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THE TOPOLOGY OF THE FREE TOPOLOGICAL SEMIGROUP
BY

DONALD MARXEN (MILWAUKEE, WISCONSIN)

1. Introduction and preliminaries. Relying more often than not on
existential arguments rather than explicit constructions, investigators
have had difficulty in determining the topological properties of objects
such as the free topological semigroup, the free topological group and
the free product of topological groups. For example, the space of the free
topological semigroup generated by a metric space is itself metrizable;
however, this result is by no means obvious from the construction found
in [1], p. 344. For certain classes of generating spaces the topology of the
free topological group or the free product of topological groups has been
explicitly described and from the description a number of new and inter-
esting results have been obtained (see [7], [9], [13], [15] and [16]).
In Section 2 of this paper we provide an explicit construction of the free
topological semigroup F(X) generated by a space X, a notion first defined
by Christoph in [1], p. 344.

A number of internal characterizations of F(X) are also given in
Section 2 along with conditions sufficient for a topological subsemigroup
of F(X) to be free. The topological properties of F(X) are investigated
in Section 3, and in Section 4 we discuss the uniformizability of the free
topological semigroup.

An associative binary operation on a set will be called a multiplication.
A topological semigroup is a topological space together with a continuous
multiplication defined on it.

For a set X and a subset 4 of a semigroup S, we denote by X" the
Cartesian product of n copies of X, and by A®™ the algebraic product,
in 8, of » copies of A.

A mapping between topological semigroups will be called a homo-
morphism if it is a continuous semigroup homomorphism. It will be ealled
an isomorphism if it is both a homeomorphism and a semigroup isomorphism.

For details concerning the theory of free algebraic semigroups, the
reader is referred to [2], Chapter 9.
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2. Construction and characterizations.

Definition 2.1. Let X be a topological space. A pair (F(X), 6) is
called a free topological semigroup generated by the space X if the following
are satisfied:

(F1) F(X) is a topological semigroup;

(F2) 6: X - F(X) is an embedding;

(F3) 60[X] generates F(X) algebraically; and

(F4) for each topological semigroup 7' and each continuous mapping
w: X - T, there exists a unique homomorphism 2: F(X)—T such
that (£200)(x) = w(x) for every zeX.

If a pair (F(X), 0) satisties (F1)-(F4), we say that F(X) is freely
generated Ly the space X.

The following existence and uniqueness theorems follow from the
paper of Christoph [1]:

THEOREM 2.1 (existence). For each topological space X, there exists
a pair (F(X), 6) satisfying (F1)-(F4).

THEOREM 2.2 (uniqueness). Let (T, y,) satisfy (F1)-(F4). Then a pair
(T,, y,) satisfies (F1)-(F4) if and only if there exists an isomorphism
I'sT,—-T, such that I'oy; = y,.

We proceed now with our construction from which the main result
of this section, Theorem 2.5, will follow.

For a non-empty set X let S(X) be the disjoint union of the family
{X": ne N} together with the multiplication x defined by

/‘((xu ceey Tp)y (Y1 -°'7ym)) = (LyyeeeyLpy Y1y oeey Ym).

Then S(X) is the free algebraic semigroup generated by the set X.
Now suppose X carries a topology. Providing each X" with the usual
product topology and S(X) with the summation of these topologies,
S(X) becomes a topological semigroup. In fact, with respect to this to-
pology, we have the following

THEOREM 2.3. Multiplication on S(X) is a continuous, open, and closed
mapping.

Proof. The continuity and opennecss of u are ecasily verified ; we will
establish that u is a closed mapping. Let 4 be closed in S(X)* and

& = (B, ..., 0p)e S(X)\u[Ad].
For each n, 1 < n < p, select p open sets U(n,1),..., U(n, p) in
X stch that z,e U(n,t),1<i<p, and

»

[] Un, i) ¥ n U(n, i) c S(XP\A.

i=1 i=n-+1
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For each ¢ < p, set
p—1
V) = Un, 1.
n=1

Iy = Y1y Yp)e p[A], then ¥y, ... ¥n)s (Ynirs--os Yp)) e A for
some n < p. It follows that v, ¢U(n, m) for some m < p, whence we have

yé V(1) X ... xV(p). We conclude that
e V(1) X ...xX V(p) = S(X)\u[4].

