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Observations on quasi-linear partial
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Abstract. Some observations are given, allowing an immediate extension of certain results for
quasi-linear partial differential equations to more general equations containing functionals. The
procedure is exemplified with quasi-linear [irst order hyperbolic systems in the Schauder canonical
form. However, it can also be applied to other types of quasi-linear differential equations and
systems (e.g. parabolic, elliptic). The extensions stated here include in particular all the results
presented in [8]-[11], [17]-[20] (see the references).

1. Introduction. We consider a differential-functional system in the
Schauder canconical form:
m 0z(x,y) < 0z;(x, y)
(1) Z Aij(xs Y, z())[_J—+ Z Qlk(x: Y. z())_J—
0x k=1 a.Vk

j=1
= filx,y,2(*), i=1,...,m,

with the unknowns z(x, y):=(z,(x, y), -.., z,(x, y)), where y =(y;, ..., »,),
(x, y)eD,:=I, xR, I,:=[0,a], 0 <a< o0,

In (1) and below, the symbol z(-)=(z,("),...,z,(*)) stands for an
argument varying in a function space; thus A;;, o, f; are (given) functionals
with respect to this argument (cf. e.g. [16]).

System (1) is more general than the quasi-linear systems widely inves-
tigated in the literature, e.g. in [17, [2], [4], [5], [15] (see also the references in
[2], [4]), where z(x, y) appears in place of z(-) (see system (20) below).

We shall consider (1) together with the initial conditions

2) 20, y) = ¢:(y)

and with the general boundary conditions
m N

(3) Z Z b[}k(y)zj(ak: y) = W.-(J’),
j=1k=1

i=1,...,m yeR", where ¢;, {,, by are given functions and a,, ..., ayel,,
m < N < oo, are arbitrarily given numbers.
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The boundary conditions (3), introduced by P. Pucci in [15], include as
particular cases all the well-known conditions: Cesari’s conditions (N = m,
bix(y) = b;(y) dix, Oy being the Kronecker symbol, [4], [5]), generalized Cauchy
conditions (of the form z,(a;, y) =Y,(y), i=1, ..., m, [14], [16], also called the
Niccoletti conditions) and, obviously, the usual Cauchy conditions (2).

Papers [8]-[11] concern differential systems with retarded arguments,
while [17]-[20] generalize the results of former papers, respectively, to systems
containing some operators. Further, [8], [9], [17], [18] deal with Cauchy
conditions (2), whereas [10], [11], [19], [20] discuss Pucci’s conditions (3) for
the systems of equations treated in 8], [9], [17], [18], respectively.

We state two theorems on the existence and uniqueness of solutions and
their continuous dependence on some initial or boundary data. The first
theorem deals with the Cauchy problem (1), (2). It is a generalization of Cesari’s
result ([4], Theorem I), and includes all the theorems of [8], [9], [17], [18].
The second theorem concerns the problem (1), (3). It is in turn a generalization
of a theorem by P. Bassanini ([2], Theorem 1), and includes all the results of
[10], [11], [19], [20]. The second theorem can be deduced from Bassanini’s in
the same way as the first one from Cesari’s; therefore, we omit its proof.

Our theorems also include some cases not covered in [8]-[11], [17]-[20]
(see Sections 5, 7, 8). On the other hand, the theorems are only examples
illustrating the pattern we give; the same pattern can be followed in many other
cases.

2. Statement of the existence theorem for the Cauchy problem (1), (2). For
any vector v =(vy,..., 0, we write |v| =max;<,;<q/v,].- Given constants
a,a,, 2>0, 0<a<a, we define K to be the class of all continuous
vector-functions z = (z,, ..., z,): D,—R™ such that |z] < Q.

AssumpTiON H,. 1° The real functions ggu(x, y, z(*)), filx, y, z(*)),
Aylx, y,2z(*), i,j=1,...,m; k=1, ..., r, are defined for (x, y, z)e D,, x K;
for any fixed (y, z)eR"x K, gy and f;, considered as functions of x, are
measurable;

2° there are summable functions mg, m,: I,,— [0, c0) and constants g,
H, H > 0 such that

(4) IQik(x’ Y, Z())I < ml(x)’ |j;-(x, Y, Z('))I < mO(x)’

(5) det[A] = p  |Aylx, y, zC) < H,  olx, v, z())| < H

for (x, y, z)e D,, x K, where [a;;] is the inverse matrix to [A4;;].
Note that the first two inequalities in (5) imply the third with some H'.
Let J be the set of all functions ¢ = (¢,, ..., ¢,,) defined on R" such that

for some constants o, 0 <w < Q, A =0, we have

(6) oMl <o, le(p)—e() < Aly—j|

for y, yeR".
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Choose arbitrary constants p, Q, k, Ry, R, with

