X into the linear topological vector space L such that $\mu(\varphi(x)) = \Phi(\mu(x))$ for all $x \in X$, where Φ is a continuous linear operator on L.

Let X now be metrizable and let $a \in [0, 1)$. We say that $\varphi \colon X \to X$ is a topological a-contraction on X if there exists a metric $\varrho(x, y)$ on X inducing the given topology such that

$$\forall x, y \in X: \varrho(\varphi(x), \varphi(y)) \leqslant a\varrho(x, y).$$

If φ is a homeomorphism and at the same time a topological α -contraction, we will say φ is a topologically α -contractive homeomorphism.

Let now a > 0. We will say that φ is a topological α -homothety on X if there is a metric $\rho(x, y)$ on X inducing the given topology such that

$$\forall x, y \in X: \varrho(\varphi(x), \varphi(y)) = a\varrho(x, y).$$

The main objective of this paper will be to prove the following

THEOREM. If X is a compact metrizable space $\alpha \in (0, 1)$, and $\varphi \colon X \to X$ a topologically α -contractive homeomorphism, then φ can be linearized in a separable Hilbert space as a homothety. More precisely, for every $\beta \in (0, 1)$ there exists a topological embedding $\mu \colon X \to H$ of X into a separable Hilbert space H such that $\forall x \in X \colon \mu(\varphi(x)) = \beta \mu(x)$.

According to the theorem proved in [1], the mapping φ is a topological α -homothety for every $\alpha \in (0, 1)$, i.e., there exists a metric ϱ on X such that

$$\forall x, y \in X: \varrho(\varphi(x), \varphi(y)) = \alpha \varrho(x, y).$$

We will show first of all that (X, ϱ) can be embedded isometrically in the larger metric space (X^*, ϱ^*) over which φ can be extended as an α -homothety onto.

Let us write $A_0 = X - \varphi(X)$, $A_{n+1} = \varphi(A_n)$ for n = 0, 1, 2, ...We observe that the sets A_n are all mutually homeomorphic and disjoint, and that X can be represented in the form

$$X = igl[igcup_{n=0}^\infty A_nigr] \cup \{a\},$$

where $a \in X$ is the fixed point of φ . The mapping φ has an inverse on $\varphi(X)$ and we have $\varphi^{-1}(A_n) = A_{n-1}$ for n = 1, 2, ...

Let us now introduce the family of sets A_{-1}, A_{-2}, \ldots as mutually disjoint abstract copies of A_0 and disjoint with X. Let us introduce mappings $\varphi_n \colon A_n \to A_{n+1}$ for $n = -1, -2, \ldots$ to be one-to-one and onto. Now we can introduce the set X^* as

$$\left[\bigcup_{-\infty}^{+\infty} A_n\right] \cup \{a\}$$

and the mapping $\varphi^* \colon X^* \to X^*$ in the following way: if $x \in A_n$ for $n \ge 0$, we put $\varphi^*(x) = \varphi(x)$; if $x \in A_n$ for n < 0, we put $\varphi^*(x) = \varphi_n(x)$; and finally we put $\varphi^*(a) = \varphi(a)$.

It is obvious that φ^* is one to one and maps X^* onto itself. Define n(x) = n for $x \in A_n$ and

$$n(a) = \infty, \quad n(x, y) = \min\{n(x), n(y)\}.$$

With this denotation we define a metric ϱ^* on X^* by the formula:

$$\varrho^*(x,y) = \alpha^n \varrho (\varphi^{*-n}(x), \varphi^{*-n}(y)),$$

where n = n(x, y).

Due to the fact that $n(\varphi^*(x)), \varphi^*(y) = 1 + n(x, y)$ we see that $\varrho^*(\varphi^*(x), \varphi^*(y)) = a\varrho^*(x, y)$ for all $x, y \in X^*$. In the sequel we will denote the function φ^* again by φ , and ϱ^* we will denote by ϱ on the whole X^* .

Our next objective will be to show that for every $\beta \in (0, 1)$ there exists a countable family of functions $f_i(x) \in C(X^*)$ such that

- 1. $f_i(\varphi(x)) = \beta f_i(x)$ for all i = 1, 2, ...;
- 2. the family is uniformly bounded on X, i.e. $\mathfrak{A}M \geqslant 0$ such that $|f_i(x)| \leqslant M$ for all $i = 1, 2, \ldots$ and all $x \in X$;
- 3. the family is point separating on X, i.e. for any $t_1, t_2 \in X$ there exists an index i such that $f_i(t_1) \neq f_i(t_2)$.