Let g denote the inclusion mapping from X into S (X).

THEOREM 2.4. For a topological space X the pair (S(X), ﬂ) satisfies
(F1)- (F4).

Proof. Suppose 7T is a topological semigroup and w: X — T is con-
tinuous. The mapping £, defined by

Q(®yy Xy ooy B,) = (1) 0(2,) ... 0(2,),

is, of course, the unique extension of  to a semigroup homomorphism
on S(X). Mereover, £2 is eontinuous since, for each n, the restriction of 2
to X" is a product of the continuous mapping w.

Theorems 2.3 and 2.4 provide the following important result concern-
ing the topological structure of the free topological semigroup:

THEOREM 2.5. If (F(X), 0) is the free topological semigroup generated
by X, then F(X) is homeomorphic to the topological sum of all the finite
Cartesian products of X. Moreover, 0: X — F(X) is a homeomorphism onto
an open-closed subspace of F(X).

Next we consider the analog of the important theorem in discrete
semigroup theory which states that every semigroup is a quotient of a free
semigroup. Let I: F(T) — T be the extension to F(T) of the identity
mapping on a topological semigroup 7. Then T is a retract of F(T) and
necessarily has the quotient topology induced by I; whence we have the
following theorem:

THEOREM 2.6. FEach topological semigroup is a quotient topological
semeigroup of a free topological semigroup.

Remark. It should be mentioned that a somewhat weaker version
of Lemma 2.6 appears in [1], Proposition 1.5, p. 345, and there the obser-
vation is made that 7' will have the quotient topology if I is an open map-
ping (such a condition is necessary and sufficient in the setting of topolo-
gical groups (see [6], 8.23, p. 82). As the following example indicates,
the mapping I need not be open:

Example 2.1. Providing T = [0, 1] with the usual topology and the

multiplication defined by (x, ¥) — 0, we see that T? is open in F(T) while
I(T? = {0} is not open in 7.
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We now offer several alternative characterizations of free topological
semigroups (Thecorem 2.8); each of these is expressed in terms of the inter-
nal structure of the topological semigroup rather than an “external”
mapping property.

A set X is called a free algebraic base for a semigroup T if T is the free
algebraic semigroup on the set X.

THEOREM 2.7. A topological semigroup T is freely generated by a space
if and only if it is freely generated by T\T®O.

Proof. Let Y be a space and let w be a mapping from Y to T such
that (T, w) is a free topological semigroup generated by Y. Setting X
= T\T®, »[Y] = X according to 9.2 of [2], p. 117. Consequently, there
exist isomorphisms Q,: F(Y) - T and 2,: F(X) > F(Y) extending w
and 7!, respectively. Therefore, 2,0 Q,: F(X) - T is an isomorphism
satisfying (2,0 0,)00 = o.

THEOREM 2.8. Let T be a topological semigroup and let X < T be a free
algebraic base for T. Then the following are equivalent:

(a) the space X freely generates T

(b) X is open in T and multiplication is an open mapping;

(¢) X 25 closed in T and multiplication is a closed mapping; and

(d) multiplication i8 an open-closed mapping.

Proof. That (a) implies each of the remaining conditions is a con-
sequence of Theorems 2.4 and 2.2, while implications (d) — (¢) and
(d) — (b) follow easily from the fact that X = T\T®,

Define the mapping i: S(X) - T by

My, oy ooy Ty) = Ty %y ... T,

Then 4 is a continuous, algebraic isomorphism.

(b) — (a). In assuming that (b) holds, we infer that X" is open in 7™
for each ne N, and that A maps each open set in X" onto an open set in 7.
Recalling that 8(X) is the topological sum of {X": ne N}, we conclude
the openness of Ai.

