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1. Introduction. An n-dimensional (n > 4) Riemannian manifold M (whose
metric g need not be definite) is said to be conformally recurrent [1] if its Weyl
conformal curvature tensor

1
n—2

(1) Chijk = Rhijk - (ginhk —9ix th + Gk Rij —9hj Ry)

R .
+ m(gugu— Jixdny)

satisfies the condition

Chl'jk,l Cpqtr = Chijk Cpqtr,la

where the comma denotes covariant differentiation with respect to g. The
above relation states that at any point xe M such that C(x) # O there exists
a unique covariant vector ¢ (called the recurrence vector of C) which satisfies
the condition ’

(2) Chijk,l =@, Clu'jk'

Clearly, the class of conformally recurrent manifolds contains all confor-
mally symmetric (Cy;in, = 0) as well as all recurrent manifolds of dimension
n=4.

_ A conformally recurrent manifold (M, g) is said to be simple [6] (s.c.r. for
short) if its metric is locally conformal to a non-conformally flat conformally
symmetric one, i.e., if for each point xe M there exist a neighbourhood U of
x and a function p on U 'such that § = (exp2p)g is a non-conformally flat
conformally symmetric metric.

The following theorem gives a characterization of s.c.r. manifolds:

THEOREM A ([6], Theorem 1). A Riemannian manifold M (dim M = n > 4)
is s.cr. if and only if
(i) Chip # 0 (everywhere on M),
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(11) Chijkt = @, Chijns
(iii) the recurrence vector ¢ is locally a gradient,
(iv) the Ricci tensor is a Codazzi one, ie.,

3) Rijx = Ry .

Obviously, every non-conformally flat conformally symmetric manifold is
necessarily s.c.r. The existence of s.c.r. manifolds which are neither conformally
symmetric nor recurrent has been established in [6]. Thus the class of s.c.r.
manifolds is a natural extension of the class of conformally symmetric ones.

" In this paper we are concerned with a symmetry property of a manifold
which we call a curvature collineation. A vector field v on M is said to be
a curvature collineation [S] (CC for short) if
(4) Lu Rhijk = Oa
where L, denotes the Lie derivative with respect to v. It is worth noticing that
the investigation of this symmetry is strongly motivated by the all-important
role of the Riemann curvature tensor in the general theory of relativity.

Section 2 contains some necessary conditions for an s.c.r. manifold to
admit a CC. Section 3 deals with CC’s in s.c.r. manifolds such that rank R;; = 2.
Note that the Ricci tensor of every non-locally symmetric s.c.r. manifold
satisfies rank R;; <2 ([7], Theorem 2). Moreover, it is known that any
manifold admitting a parallel vector field admits also a CC generated by this
field [4]. On the other hand, non-locally symmetric s.c.r. manifolds whose Ricci
tensor satisfies rank R;; = 2 do not admit parallel vector fields [7]; so there
arises a natural question whether there exist CC in such manifolds. It will be
shown (Section 4) that this problem has an affirmative answer.

All manifolds under consideration are assumed to be connected and of
class C®. The Riemannian metrics are not assumed to be positive definite.

2. Preliminaries. In the sequel we shall need the following lemmas:

LEmMA 1 ([3], Lemma 1). Let an (algebraic) tensor Aims,..s, of type
(0, p+3) be symmetric in (I, m) and skew-symmetric in (m, h). Then

Almhs....s,, = 0.
LEMMA 2. The Weyl conformal curvature tensor satisfies the relations
Chijk = _Cl'hjk = _Clu’kj = Cjun',
Chije+ Chji +Chiij =0, Cip=Cy;=C;=0.
LEMMA 3. Let a be a symmetric tensor of type (1), 2) on a Riemannian
manifold M which satisfies the condition a;;m—@ijm = 0. Then

)

(6) a,; R',-,,,, +a; R’jlm = O’
7 ;R jym + a1, R’ jpi + @y R"jy = 0,
(8) a, er = Qmy R'b

(9) a; C' jim + a, C' Jjmi + Ay C'jil = O
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Proof. The first equation follows at once from the Ricci identity.
Permuting in (6) the indices i, I, m cyclically and adding the resulting equations
to (6), we obtain (7). Now, contracting (7) with g¥, we get (8). Finally, using (7)
and (8), we obtain easily (9).