Let $x \in A_0$ and denote by d(x) the distance between x and $\varphi(X)$: $d(x) = \varrho(x, \varphi(X))$. The function d(x) is positive, because $\varphi(X)$ is compact. Denote by N(x, r) a spherical neighborhood of the radius r > 0 about $x \in A_0$ in X^* (we are working in X^*):

$$t \in N(x, r) \Leftrightarrow \rho(x, t) < r.$$

If r < d(x), then $N(x, r) \cap \varphi(X) = 0$ and it is easily seen that if r < d(x)/2, then all images $\varphi^n(N(x, r))$ are mutually disjoint.

Let us denote by \Re_x the set of all r > 0 such that

- (i) $N(x,r) \cap \varphi(X) = 0$,
- (ii) the family $\varphi^n(N(x,r))$ is disjoint.

It is easy to see that \Re_x is an interval $(0, R_x]$, where $R_x > 0$.

Let us now associate to every $x \in A_0$ and every $r \in (0, R_x]$ a continuous function g(x, r; t) of t on X^* in such a way that:

- (i) $g(x, r; t): X^* \to [0, 1],$
- (ii) g(x, r; t) = 1 for $t \in N(x, r/2)$
- (iii) g(x, r; t) = 0 for $t \in N^{C}(x, r)$ (complement of N(x, r) in X^{*}).

The fact that all $\varphi^n[N(x,r)]$ are disjoint enables us to define the function $f(x,r;t) \colon X^* \to [0,\infty)$ putting

$$f(x,r;t) = \left\{ egin{aligned} eta^n gig(x,r;arphi^{-n}(t)ig) & ext{if} & t \, \epsilon arphi^n [N(x,r)], \ 0 & ext{if} & t \, \epsilon igcup_{-\infty}^{+\infty} arphi^n [N(x,r)]. \end{aligned}
ight.$$

The number β is chosen arbitrarily from (0, 1). Continuity of f(x, r; t) can be easily seen because it can be represented in the form,

$$\sum_{n=\infty}^{+\infty} \beta^n g(x, r; \varphi^{-n}(t)),$$

the sum being uniformly converging on each set of the form

$$\left[\bigcup_{i=n}^{\infty}A_{k}\right]\cup\left\{ a\right\} .$$

The function f(x, r; t) satisfies obviously the equation:

$$f(x, r; \varphi(t)) = \beta f(x, r; t)$$

and is bounded on X because $\varphi^{-n}[N(x,r)] \cap X = 0$ for all n = 1, 2, ... and therefore

$$\sup_{t \in X} f(x, r; t) = \sup_{t \in X} g(x, r; t) = 1.$$

Let Q be a dense and countable subset of A_0 , and let $t_1, t_2 \in X$ be arbitrarily given different points of $X \colon t_1 \neq t_2$. Then at least one of them, say $t_2 \neq a$ and therefore there exists $x \in A_0$ such that $\varphi^n(x) = t_2$ for some $n \geqslant 0$. Consider the neighborhood N(x, r) for some rational $r \in (0, R_x]$ and choose $q \in Q$, $q \in N(x, r/4)$. Then evidently $r/2 \in (0, R_q]$ and the function f(q, r/2; t) separates points t_2 and a, because $f(q, r/2; t_2) = a^n f(q, r/2; x) > 0$ because $x \in N(q, r/4)$, and f(q, r/2; a) = 0, so if

 $t_1=a$, we are done. If $t_1\neq a$, then $y=\varphi^{-m}(t_1)$ for some $y\in A_0$ and $m\geqslant 0$. If we choose the rational number r such that $r\in (0,R_x]$, $r<\varrho(x,y)$ and choose $q\in N(x,r/4)$, then we have again $f(q,r/2;t_2)\neq 0$, f(q,r/2;y)=0 and therefore $f(q,r/2;t_1)=0$, and we have shown that the family f(q,r;t), where $q\in Q$ and r is a rational number from $(0,R_q]$, satisfies our conditions. If we index this function of our family by natural numbers $f_n(t)$, we may construct the desired embedding $\mu\colon X\to H$ by the formula

$$\mu(t) = \{f(t), \frac{1}{2}f_2(t), \frac{1}{3}f_3(t), \ldots\}.$$

REFERENCES

- [1] L. Janos, Topological homotheties on compact metrizable spaces, Nieuw Archief (to appear).
- [2] One-to-one contractive mappings on compact spaces, Notices of the American Mathematical Society, January 1967, p. 133, 67 T 21.

Reçu par la Rédaction le 10.11.1967