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1. Introduction

The “xlog x” entropy functional, ent x, maps the nonnegative orthant R’ of the
n-dimensional Euclidean space R" into R according to

(1) entx = — » x;logx;.

i=1

Here log denotes the natural logarithm and, by definition, Olog0 = 0.
The entropy maximization problems that are addressed are of the form:

(2) Find the xeR" which maximizes entx subject to xe(.

10 — Banach Cenler (. 24 [145]
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0 is a set of linear constraints of one of the two following forms:
(3) 0, = {xeR"| Ax = b},
@ Q, = {xeR"| Ax <b}.

Accordingly, (2) is referred to as entropy maximization for equalities or for
inequalities, respectively. In (3) and (4), A is a real mxn matrix, b is a real
m-dimensional vector, and the inequality Ax < b is interpreted componentwise.

Such linearly constrained entropy maximization problems arise in many
fields including transportation planning, statistics, linear numerical analysis,
chemistry, geometric programming, and image processing [1], [4], [9], [14],
[15], [16], [23], [24], [27], [28]. Their use is rigorously founded in several
areas [22], [26], while in other situations entropy maximization is used on an
empirical basis. In image reconstruction from projections [4], [7], [12], [17],
[18], [197, [20], [25]. which is the source of our motivation to study entropy
maximization, arguments in favour of maximum entropy imaging have been
given, but typically they express mainly the conviction that the maximum
entropy approach yields the solution which is most objective or maximally
uncommitted with respect to missing information.

The common aspect of the algorithms discussed in this paper is their
row-action nature in the sense of [3]. Accordingly, they are all iterative
methods in which the matrix 4 and the vector b are used unchanged during the
iterations. In a single iterative step access is required to only one row of the
constraints system. In addition, only the immediate predecessor of the next
iterate is needed at any given step. Algorithms for norm-minimization having
such properties were found to perform well on sparse and large systems such as
those arising in image reconstruction from projections [4], [5], [12], [17],
[187, [19], [20]. Limited experimental experience with some of the algorithms
for entropy optimization presented below is also available [7], [13], [19], [20],
[25], but all these represent preliminary tests and more experimental work is
needed to assess the practical value of these algorithms.

This paper is not an overall review of iterative methods for linearly
constrained entropy maximization, we rather concentrate on a specific family
of algorithms to which our attention and eflorts were attracted recently. We
report here on theorgtical developments and analysis and therefore make no
claims regarding advantages of these algorithms in practical applications.

Lamond and Stewart [24] observed that many independently discovered
balancing methods used in transportation planning and other fields for solving
(2) are in fact special cases of Bregman’s method [2]. They noted, however, one
exception: the algorithm MART (Multiplicative Algebraic Reconstruction
Technique), which was first suggested as a reconstruction technique in [17] and
whose convergence was proved in [9] and in [25].

For the special case that A4 is a zero-one matrix (all entries are equal either
to zero or to one), MART coincides with Bregman’s method, but the question
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of how they relate to each other (if at all) in the general case remained open
until now. In this paper we answer this question in two ways. First we
demonstrate, in Section 3, that a MART iterative step is a secant ap-
proximation to a Bregman iterative step. An interesting point is that, in spite of
this observation, MART converges precisely to the maximum entropy solution.
Usually, using an approximation in an algorithm causes an inevitable deviation
from the conceptual algorithm. But here the crudest approximation to
a Bregman step has a “conceptual life” of its own. This relationship, which is
easy to verify once it is discovered, motivated us in the construction of an
algorithm for entropy maximization over linear inequalities, which preserves
the overall structure of Bregman’s method but uses in each iteration a “MART
step” instead of a “Bregman step”. It is also shown in Section 3 that one step of
this algorithm can be regarded as one step of an underrelaxed version of
Bregman’s method. This proof reveals the precise connection between MART
and Bregman’s method for entropy maximization under linear constraints. In
Section 4 we show the convergence to maximum entropy of MART for
inequalities. Finally, we present our conclusions in Section 5.