(¢) — (a). (i) We will first show that the restriction of 4 to X" is closed
for each n. Let # be the collection of all sets of the form F, x... x F,,
where each F, is a closed set in X. Condition (¢) implies that A maps each
member of & to a closed set in 7. Since & is a subbase for the closed sets
of X" and 2 is a bijection, 4 is a closed mapping on X"

(ii) Consider the family # = {X™: ne N} which partitions the set T.
If (c) is satisfied by T, then X™ and T™ are closed in T for every n. Since

X = I\T® gpnd XD = P\[TEIL XD U ... u XH],

we conclude that X™ is open in T for each ne N. Therefore, 2 is an open
partition of 7.
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We are now prepared to establish that A is a closed mapping (pro-
vided (¢) is satisfied). It follows from (i) and (ii) that, for each closed set
A in 8(X),

B(A) = {A[ANX"]: ne N}

is a locally finite family of closed subsets of T'; whence A[A] = () #(4)
1s a closed set.

Let T be a free topological semigroup and let 8 be a subsemigroup
of T that is algebraically free. In general, S is not a free topological semi-
group. Even with the added condition that S be open (respectively, closed)
in 7, which guarantees that multiplication on 8 is open (respectively,
closed), § need not be freely generated by a topological space (see Exam-
ple 2.2 below). Conditions sufficient for S to be a free topological semi-
group are given in Theorems 2.9 and 2.10.

Example 2.2. Let R denote the reals with the usual topology and
let S be the subsemigroup of F(R) generated by

X =(0,1)u([1,2) x(0,1)) = F(R).

The set X is a free algebraic base for S. If, for ne N and 1 <17 < n,
A; is (0,1) and B; is either (0, 1) or [1, 2), then

nAiU”Bi = ” (4;uB;)

is open in R". Since SNR" is the union of sets of this form, SNR" must
be open in R"; whence 8 is open in F(R) and multiplication on § is con-
tinuous and open. However, S is not a free topological semigroup since
X is not open in §.

THEOREM 2.9. Let Y be a topological space and X < Y. The topological
subsemigroup of F(Y) generated by X is a free topological semigroup.

THEOREM 2.10. Let Y be a topological space and let S be a topological
subsemigroup of F(Y) that is algebraically free. If S\NS® is either open
or closed in F(Y), then S is a free topological semigroup.

Proof. Set X — S\§®. If X is open in F(Y), then 8§ = (J X™
is also open and, therefore, condition (b) of Theorem 2.8 is satisfied.
If X is closed in F(Y), {X™: ne N} is a locally finite family of closed sets
in F(Y). Thus 8 = (J X™ is closed and condition (c¢) of Theorem 2.8
is satisfied.

We conclude this section with the analog of another important result,
for discrete semigroups, which states that two free semigroups are iso-
morphic if and only if there exists a bijection between their bases (see
[2], 9.3, p. 117). It has been shown that this result does not extend to the
setting of free topological groups (see [4], Section 5).

THEOREM 2.11. A pair of topological spaces generate isomorphic free
topological semigroups if and only if the spaces are homeomorphic.
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Proof. If X and X, are spaces and
Q: (F(X), 0) —>(F(X0), 0,)

is an isomorphism, then (Q06)[X] = 0,[X,] by Corollary 9.3 of [2],
p. 117.

3. Topological properties of F(X). In this section we determine
a number of topological properties which are transmitted from the space
X to its free topological semigroup. We also introduce the notions of
P-semigroup and free P-semigroup and discuss the existence and structure
of the latter.

The following result is immediate from Theorem 2.5:

THEOREM 3.1. (a) Let P be a finitely productive, countably summable
topological property. Then P is a property of F(X) whenever P is a property
of X.

(b) Let P be either an open-hereditary or a closed-hereditary topological
property. Then P is a property of X whenever P is a property of F(X).

It follows from Theorem 3.1 that F(X) is completely regular (respec-
tively, Ty, T, T,, regular) if and only if the same is true for X. The following
corollary lists additional properties which satisfy the hypothesis of
Theorem 3.1 (a) and (b):

COROLLARY. Let P be any one of the following topological properties:

(a) local compactness, (f) 2-nd countability,

(b) o-compactness, (g) real compactness,

(¢) metrizability, (h) topological completeness,
(d) separability, (1) local connectedness.