Moreover, in the sequel we shall use the following properties of s.c.r.
manifolds:

LEMMA 4 ([6]). The curvature tensor and the Weyl conformal curvature
tensor of every s.c.r. manifold satisfy the conditions

(10) Ryijiim— Ruijem = 0,
(11) @ Chip+ @, Cup+ @;Cinp = 0,

where ¢ is the recurrence vector of C.

LEMMA 5 ([6], [7]). Every non-locally symmetric s.c.r. manifold satisfies the
relations

(12) R=0,

(13) R,R"; =0,

(14) R,R';x =0,

(15) Rircrjkl =0,

(16) Ry Cumjx+ RijChms + RixChmij = 0.

LEmMMA 6 ([6], Theorem 4). Let M be a non-locally symmetric s.c.r. manifold.
Then M admits a unique function F such that "

(17) Fchijk = thRij" thRik-

F is said to be the fundamental function of M. It is clear that F(x) = 0 if and
only if rank R;;(x) < 1.
Using (4) and the well-known formulas [8]

Lv Rhijk = (Lv r ihj).k - (Lv r i’;c),,i ’

(18) LIl = 1g"(ag ;+ asj—aij),
where
(19) ay = L,gy = vi,;+0js,
we have
LEMMA 7 (cf. [4]). (i) A vector field v on a manifold M is a CC if and only if
(20) (@ni,;+ anji— @ijn) k — (@hix + Apici— Gicp),; = 0,

where a is given by (19).
(ii) Every CC vector v satisfies the relations

(1) Qijim— Qijm = 0,
(22) LURU = O.
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LEMMA 8. Let v denote a CC on a non-locally symmetric s.c.r. manifold M.
Then the following equations hold:

a’R,, =0,
(23) .a"R,;Ry; =0,
(24) a;, Rrk = (bRu,
1
(25) ap, (04 i+ Qi C'pjk = ;1—_2 [Rpk (au - wgu) —R pj(aik —0gi)

+ Ru;(qu —agp)— Rij(ap—wgu)],
1
(26) T a’ Crijs (nw a) Rl js o = Qg g’ %

27) R;jTu = RuT,y,

where w is a function on the open subset U = {xe M: R;;(x) # 0}.

Proof. Using (12) and (22), we obtain easily the first equation. Similarly,
in virtue of (13) and (22), we get (23). By (21), Lemma 3 implies (6) and (8). Now,
using (1), (12) and (6), we have

1
(28) a,,,C'i,,,+a;,C',,1 = —m(guap'R’g—gaap,Rrj

+9pj@wR'x— gpu i R';+ @ Rij— apjRix+ 8y Ry — i R ).
Transvecting (28) with R?, and using (15), (13), (8) and (23), we obtain
« RyByx—RyB;j+ R;;Byy— Ry Bj; = 0,
where B;; = a;, R"; = Bj;;. Alternating this relation in (k, ) and (i, j), we get
leBik = Rikij
which implies immediately
By = wRy,

for some function w on U. So we have (24). Substituting (24) into (28), we get
(25). Now, contraction of (25) with g, by (5), (12) and (24), leads to (26).
Finally, transvecting (16) with a™ and taking (5), (8) and (15) into account, we
obtain (27). This completes the proof.