2. Bregman’s method and MART for entropy maximization

Let a' be the transpose of the ith row of 4. We use suffixes to denote
components of vectors, as in &} and b, The inner product in R" is denoted by
L)

We assume without further restating and without loss of generality that
for all i, af# 0 for at least one j.

The next assumption is physically justifiable in irmage reconstruction from
projections and in some other fields, without it some of the theory described
below is invalid.

Let i be fixed (1 € i < m) and let a denote a' and b denote b, Assume that
either

(5) b>0 and 12aq;=0, fori<j<n,
or
(6) b<0 and —-1<a;<0, forlI<gj<n

This assumption also applies to all what follows without restatement. Condition
(6) is significant only for inequalities, for equalities it is equivalent to condi-
tion (5).

When dealing with row-action methods, in the kth iterative step only
one row of the system of equalities or inequalities is used; i(k) denotes
the index of this row. The sequence {i(k)} is the control -of the algo-
rithm. We say that the control is almost cyclic if, for some fixed integer r,
{1, 2,...,m}c {itk), ..., i(k+r)} for all k.
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We discuss first entropy maximization for equalities. All algorithms
discussed here use the same iteration scheme to derive x**! from x*,

Iteration scheme for equalities.

(7) Xkt = xtexp(e,al®), j=1,..,n

(Note that if all components of x* are positive, then the same is true for x**1).

The method introduced by Bregman [2] can be used to maximize any
functional which satisfies a certain set of conditions ([8]). An essential part of
the method is that after performing (7) the i (k)th constraint has to be satisfied,
ie, that

) (ai(k), x** 1) = bi(k)-
k+1

For any x* such that x* > 0 for j =1, ..., n there is a unique choice of x***, ¢,
such that (7) and (8) are simultancously satisfied, as can be seen from the
following where 0 denotes the zero vector.

LEMMa 1. Let ae R"—{0} and be R be such that either (5) or (6) hold, and let
xeR", x > 6. Define, for real ¢,

(9} ¢c): = i a;x,exp(ca;)—b.

ji=1

Then there exists a unique ¢ such that ¢(c)=0.
Proof. Immediate, considering monotonicity and continuity of ¢. m

Define

1 if by >0
10 by =9, .0
(10) B0 Jio {—1, if by < 0.
In MART, ¢, in (7) is explicitly defined by
. b;
11 ¢, = sgn(bi(k,)logﬁ.

This is well defined as long as x™® > 0 because of (5) and (6).

It has been shown ([8], [257]) that under appropriate conditions both these
iterative methods converge to the entropy maximizing element of Q,. We do
not repeat the precise statements here.

If A is a matrix whose elements are either —1 or O or 1, then the two
iteration schemes produce the same sequence {x*} starting from the same
x® > 0. This is not true for a general A. A computational advantage of the
MART sequence is that c, is given explicitly by (11), rather than by solving
a system of n+1 nonlinear equations (7), (8).

Underrelaxation has been considered, in somewhat different ways, in both
methods. An underrelaxed Bregman step for equalities (with relaxation parame-
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ter oy, 0 <a, < 1), chooses ¢, so that
(12) (@', Xy = oy gy + (1 —a) (@', x*)

is satisfied instead of (8). (That this is well defined follows again from Lemma 1).
An underrelaxed MART step for equalities (with relaxation parameter A,
0 < 4, € 1), chooses ¢, by

bl(k)

(13) ¢, = Ay 5gn(byy) log LSS

Convergence of algorithms based on these iterative steps is discussed in [11]
and [25], respectively.

In entropy maximization for inequalities, the algorithms use in addition to
the sequence {x*} of primal iterates a sequence {z*} of m-dimensional dual
iterates.

Iteration scheme for inequalities.

(14) A= dhexplda®), j=1,...m,
(15) Zk+l = Zk—-dk ei(k)’

with

(16) d, = min {zfy), ¢,},

where ¢' denotes the ith column of the identity matrix of order m. This is the
overall scheme of Bregman’s method for inequalities ([2], [8], [11]). For the
underrelaxed Bregman method ¢, is chosen here so that (7) and (12) are
satisfied simultaneously~

We proposed (without analysis and proof) in [6] to create a “MART for
inequalities” algorithm that will use the scheme (14), (15), (16) but with ¢, in the
closed-form defined in (13).