(e) 1-st countability,

Then P is a property of the space F(X) if and only if P is a property
of X.

The additive semigroap N of positive integers becomes a free topolo-
gical semigroup when given the discrete topology. The semigroup oz,
more precisely, the space N plays an important role in determining the
properties of F(X).

THEOREM 3.2. For each topological space X, N is the continuous image
of F(X) wnder an open-closed homomorphism.

Proof. The continuous homomorphism £2: F(X) — N, satisfying
(200)(x) =1 for all xe X, is an open and closed mapping.

Remark 3.1. It follows from Theorem 3.2, as well as from Theo-
rem 2.5, that F'(x) can never have such topological properties as compact-
ness, pseudocompactness, countable compactness, connectedness and indis-
creteness.
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TUEOREM 3.3. Let P be a countably productive, closed-hereditary topo-
logical property and let X be a space having a closed, singleton subset. Then
F(X) has property P if and only if both X and N have P.

Proof. Necessity. The space X has property P by Theorem 2.5.
Furthermore, the subsemigroup of F(X) generated by a closed singleton
subset is necessarily closed and homeomorphic to N.

Sufficiency. For each ne N let (g,) be that point in X" whose every
coordinate is the fixed point ¢, where {¢} is a closed subset of X. Then the
mapping k defined by

r) = {n} X {w} X [] {(gn)}) re X", ne N,

m#n

is an embedding of Y X" onto a closed subspace of the countable

neN
product N x [] X",
neN
The next theorem can be proved in much the same manner as The-

orem 3.3.

THEoOREM 3.4. Let X be a topological space and let P be a countably
productive, hereditary topological property. Then F(X) has property P if
and only if both X and N have property P.

Definition 3.1. Let P be a topological property. A topological semi-
group T is called a P-semigroup if the topological space T has property P.

Remark 3.2. As an exception to this definition, we define a topolo-
gical semigroup T to be space-metrizable if T is metrizable as a topological
space. The term “metrizable semigroup” will retain its usual meamng
(see Section 4).

The definition of the free P-semigroup generated by X is obtained by
replacing “topological semigroup” by “P-semigroup” everywhere in De-
finition 2.1. The free P-semigroup will be denoted by (FP(X), 65). We
note that if the free P-semigroup exists, it is unique in the sense of The-
orem 2.2,

LeMMA. If Y is any topological space, then either the countable pi'oduct
YN contains a copy of N or Y is indiscrete.

Proof. It is well known that N is embeddable in W%, where W is
either the two-point discrete space or the Sierpinski space (see [14], 3.11
and 3.12, p. 170). For a non-indiscrete space Y, there cxist points a, be X
such that a¢ cly {b}. Thus the subspace {a, b} is either discrete or Sierpinski.

THEOREM 3.5. Let P be a topological property of a space X. Then
(FP(X), 6p) exists and is isomorphic to (F(X), 6) if any one of the following
18 satisfied:

(a) P 18 finitely productive, countably summable;
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(b) X has a closed, singleton subset and P is a countably productive,
closed hereditary property of N;

() P 18 a countably productive, hereditary property of N;

(d) P is a countably productive, hereditary property of some nonm-im-
‘discrete space.

Proof. The sufficiency of conditions (a), (b) and (¢) follows from
Theorems 3.1, 3.3 and 3.4, respectively, and, according to the Lemma,
(d) implies (e).

It is possible for the free P-semigroup to exist and be distinct from
the free topological semigroup; such is the case for the property of in-
discreteness (Theorem 3.6 and Remark 3.1).

THEOREM 3.6. Let P be a productive, hereditary property of X. Then
(FP(X), 0p) exists. Moreover, if P is a property of some two-point space Y,
then (FP(X), 0p) is the free algebraic semigroup on the set X.

Proof. The existence of (FP(X), 0p) follows from the construction
in [1], p. 344. If there exists a non-indiscrete space having P, then
(FP(X), 6p) is isomorphic to (F(X), 6) (Theorem 3.5 (d)).