) 0<p<l, Q>A(1+m*H'HQ2+p), O<k<l,
(8) Ry,>mH', R,>m*HHA(1-k)™},
and an arbitrary summable function y: I,,— [0, o), such that
9) x(x) = Roymy(x)+ R, m,(x).
We denote by K, the class of all ze K satisfying (2) and the inequalities
(10) e, y)—2(x, ) < Qly =71,
(11) lz(x, y)—z(%, y)| IIx(t )dt],

for all (x,y), (x, ), (X, y)eD,. Let
(12) llzllx=8})1p lz(t, y)l, D,=1[0, x]xR".

ASSUMPTION H,. 1° There are summable functions [, [,: I,,— [0, o), such
that

(13) low(x, v, 2(:)) —eu(x, 7, 2())| < L[y -7l + 1z—2Il,],

(14) |£i(es v, 2C)—filx, 7, 20)) < L)Ly =71+ lz—21,]

for all (x,y, 2), (x, §,2)eD,;xK,, i=1,....,m; k=1,
2° there exist constants C, C' 20 and summable functlons m,, my:
I,,—[0, o) such that m, > Cy, my = C'y,

(15 Aylx y, 2) = Ayle, 5, 20 < COy—31+ 2211,
(16) Ay, 3 2() = Ayl y, 2())] < @mz(t) ),
(17 (s 3 20 )=, 5, Y CTy—31+ lz—1.1,
18) g%, 9> 20)— (% 3, 20))] < lz malt)d|

for (x,y,2), (x,y,2), (X, ), 2)€DayxKy; i, j=1,....m;
3° there are constants R,, Ry > 0 such that

(19) x(x) > Romo(x)+Rym, (x)+ Ry(my(x) = Cx(x))+ Ry (my (x) — C'1(x)).

In fact, (17), (18) with some C’, m, are consequences of (5), (15), (16).

Note that if (15){18) hold for some C, C' > 0 and m, = Cy, my=C'y,
then (19) is satisfied.

The following theorem is a generalization of one by Cesari ([4],
Theorem I).
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THEOREM 1. If Assumptions H,, H, are satisfied and a is sufficiently small,
0 < a < ay, then there exists in K, a unique function z which satisfies (1) almost
everywhere in D, and (2) everywhere in R". Moreover, z depends continuously on
@e€J (in the same sense as in [4]).

3. Cesari’s theorem. For convenience of the reader we quote Cesari’s
theorem. Consider the quasi-linear differential system

(20) i ZU(X, y, Z(x, y)) [az X, ,V) zr: (X y, z x y)) az.(x, y)j|

i=1 k=1 Vi

= filx, y,z(x,y), i=1,...,m, (x, y)eD,,
where
(21) Zl’j(x: y’ W)s éik(x! y’ W), ];(x’ Y, W)
(with weR™) are given functions from D,, x [~Q, ]™ into R; Q = const > 0.

AssuMPTIONS A. For any fixed (y, w)eR" x[ =, Q1™, gu, f; viewed as
functions of x, are measurable and there exist summable functions i, ..., m,,
LT: I,,~[0, o) and constants g, H, H' >0, C, C' > 0 such that the in-
equalities

(22) |Gu(x, y, W S 1y (x), | filx, y, W) < g (x),
(23) Qi (x, ¥, w)—@ulx, 7, W) < T(x)[ly—y1+Iw—wl],
24) | fix, y, w)=Fi(x, 7, W) < T () [y =3+ w—w[],
(25) det{4ij(x, y, w1 =, 1Aylx, y, w)l < H,
(26) |Ay(x, y, w)—Ai(x, 3, w)| < Clly—7l+w—wl],
27) |40, yo w)— Ay, y, w)| < l,_{ iy () dt|

hold together with the analogues of (25)+(27) for the entries &;; of the inverse
matrix to [4;;], with H, C, m, replaced by H', ', m, (the latter inequalities are
in fact consequences of (25)(27)).

Let p, 0, k, Ry, R, R,, R,, Q be any constants such that
0<p<l, Q>A(1+m*HHAQ2+p), 0<k<l,
Ry>mHA', R;,>m*HHAA(1-k)™', R,,R;>0, 0> o.