One of the main results of this paper is to provide a convergence proof for
this new algorithm.

Those who wish to implement underrelaxed MART for inequalities,
should observe that (13)-(16) completely describe an iterative step of this
algorithm. A choice of initial values, control, and relaxation parameters which
guarantees convergence to maximum entropy is stated in Theorem 2 below.

3. The relationship between the two iteration methods

We first discuss the not relaxed versions of the ileration methods, i.e., formulas
(7), (8), (11). MART has an advantage over Bregman’s method, because the
latter requires finding a root of a function (9) in each iterative step. Here we
show that the MART step is a one-step approximation to this root-finding
procedure.
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Let a, b, and x be as in Lemma 1 and define the function  on R, by

(17) W)= Y a;x;ull—b.
i=1

From (9) we get that, for any positive u,

(18) Y (4) = ¢(sgnb(logu))

and

(19) Y(0) = —-b+#0.

Hence, by Lemma 1 and (18), ¥ has a unique root, and it is positive.

Now consider the line through (0, —b) and (1, ¥(1)), in the plane of the
graph of (). This secant to the graph intersects the u-axis at the point i
given by

. b
(20) i= o
This i is an approximation to the root of Y and hence, by (18),
b
21 ¢ = b)1
(21) ¢ = (sgn )Og<a, S

is an approximation to the root of ¢. Thus, the MART choice for ¢, is an
approximation by one step with the secant method to the Bregman choice of ¢,.
The arithmetic cost of computing s (1) for values of u other than 0 or 1 is high
and so further secant steps, to better approximate the root of , would be much
more expensive than the first step. This is particularly important when
considering a very large and possibly sparse constraints system as occurs in
image reconstruction from projections and some other fields. To better use
Bregman’s method one would be inclined to further iterate in an inner-loop to
obtain a better estimate of the root of (9). MART, for either equalities or, as
proposed here, for inequalities, allows for a closed-form formula to replace the
root finding calculations. In spite of that formula being recognized as a crude
approximation to the root of (9), the algorithm still converges conceptually to
the desired point. In applications where it is practical to compare the two
approaches in actual comnputation, this should be, of course, done. However, in
very large and sparse situations MART is sometimes left competitionless
because anything else is impractical.

Convergence properties of MART and Bregman’s method for equalities
have been proved independently of each other ([8], [25]). Convergence of the
underrelaxed Bregman’s method for inequalities was given in [11]. The
observations made in this section motivate us to propose MART, rather than
Bregman’s method, for inequalities. The basic idea of the convergence proof we
present here, of the resulting algorithm, is to show that an (underrelaxed)
MART step coincides with an (underrelaxed) Bregman step for a suitable
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choice of the relaxation parameter. However, the previously known results on
the convergence of Bregman’s method are not strong enough to provide
a convergence proof for MART for inequalities. Therefore, we need first to
strengthen those known results for Bregman’s method.

The first step of this program is to show that an underrelaxed MART step
is the same as an underrelaxed Bregman step, provided that the relaxation
parameter is appropriately chosen.

Define
bi(k)
(22) uk = W
and
1 u n , i(l) )
(23) o= b'—(k)'uk—kljzl a;(k)xﬁ(u’i'khj I_I)’ if U, % 1,
kT i =
L if =1,

where, for all k and for some fixed e,
24) 0<eg i <1

LEMMA 2. Assume that x* > 0 and let x*** be defined by (7) with c, given by
(13) and A, satisfying (24). Then x**! satisfies (12) for o, defined by (23).
Furthermore, this a, falls in the range 0 < a, < 1.

Proof. If u, = 1, then by, = {«'™, x*), and (12) is satisfied, for any o, as
long as x**! = x*. To show that this is the case it is sufficient to show that
¢, =0, but that is an immediate consequence of (13).