Now suppose P implies indiscreteness. The two properties are then
equivalent; for if W is an indiscrete space, it is embeddable in ¥" and,
therefore, has P. Now let w be a function from X to a semigroup S. When
given the indiscrete topology, S is a P-semigroup and o is a continuous
mapping and, therefore, can be extended to FP(X).

4. Uniformizability of F(X). A topological semigroup is said to be
uniformizable if there exists a uniformity on the semigroup that induces
the given topology and with respect to which multiplication is uniformly
continuous (see [11], Section 3). In this section it will be shown that the
free topological semigroup generated by a completely regular space is
uniformizable. We also obtain a very useful representation (stated in terms
of metrizable, free topological semigroups) of (F (X), 0), where X is a com-
pletely regular T,-space.

Throughout this section, X and X" will be written in place of 6[X]
and 0[XT* respectively.

A topological semigroup is said to be metrizable (respectively, pseudo-
metrizable) if there exists a subinvariant metric (respectively, pseudometric)
on the semigroup that induces the given topology. Metrizability of a to-
pological semigroup implies space-metrizability (Remark 3.2), however,
the converse is not true (see [12], 4.4).

THEOREM 4.1. The topological semigroup F(X) is metrizable if and
only if X 18 metrizable.

Proof. Let d be a compatible metric on X with d < 1. For points.
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= (Tyy...,%,) and ¥y = (Y, -.-y ¥,») In F(X), write
dy(2,y) = min {1, 2 d(z;, y,-)} if n =m,
1=1
otherwise let do(z, y) = 1. The metric d, is invariant and is compatible
with the topology of F(X).

For a completely regular space X let 2(X) denote the collection of
all continuous pseudometrics on X that are bounded by 1, let Z,(X)
denote the collection {dy: de 2(X)}, where each d, is defined as in the proof
of Theorem 4.1, and let %,(X) denote the uniformity on ¥ (X) generated
by 2,(X). -

THEOREM 4.2. The topological semigroup F(X) i8 uniformizable if
and only if X is & completely regular space.

Proof. The uniformity %,(X) is compatible with both the multipli-
cation and the topology of F(X) (see [11], Theorem 2).

THEOREM 4.3. The free topological semigroup generated by a completely
regular T,-space is dense in the inverse limit of an inverse system of metriz-
able, free topological semigroups.

Proof. According to Theorem 13 of [11], there exists a dense, uniform
embedding of the uniform semigroup (F(X), %,(X)) into the inverse limit
of an inverse system whose objects consist of the metric semigroups
(F(X)*, d;) associated with the psendometric semigroups (F(X), d,).
For de 2(X) let X; be the metric space associated with the pseudometric
space (X, d), and let ¢ denote the corresponding quotient mapping. Since
q is open, ¢q,[X™] = X7, where g, is the product of n-copies of ¢q. Further-
more, words in F(X) that are of different lengths are not identified in
(F(X)*, dy); whence F(X)* is the topological summation of {X%: ne N}.

The category of completely uniformizable T,-spaces and continuous
functions is productive and closed hereditary and, by 15.24 of [3],
P. 232, contains all metrizable spaces. Therefore, the complete uniformiza-
bility of a T,-space X is a condition necessary for F(X) to be an inverse
limit of metrizable, free topological semigroups. Moreover, this condition
is sufficient (see Theorem 4.4). Examples of completely regular 7',-spaces
failing to admit complete uniformities are found in [3], Chapter 5.

THEOREM 4.4. Let X be a completely regular T,-space. Then F(X)
18 the inverse limit of metrizable, free topological semigroups if and only if
X admits a complete uniformity.

Proof. The uniformity #,(X) induces the largest admissible uni-
formity on X and the corresponding product uniformity on each X", n > 1.
Therefore, if X is completely uniformizable, X" for each ne N is complete
with respect to the uniformity inherited from #,(X). Given a Cauchy filter
3 on F(X), there is a unique k for which {HNX*: He 5#} is a Cauchy,
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hence convergent, filter on X*. Thus # itself converges. The completeness
of %,(X), together with Theorem 16 of [11] and Theorem 4.3, effects the
sufficiency.

The author wishes to thank John Mack for his many helpful suggestions

relating to the preparation of this paper.
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