LEMMA 9. Let M be a non-locally symmetric s.c.r. manifold admitting a CC v.
Then the relations

1
(29) L, Chijk = E[Rh (@ — wgu)— Rh&(‘?ij—wgu)] ’
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(30)  2(Lo¢)Crge——

n_2% [Ru(ay;— wgij) — Ryjlan — wgu)]

2
+ — [Rux1(a;;— ©g;) — Ry (i — 0gu) + R (@i, — @,1915) — Ry j(@in s — 0,190 ]

= (Gp1,e + ey — e W) Cliji +(@rig + 8ri — G ) Crija
— @50+ 80, ;— 1) Cini + (@i + Ak — ak;.r) bﬂu‘ ,
(31) th(ask.l R, —w, Rim) = th(asj.l R, —w, ij)

hold on U. _ ;
Proof. Using (1), (12), (4), (22) and (24), we obtain (29). Differentiating (29)
covariantly and applying (18) and the well-known formula ([8], p. 16)

L,(Chj)— (L, Chip)y = (L TR C i~ (L, TR C*u— (L, T Crin— (L, TR Cye,

in virtue of (2) we have (30). Transvecting (30) with R*, and using (13)(15), we
obtain

(32 R, (@51, + 51— a1 ) Cip = 0.

Similarly, transvection of (30) with R’,, implies

. 2
(33) — [Ru(R,’asji— @ 1 Rpj)— Ryj(R, A 1 — @ | Rp) ]

= Rm’ (ars,l + arl,s - asl,r) C'hjk = 2Rmsasr,l C'h jk

in virtue of (24) and (32). Differentiating (9) covariantly, using (2), (9) and
transvecting the resulting relation with R,}, by (15) we get

R,,,“a,,.,,, rjhk =0.

This turns (33) into our assertion, which completes the proof.

LeMMA 10. Let v denote a CC on a non-locally symmetric s.c.r. manifold M.
Then

(34) ‘ F(bmi Chiji+bmjChins + bpi Chiry) = 0,

!

where b, = Gpn—w®g,, and F is the fundamental function of M.

Proof. Raising the index h in relation (16) and applying the Lie derivative,
by (22) and (29) we obtain

Ril(thbmk —R% by + Rij(th bui— R bo) + Rik(Rhlbmj —R* ibm) = 0.

But the last equation, in virtue of (17), is equivalent to our assertion.
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3. Main results.

PROPOSITION 1. Let M be a non-locally symmetric s.c.r. manifold
(dimM = n > 4) such that rank R;; =2 on M. Then the equations

o
(35) a,R'; = ;"Ru,

o
(36) a; C'jkl = ; Cijkl

hold for every CC v on M, where a;j= L,g;, & = a,,g".

Proof. We assert that T;; = a”C,;, = 0. This is a consequence of the
assumption rank R;; = 2, because if T did not vanish identically, then by (27)
we would have rank R;; <1 at some point xe M. Now, (26) implies

37 o = a/n,
which turns (24) into (35). By (34) and F # 0, we have
bt Chigk + b Chini + b Critj = 0.

Contracting this equation with g', by (5) we obtain b,,C"; = 0, which in
virtue of (37) is equivalent to (36).

THEOREM 1. Let M be a non-locally symmeiric s.c.r. manifold whose Ricci
tensor satisfies rank R;; =2. If v is a CC on M, then

o
(38) aij_;gij = deu

for some function @ on M.
Proof. Substituting (36) into (25) and using (5) and (37), we have

o o o . a
Rpk(aij_;gij) - Rpj(aik - "; gik) + Ry (apj_; gpj) - Rij<apk _;gpk) =0.

This, analogously as in the proof of Lemma 8, implies

. o o
(au—;gg)R,k = (apk_;gpk)Rija

which leads immediately to our assertion.
Substituting (38) into (29), by (37), (17) and (36) we obtain

COROLLARY 1. For every CC v on a non-locally symmetric s.c.r. manifold
whose Ricci tensor satisfies rank R;; = 2, the relations

1

L,Chy = — —F PCn,
a Fo
(39) Lv Chijk = (; - ;‘_‘3) Chi jk

hold.
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PROPOSITION 2. Let M be a non-locally symmetric s.c.r. manifold such that
rankR;;=2. If v is a CC on M, then it satisfies the following equations:

F® «a
(0) -2 W, FYF,
(41) @ Chij+apCaj+ 0 ;Cip = 0,
3
(42) Lv(pl+((LvF)/F).l+;a,l =0.