If u, # 1, then starting with the right hand side of (12), we get

. . "o it
oy bigy +(1 =) a'®, x*> = (a'™®, x¥>+ Y af® xh(uides 1-1)
j=1

=2 aj(k)(xf exp(log (u,) A, sgn(bigy) a}(k)))

i=1
= (@™, xk+ 1y
Since x* > 0 and &' # 0, (5) and (6) imply that u, > 0. Deline

(25) ¢:= ¢ x min|al,
n}#O

where ¢ is from (24) and the minimum is taken over all entries of A. Thus ¢ does
not depend on k and

(26) 0<o<Ala® <1, for af#£0.

(This is the only point in this paper where the fact that |aj < 1 is used.)
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From (26) one can check the following by considering separately the cases
u, <1 and u, > 1. (If u, =1, then «, = 1 by definition).

11 "
en o<UZl_ L B 5 gmggo
=1

uk_l bi(k) uk—]J

1 u o
Sakgb—- kl Y a®xbu,~1)=1.n
ity Up— 1=

In both the Bregman and the MART case the iteration scheme for
inequalities (14)—(16) defines a unique sequence {x*} provided that initial values
x° > @ and 2% the control {i(k})}, and the sequence of relaxation parameters
{o} or {4,} are specified.

LemMA 3. If Bregman's method and M ART are specified to have the same
initial values (with x° > 0) and control, and if the relaxation parameters in
M ART satisfy (24) and those in Bergman's method are chosen based on those in
MART using (23), then the two algorithms produce the same sequence {x*}.
Furthermore, at each iterative step, x* > 0 and the ¢,’s chosen by the two methods
are the same.

Proof. By induction using Lemma 2. =

It may appear that Lemma 3 and proven convergence properties of
Bregman’s method for inequalities should provide a convergence proof of
MART for inequalities. The difficulty is that existing proofs of Bergman’s
method for inequalities [11] require {&,} to be bounded below by a positive
real number.

The following example shows that the lower bound on ¢, in Lemma
2 cannot be replaced by a positive number.

Consider the system

[0 1] 1]
0 -1 ~1
(28) 11 [xl}g 1,
X
-1 -1 2 —1
L 1 0] L1

whose only feasible point is x; = 0, x, = 1. Substituting into (23) with 4, = 0.5
for all k we get ag, = /x75/(1 +\/x_§;). So, if the sequence {x*} converges to
a feasible poin at all, then a5, —0 as s— oo, and convergence of MART for
inequalities cannot possibly be established based on existing convergence
theorems of Bregman's method.

The following observation is essential to our proof of convergence of
underrelaxed MART for inequalities.
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LEMMA 4. Let the conditions of Lemma 3 be satisfied and let K be any set of
nonnegative integers. Suppose that {u,lke K} is bounded, where u, is defined by
(22). Then there exists an ¢y such that

(29) O<er <<,
for all k in K.

Proof. By Lemma 3, the conditions of Lemma 2 are satisfied. Let ¢ be
defined by (25) and define a function f on R, by
u'—1

(30) Bluy:=< u—1’
2, ifu=1.

fu#1,

f3 is continuous on R, and, due to (26), f (1) > 0. Also, from (23) and (27) we get
(31) 0<fBu) <o <1,

Let By be such that || < By if keK. Then, from the properties of f it follows
that
(32) 0 < min fu).

0<u<Bg

Finally, set ¢ equal to the right hand side of (32). m

4. Convergence of MART for inequalities

MART produces the same sequence of iterates as Bregman’s method, provided
that the relaxation parameters o, are chosen in a certain way. Known results
regarding Bregman’s method ([11]) imply convergence provided that the a,’s
are bounded away from zero. Unfortunately, this condition is not necessarily
satisfied by the «,’s of Lemma 3. Instead, we have the weaker condition
expressed in Lemma 4. In this section we show that for entropy maximization
this weaker condition is sufficient for the convergence of Bergman’s method
and hence the convergence of MART. Bergman functions were defined in [8]
as follows.

Let A be a subset of R” and let /* A— R. Let § be a nonempty convex set
such that S< A (the bar over § denotes closure). Assume that f(x) has
continuous first partial derivatives at any x € S and denote by Vf(x) its gradient
at x.