Further, let ¥ be any summable function such that
3
(28) ix) = Y Rm(x), 0<x<a,.
=0

(In [4], 7 is defined by equality in (28); however, the inequality is less
restrictive.)
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We shall denote by K, the class of all functions z: D,—R™ satisfying (2)
and '

(29) 12x, )l < 8,
(30) |z(x, y)—-z(x, j»’.)[ s Qly_y_la
(31) 12(x, 3)— (%, )i < |[ 20)dd.

CesArr's THEOREM ([4], Theorem I). If Assumptions A are satisfied and a is
sufficiently small, 0 < a < ag, then there exists in K, a unique function z which
satisfies (20) almost everywhere in D, and (2) everywhere in R’. Furthermore,
z depends continuously on ¢.

The proof is lengthy and consists in formal integration of the given
equations along the bicharacteristics to obtain a system of integral equations.
The latter system is then solved by means of the Banach fixed point theorem.
Finally, it is shown that the solution of the integral equations system satisfies
the given differential system almost everywhere ([1], [4]).

4. Proof of Theorem 1. Theorem 1 can be proved directly, following the
lines of Cesari’s proof. At the same time, the functional form of the coefficients
and free terms of (1) turns out to be very convenient in notation and
calculations. This makes the proof shorter than Cesari’'s. We show, however,
that Theorem 1 follows from Cesari’s theorem, and some observations
concerning its proof.

Now, starting from Cesari’s theorem, we first consider the composite
function

(32) éik(x: Y, z(x, y)): (x& J’)ED,,,

with ze K,. As a function of x, it is measurable for every yeR’, and the first
inequality in (22) implies

(33) IQ-l'k(x, Y z(x, y))| < YEI(X) iIl Da
for every ze K,. Further, (23), (30) imply
(34) lQ-ik(xa y, z(x, y))_éik(x) j;s Z(x, .v))l < T(JC)[(I +Q)1y—}7] + ”z"f”x]

for all (x, y), (x, y)eD, and all z, Ze K. (Note that from (34), by taking for z, Z
constant functions, we get (23) with [y—j| replaced by (1+Q)ly—Jl)

Now, from Cesari’s proof ([4], see also [1]) it is immediately seen that
instead of the two separate conditions (23), (30) applied to the function (32), the
condition (34) alone (or its particular forms) can be used, which is even more
convenient and does not influence the result at all. Moreover, any other
property of the function (32) (besides (33), (34) and the measurability in x) is
irrelevant to the proof of Cesari’s theorem. One can write, e.g,

(35) Qik(x7 Y, Z(.)):=éik(x) Y, Z(x, y))
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and consider (32) as a function from D, x K, into R. It follows that Cesari’s
theorem remains valid if in (20) the coefficient (32) is replaced by gu(x, v, z(-)),
where g;; denotes any real function defined on D,, x K, measurable in x and
satisfying, for (x, y, z), (x, 7, 2 eD,x K,, the conditions

(36) B (x, v, 2())| < iy (%),

BN ealx, y, 2()—eulx, 7, 2()| < T)[A+ )|y~ 7+ lz—2] ]

which correspond to (33), (34).

Exactly the same is true of the terms fi(x, y, z(x, )) appearing in (20). By
the same argument as above, we deduce that Cesari’s theorem remains valid if
in (20) these terms are replaced by f,.(x, y, z(" )), where each f; is measurable in
x and satisfies

(38) Iﬁ(X, Y, Z())' < ’ﬁo(x),

(39) 1fix, v, 20 ) =filx, 7, 20C))| < LI+ Q)ly — 71+ 12— Z1l,]

for all (x, y, 2), (x, y,2)eD,xK,.
For A4; ; the situation is similar. First of all we note thatif z, Ze K,, then by
(2527), (29)«31) we have

(40) det[d;(x, y, z(x, Y] = &, |Ailx, y, 2(x, y)| < A,
(41) |zij(x’ ¥, Z(x> y))—ZiJ(x’ f’, E(x, y))' < C—[(l +®|y-‘)_/|+ "Z"‘Z_“x]s

@) Ay, 3. 2, )= Al v, 25, )| < [0+ Crie] .

Similar inequalities hold for the entries &; of the inverse matrix to [4;]],
with H, C, m, replaced by H', C, m,, respectively.

Further, one can easily verify that in Cesari’s proof the set of conditions
(26), (30), (27), (31) on the composite functions

(43) Zij(x’ Y, Z(x’ y))

can be replaced by the two conditions (41), (42) (*). We also observe that no
other properties of the functions (43) (besides conditions (40)(42) and their
counterparts for &;(x, y, z(x, y))) are needed for Cesari's proof.