Proof. Applying the Lie derivative to (17), in virtue of (22) and (39), we
obtain (40). Differentiating (38) and (17) covariantly, we have

1
(43) aija— x a.19i; = P,R;;+ PR;;,,

(F.l + F(pl) Chijk = th.l Rl'j + th Rij.l - th.l Rik - th Rik.l .
Substituting these relations into (30), in virtue of (37), (38) and (17) we can write
the- left-hand side of (30) in the form

1
2 (Lv Ty ) (F 45).1) Chij-

Using (40), we see that (30) can now be written as
1 .
44 2 [Lv ¢+ n o+ ((L,F)/F )4] Chiji

= (aht,r + Ot — 1 ) Criji (@it + @i — 311 ) Ci i
—(@rju+ 8, j— 1)) Crini + (Qpi s + Atk — Gt ,,) C i

Transvecting (43) with C'y,,, in virtue of (15) and R,;;C"ym = 0, which is an
obvious consequence of (15) and (2), we obtain

1
arji Chkm = ;a,l thlun-

Analogously, transvecting (43) with C'y,,, and using also (3), we have
1
Qijr Chicm = n o, C'u_m 9ij+ Rij® . C" pim-

Substituting the two last equations into (44), we get
45) 2n (Lv ¢,+((L,F)/F )1) Chijc + 400, Chiji + 0y Crij + 0 Chpje — & j Crpi + 01 C jani

= gne,r C'ijk —Ggal, C'hjk +g;%, C ehi— G C'jm
+n(Ru®,Cij—Ru®,Chjx+ Ry P, C'hi — Ry, C' i),
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which, by transvection with R* , in view of (15) and (13) implies
o, R, Ciip = R, CTy.

Now, putting Apux = Rm2,C’;n and applying Lemma 1, we obtain

(46) a,C i =0.

Differentiating (17) covariantly and alternating the resulting equality in [, h, i,
by (3) and (11) we obtain

(47) F Chup+F 1 Cyp+F ;Cyp = 0.
This implies
(48) F.,.C','jk = O.

Applying the Lie derivative to (47), in view of (39) we have
0 =(L,F)Chis+(L,Fp)Cyp+(L,F j)Cinp
= (L,F) 1 Cpiju+(L,F) 4 Curju + (Lu_;F).iClhjh
which, together with (47), implies

(49) (L,F/F)Cpiju+(L,F/F) 4 Cyju +(L,F/F) ; Cppj = 0.
Analogously, (11) leads to
(50) (Ly @) Chi +(L, @) Caji+ (L, @) Cipyi. = 0.

Now, (40), (46), (48) and (L, F/F),C";3 = 0, which is an immediate consequence
of (49), imply
(p,, Crijk = O
Substituting this equality and (46) into (45), we obtain
(51)  2n(L,,+(L,F/F),;)Cpij+ 402, Cpip+ a4 Cuip
+ 0 Crju— & jCrapi+ 2, Cypi = 0.
Permuting in (51) the indices /, h, i cyclically, adding the resulting equations to
(51) and making use of (49), (50) and (5), we get (41). Finally, (41) together with
(5), turns (51) into
2n(L,@,+(L,F/F) )Cpiju+ 60, Cpiz = 0,
which, in view of C # 0 everywhere, yields (42). This completes the proof.

Remark 1. It is obvious that every essentially conformally symmetric
manifold, ie., such a conformally symmetric manifold which is neither
conformally flat nor locally symmetric, is a non-locally symmetric s.c.r.
manifold. Thus all the above results remain true for essentially conformally
symmetric manifolds.
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4. Example. We are now in a position to show the existence of CC’s in
non-locally symmetric s.c.r. manifolds. Let M be a non-locally symmetric s.c.r.
manifold and assume that the fundamental function F of M and a CC v on
M satisfy the relations

F=const#0, L,p, =0.
Thus (42) implies a = const, and (40) leads to

a(n—2)
nF

d = = const.