From f, construct the function D:Sx S = R*"—> R by

(33) D(x. y):=f)=f () =<Vf(y), x—yp>.
Define the partial level sets of D, for xe R by

(34) L (y, ):={xe8| D(x, y) < o},
(35) L,(x,a):={yeS| D(x, y) < a}.
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A function f: A< R"—R is called a Bregman function if there cxists
a non-empty, open, convex set S (called the zone of f), such that S < A and

() f(x) is continuously differentiable at every xeS;

(i) f (x) is strictly convex on S

(iii) f(x) is continuous on §;

(iv) for every a&R the partial level sets L, (y, «) and L,(x, «) are bounded
for every yeS and for every xe§ respectively;

(v) if Y552 y* €S, then D(y*, y)=="0;

i) if DO, Y==20, Y=z y*eS and {x*} is bounded, then
k k=0 § y* -

LEMMA 5. The function —ent x is a Bregman function with A = R%. and zone
S, defined by

(36) S,:={x| x> 0}.

Proof. (i) and (ii) are simple. Property (iii) is valid due to the convention
Olog0 = 0. For the function —entx

n

(37) D(x, y)= ¥ x;logx,—logy,—1)+ Z ¥;-
J=1 j=1

Fixing y let any component of x go to +oo. Then D(x, y)— + oo as well and
so, for any a e R, L,(y, a) is bounded. A similar argument shows that L, (x, «) is
bounded, proving (iv). Property (v) also follows from (37).

Assume now that the premises of property (vi) are satisfied. It is sufficient
to show that.any convergent subsequence of {x*} converges to y*. Consider
a general term of (37), namely ¢: R, x(R, —{0})—~ R defined by

(38) t(x, y):= x(logx—log y— 1)+,
(x2 0 and y > 0). For any fixed y

(39) t(x,y) 20

for all x >0, and

(40) t{x, y)=0 if and only if X =y.

Now consider a convergent subsequence {x*} of {x*} and assume that x** - x.

n

(41) D(x*, y*) = ¥ t(x¥, yi)==0.

i=1
From (39) it follows, that for each j

42) t(xk*, y¥) == 0.

Noting that x4 —rx ; and yf—r yT, consider two cases. If y* > 0, then (42} and
(40) imply that yJ =x;. If yJ =0, then (42) and (38) imply that x; =0, and
again yf = x. Hence y* =X u
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Let H be a hyperplane in R" defined by {a, x) = b such that H~ § is not
empty and let ye S. Define the Bregman projection of y onto H with respect to
f as a point xeH which satisfies, for some AeR,

(43) Vf(x) = Vf(y)+ da.

It is easily shown that if x exists then it is unique ([2]). In this case A, which is
called the Bregman parameter associated with the projection of y onto H with
respect to f, is also unique.

LEMMA 6. Let x*€S, and let x**' and ¢, be defined by (7) and (12) with
0<a, €£1. Then x**! is the Bregman projection of x* onto the hyperplane

(44) @, xy = oy bigoy+ (1 —a) {a'®, x*>
with respect to —entx and c, is the associated Bregman parameter.

Proof. Substituting into (43) —ent for f, x**! for x, x* for y, ¢, for 4 and
a'™ for a, we get (7). Substituting x**! into (44) yields (12). m

Let fbe a Bregman function with zone S and let H be a hyperplane such
that H N § is not empty. f'is said to be strongly zone consistent with respect to
H if, for every ye S and for every hyperplane H' which is parallel to H and lies
between y and H, the Bregman projection of y onto H' is in S.

LeMMA 7. The function —entx is strongly zone consistent with respect to
any hyperplane {a, x) = b for which either (5) or (6) is satisfied.

Proof. Follows from Lemma 6 noting that in (7) if xX*€ S, then x**'eS. =

The next theorem is the main result of [11] which extends to the
underrelaxed case the earlier results of [2], [8].

THEOREM 1. Let f: R" >R be a Bregman function with zone S and let
(45) {a',x)<bh, 1<i<m,

be any set of inequalities such that

(i) the set X of elements of S satisfying (45) is not empty;

(i) [ is strongly zone consistent with respect to each of the hyperplanes
H,={x| <d, x)=b} (1 <igm).

Furthermore, let {i(k)} be an almost cyclic control and let {a,} be a sequence
of relaxation parameters satisfying

(46) O<i<a <],
for all k. Define two sequences x* e R" and z* € R™ as follows. z° e R". is arbitrary

and x° satisfies, for 1 <j < n,

(47) IR ES
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Furthermore, for k =0,

(48) V<) = Pf () +da®,
(49) = kg, '),
with

(50) d, = min{zfy, .},

where c, is the Bregman parameter associated with the projection of x* onto the
hyperplane defined by (44) with respect to f. Under these circumstances {x*}
converges to an x* which minimizes f over X.

COROLLARY. Let Q, be as in (4), such that Q, "R # @. Let {i(k)} be an
almost cyclic control and {0} be a sequence of relaxation parameters satisfying
(46) for all k. Define sequences x*& R" and z* € R™ as follows. z° € R} is arbitrary
and, for 1 <j < n,

(51) x) =exp((— A7 2%,—1).

Furthermore, for k = 0, let (14y«(16) be satisfied, with c, chosen so that (7) and
(12) are simultaneously satisfied. Under these circumstances {x*} converges to the
x* which maximizes entx over Q,nR'..

Proof. By Lemma 5, —ent x is a Bregman function with zone S, defined by
(36). S, = R".. The assumption Q, " R", # @ is condition (i) in Theorem 1,
while condition (ii) follows from Lemma 7. The conditions on the control and
on the sequence of relaxation parameters are the same as in Theorem 1.
Similarly, z° e R is arbitrary in both places and for the function —ent x (47)
and (51) are equivalent. That the ¢,’s are the same follows from Lemma 6. By
induction then the sequences produced in Theorem 1 and here coincide and the
desired convergence follows. =

This corollary specializes the general result of [11] to the entropy function.
We desire a similar result for MART.

THEOREM 2. Let Q, be as in (4) (with the conditions (5) and (6) satisfied), such
that Q, N R% # @. Let {i(k)} be an almost cyclic control and {1} be a sequence
of relaxarion parameters satisfying (24) for all k. Define sequences x*eR" and
z*eR™ as follows. z° e R is arbitrary and x° is defined by (51). Furthermore, for
k=0, let (14)-(16) be satisfied with c, chosen by (13). Under these circumstances
{x*} converges to the x* which maximizes entx over Q, N R',.

Proof. By Lemma 3, the sequences produced by the algorithms in Theorem
2 and Theorem 1 are the same as long as the a,’s of Theorem | are chosen
based on the 1,’s of Theorem 2 using (23). Unfortunately, such «,’s do not
necessarily satisfy (46), and so Theorem 1 is not immediately applicable.
Studying the proof of Theorem 1 in [11], we see that (46) is used only twice (in
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the proofs of Propositions 4.9 and 4.10). For the case of entropy maximization,
the proof of [11] can be refined so that instead of (46) the weaker condition
expressed in Lemma 4 is used. The details are Jaborious and are provided in the
Appendix. The so altered Theorem 1, called Theorem 1” in the Appendix,
combined with Lemma 3 proves Theorem 2. m

It is possible to construct another version of the MART algorithm by
introducing relaxation in a slightly different manner, namely by picking instead
of (13)

b;
(52) ¢, - = sgn(big) log(—a—@—(’k—)x—k—s
where
(53) b;'(k) = ;l'k bi(k) + (1 - lk) <a“k), xk> .

Convergence of this variant can be proved in a similar way but the detatls are
not repeated here.