Substituting this equation into (38), we obtain

o n—2
au = "; gu+—F—Ru .
On the other hand, if the above equation is satisfied and o = const, then

a(n—2
Aijx = (nF )Rij.ka

which, together with (3), turns (20) into
a(n—2)

nF
Thus, taking' (10) into account, we have

COROLLARY 2. Let M be a non-locally symmetric s.c.r. manifold whose
fundamental function is a non-zero constant. If v is a vector field on M such that
L,p, =0, then v is a CC if and only if

(Rij,kl_Rij.lk) =0.

F

Now, we need the following result:

LemMA 11 ([7], Example 3). Let M denote the Euclidean n-space (n > 4)
endowed with metric g defined by ’

—2e ifi=j=1,
gij=<\expF; ifi+j=n+1,

0 otherwise,

(52) a, = %(g,-,-+'—z——2R,-,) and  a,g" = a = const.

where the functions F; = F,,,_; are given by
F (x,y,..., x* 1, x") = G(x, y)+ A(x),
Fy(x, y,..) = G(x, D+BO),  Fy(x, y,..) = G(x, y)
for A€{3,..., n—2} (empty for n = 4), and e = const # 0. Define functions A, B
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and G by

G(x, y) = x+[(expH)dy, B=H-2[(expH)dy,

2 4
A= —E(x—('t_—2)2dex),

where H = H(y) is an arbitrary function of y only, and F is a given constant or
a non-constant function of x only. Moreover, let e = 1. Then M is an s.c.r.
manifold which is neither conformally flat nor recurrent and its fundamental
function is F.

To simplify calculations we put

(n—2)
4
This implies G(x, y) = x+y,B= —2y,A=0and F, =x+y=F,,F, =x—).
Thus the only non-zero components of g, the reciprocal of g, Christoffel
symbols, Ricci tensor and Weyl conformal curvature tensor are those related to

(21, [7D)
g11= =2, gin=9gan+1-2=CXp(X+)), g2n-1 =€Xp(x—}),
g™ = 2exp(—2x—2y), g =g""*1"%=exp(—x—y),

H=0, F=

g>" ! =exp(—x+y),
rty=1, rh=ri=r3=ri=rj=r""1 =4,
rzzz = —1, r'i;l, rana Fz,:I}-—;., rl"l, rz.:-l, r;..:ﬂ-—b
n—2 32—n
R12=T=Ru, Rzz= 4 ), C1212= 1.

Moreover, the components of the recurrence vector ¢ of C are the following:

0,=-3, o@,=1, @;=...=¢,=9.
Define a vector field v by the formulas

o a
0y = Zx"exp(x+))+ -,

3a
exp(x "‘.V)_ﬂ,

[+4
— n—1
n
o

2nx""““exp(x+y), A=3,...,n=2,

v;'=

vll"l = vn =09
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where o = const # 0. It is easy to see that "¢, =0. Moreover, using the
formula

L,p,=Ve,+v,0,=0"0),

(since ¢ is a gradient), we obtain L, ¢, = 0. By an elementary but somewhat
lengthy calculation we can easily show that the only non-zero components of
a(a; = v;;+v;,) are those related to

o o
Guu=—- Gu2=_, Gu= ;exp(x+y),

R

o o .
Azm—1 =;exp(x—y), Apmr1-2 = ;exp(x+y) if Ae{3,...,n—2}.

It follows now easily that

o 4 o n—2
a.g”=a and gq;= ;(g.-j+-,:-2-R,-j> = ;(gu+—F—Ru).

Thus, in virtue of Corollary 2, v is CC.

Remark 2. It is worth noticing that the above CC v is an almost isometry.
A vector field v on M is called an almost isometry [9] if

gij(Lvrl!.'i = 0

The above relation is equivalent to a",, = 3 . Thus, taking (52), (3) and (12) into
account, we see that v is an almost isometry but is not an infinitesimal isometry.
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