5. Conclusions

Bregman’s method is quite general, although, as pointed out in [8], there are
only few commonly used optimization criteria which are Bregman functions.
MART is an algorithm especially designed for entropy maximization in large
and sparse systems, which has a similar structure to Bregman’s method when
applied to entropy. However, it has the computational advantage of using an
explicitly defined parameter where Bregman’s method requires an inner loop to
estimate the so-called Bregman parameter. Convergence of both methods has
been independently proved for equality constraints, For inequality constraints,
only Bregman’s method has been previously proved to converge. Our study of
the two methods under a unified framework allows the construction of MART
for inequalities and its interpretation as an underrelaxed Bregman’s method for
inequalities. This in turn allows us to prove convergence of the MART under
inequality constraints.

Recently, some work has been done concerning the behavior of row-action
methods when applied to inconsistent or infeasible systems (see, e.g., [5], [107],
[12], and [21]). It is worthwhile to study similar questions regarding the
entropy maximization algorithms presented here.

Acknowledgements. This work was done while Y. Censor, A. De Pierro,
and T. Elfving were visiting the Medical Image Processing Group (MIPG),
Department of Radiology, Hospital of the University of Pennsylvania, Philade-
Iphia, under support of NIH grant HL-28438. Further progress was made
during visits of Y. Censor to the Department of Mathematics at the University
of Link&ping and the National Defence Research Institute (FOA3)in Link6ping,



158 Y. CENSOR et al.

Sweden, and to the Instituto de Mathemadtica Pura e Aplicada (IMPA) in Rio
de Janeiro, Brazil. We are grateful to Professors Ake Bjorck, Lindolpho de
Carvalho Dias, Kurt J6rnsten, and Torleiv Orhaug for making these visits
possible.

We gratefully acknowledge useful discussions and communications with
Y.-H. Kuo and A. Lent at the early stages of this research.

We thank Ms. M. A. Blue for wordprocessing the manuscript.

Appendix

As explained in the proofl of Theorem 2, an analog of Theorem 1 which while
specializing to entropy relaxes condition (46) is required.

THEOREM 1. Assume that Q, N R, # @, and let {i(k)} be an almost cyclic
control and let {a,} be a sequence of relaxation parameters. Define two sequences
{x*}, {z*} as in Theorem 1 with [ (x) = —ent x. If for any subset K of the set of
nonnegative integers for which {u, | ke K} is bounded, there exists an &, such that
0<e << for all keK, then {x*} converges to x* which solves (2) with
Q= Qz-

The results in the rest of this Appendix establish the proof of this theorem.
We prove Propositions 4.9 and 4.10 of [11], without using (46), but using
Lemma 4 instead. Because of Lemma 3, all results of [11] which do not make
use of (46) are applicable to the algorithm of Theorem 2, with o, defined by (23).
This [act is used repeatedly without further emphasis. We need the following
preliminary result.

LEMMA A. During the execution of the algorithm of Theorem 2, the d, of (16)
are bounded.

Proof. Let
(Al) L(x*, 29 = £ (x%) + (2%, Ax*—b)
and
(A2) e,:= L(x**!, z** ) — L(x*, 2.

(Note: what we defined as e, above is denoted by d, in [11])

By Proposition 4.6 of [11] {L(x*, z*)} is bounded above. By Corollary 4.1
of [11], ¢, 2 0, and so {e,} is bounded.

(Al) and the fact that

(A3) Vi(x) = —AT 2
(this is Proposition 4.2 of [11]) imply that
(A4) L(x*, 2 = f (x") = (Pf (), x*>— (24, b).
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By substituting this into (A2) aud using (15) and f(x) = —entx, we get that

n

(A5) {2 O =xG* ) +d, by}

j=1
is bounded. Since {x*} is also bounded (Corollary 4.3 of [11]), the desired result
follows. =

PROPOSITION 4.9 of [11]. If x*<=%2 x*, then x*€Q,. (Here {x*} denotes
an infinite subsequence of {x*}).

Proof. Suppose the result is false. Then there exists p, 1 < p < m, such that
(A6) af, x*> > b,

Since the control i1s almost cyclic, there exists an integer r such that,
for all s, i(k,+1y) = p for some /.e{l,2,...,r}. By Proposition 4.8 of [11],
xkstls———> x* Furthermore, by Lemma 2, it is possible to choose a subsequen-
ce of {k,+ 1}, such that the &,’s associated with this sequence converge to an «,
0 < « < 1. For notational convenience, we denote this subsequence by {k,} as

well. For this new k_ the following are true:

(A7) xks = x*,
(A8) itk = p,
(A9) %, 550

where 0 < a < 1.
From (A6)-(A8) one gets that, for sufficiently large s,
(AIO) <ai(k‘7), xk'9> > bf(ks)‘

By ignoring the beginning of the sequence we may assume that (A10) holds for
all s.

From (13) it follows that ¢, < 0. Since z* > 6 for all k (Proposition 4.3 of
[11]), we have from (16) that, for all s,

(A1) d.. = ¢y,

Hence, Lemma A together with (13), (22), and (24) implies that {, } is bounded.
By Lemma 4, this implies that there is an ¢, such that, for all s,

(A12) 0<e, <o < 1.
This, together with (A9} implies that
(A13) 0 <o
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By Lemma 3, the x*+*! produced by MART is the same as that produced by
Bregman’s method, and so, from (12),

(A14) (@' xkety = g by +(1—a,) (a'®, x*.

Observing (A8) and letting s—oco0 we get (by using again Proposition 4.8
of [11])

(ALS) (@b, x*> =ab,+(1—-a)<a?, x*).
This implies that {af, x*)> = b,, contradicting (A6). =

PROPOSITION 4.10 of [11]. If x*s==~ x*, then, for sufficiently large s and for
all pel,(x*):= {i| <d', x*) < b}, 27"+ = 0. (Here again r is the constant in
the definition of almost cyclic control.)

Proof. Let pel,(x*) and define

(A16) I;:= max {l|i(k,+]) = p}.
1€isr
By Proposition 4.8 in [11], x* 522 x*, and xke*let = x*,
The proof that, for sufficiently large s,
(A17) dy +1,=zh

1s divided into two cases depending on whether or not {a*, x*) = 0.
Suppose that

(A18) {aP, x*> =0 #0.
Then, for s sufficiently large,
(A19) 1<a?, xT1)] > 36|

and so, by (22), {#,+,,} is bounded. Then, by Lemma 4, there is an ¢, such that
0 <&, < ey, +,, holds for sufficiently large s. Now define

. _ %
(A20) 0pi= ff'——b" ﬁs:” =
By definition of I,, ¢, > 0. Hence, for sufficiently large s,
(A21) Xt — x| < g, xBTETI—x¥| < g,
Now suppose that (A17) is [alse. Then d,.,, = ¢ +,,, and so from (12)
(A22) (@, xXkThIN =y o by (L=, 40) (a2, Pty
It follows, noting (A21), that for sufficiently large s
(A23) ak”h(bp_(ap, xksHs)) = (aP, xks st _xks+‘s>

< flafl] kTl — bt < 2 e g,
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This implies that for sufficiently large s

Qg +1, . (bp~ <a_D’ xk;+l=>)
2 lloci? '

(A24) 0, >

Considering the limit of the right hand side of (A24) as s — oo, and noting that
xks*ls— x* and that a4, > ¢, for sufficiently large s, we get from (A20) that
¢, > 0, This contradiction shows that (A17) must be true for sufficiently large
s if {a?, x*) #0.

Suppose now that

(A25) (af, x*> =0.
Then {a?, x*s**Y»—=>0 and so, by (13) and (24), either

(A26) b,>0 and ¢4+
or
(A27) b,<0 and ¢x+1,555 —©-

The nonnegativity of z* (Proposition 4.3 of [11]), (16) and Lemma A show that
(A27) cannot happen. Lemma A, (16) and (A26) now imply that for sufficiently
large s (A17) is true.

In either case, from (15),

(A28) ettt =,

By the definition of [, in (A16), the pth component of z is not changed during
any step k for which k +I,+1 <k <k,+r. This and (A28) show that

et 20, g

Note that Proposition 4.10 of [11] does not have “for sufficiently large s”
in its statement. However this is due to an oversight there and does not make
any difference to the rest of the proof.
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