Hence, we deduce that Cesari’s theorem remains true if in (20) the
coefficients (43) are replaced by A;{x, y, z(*)), under the assumption that

(') Note that making a direct use of (41) and (42) enables us to improve the estimate of the
derivative (d/d&)A,, on page 324 of [4]; viz, we obtain

d
(44) }—an 1y (&) +Cr() +rC(1 + Q) (8).

dg
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A;; are real functions on D, x K, which satisfy the conditions
(45) det[AU(x: ¥, Z())] ; ﬁ: IAij(x’ Vs Z())| s H’
(46) |4i(x, v, 2()) = Ay(x, 7, 20))| < CLA+ D)y — 31+l z—21,],

47) |[4ij(%, y, 2(:)— 4y(%, v, 2()) < U[mz(t)+C7(t)Jdt|

corresponding to (40){(42), and similarly
(48) Iatj(JC, Y, z())l < H,
(49) s (x5 ¥, 20))—ais{x, 7, 2C))| < C LA+ D)y —l + 12— 2],],

(50) |al'j(xs ya Z('))'—aij(x—s Y, Z())l < I]‘C [m3(t)+6l2(t)] dtl

for (x, y, 2), (x, 7, 2), (X, y, z2)eD,x K.

(Note that replacing in (13}-(15), (17) the term |y —j| by (1 +Q)|y— |, that
is, making weaker assumptions, we would get conditions precisely adjusted to
(37), (39), (46), (49), respectively.) Note finally that the set of conditions (16), (18),
(19) corresponds exactly to the set of conditions (47), (50), (28).

Thus, by manipulations with Cesari’s theorem, we arrive at Theorem 1.

The magnitude of a in Theorem 1 can also be determined by the Cesari’s
theorem.

Remark 1. From assumption (13) ((14), (15)) it follows that the functions
0i (f;» Ay respectively) satisfy the following condition (which is sometimes
called a Volterra condition): if z, Ze K, and z(t, y) = Z(t, y) for all (¢, y)eD,,
then gul(t, y, 2(*)) = eu(t, ¥, z(*)) for all (t, y)eD,, x being any number in
[0, a].

5. Corollaries to Theorem 1. We consider the system (cf. [8]-[11],
[17]-[20])

m a . ,
(51) Z (x y, z(x, ), (V(l) 2)(x, y))l:_zj%__l_’}
r a - ,
+ Z éik(x’ Y Z(X., y)s (VJCZ)Z)(X, y))y]
k=t Vi

= fi(x’ Y, z(x, y): (V;(a)z)(x’ y))’ i=1,...,m, (x, y)ED

where A, gy, f; are given functions from D,,x R"xR" into R, and Vi), V¥,
V&3 §m_§" are given operators, S' being the set of all [-vector-valued
functions defined on D,.

Considering the coefﬁments and free terms of (51) as the corresponding
functionals appearing in (1), we make assumptions on AU, du, f, and the
operators in order to make use of Theorem 1.
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AssumpTION H,. The functions

(52) A, y, w, 0),  Gulx, y, w,0),  filx, y, w,0)

are defined on D, x[—Q, Q1" x[—, Q]", @ > 0. For any fixed y, w, v, gy,
f,, treated as functions of x, are measurable. Furthermore, there exist
summable functions my, m,, m,, m,, [, [;: 1,,—[0, c0) and constants p,
H,H >0, C, (' >0 such that, in the domain of the functions (52), the
inequalities

(53) 6i(x, y, w, ) S my(x),  |Fi(x, y, W, D) < mg (),
(54)  Balx, y, w, ©)—ulx, 5, w, D) < [(X)[ly— 31 +Iw—w|+|v—1(],
(55) |fix, v, w, 0)=Fi(x, 7, W, 9)) < [, (x)[ly—Jl +Iw—=wl+ v -],
(56) det[d;(x, y, w, )1 = 4, |Aylx, y, w, o) < H,

57 VAylx, y, w, )= Ay(x, 5, %, D) < Cly—7i+w—wl+lp—1a],
(58) |Ay(x, y, w, 0)—Ai (%, y, w, )| < Iirﬁz(t)dt‘
hold together with the analogous of (56)58) for the entries d;; of the inverse
matrix to [4;], with H, C, m, replaced by H', C', .

We define
(59) 2(x):= Romgy(x)+ Rymy(x)+ R,y (x) + Ryrity (x),
where R, ..., Ry are any numbers such that

Ry>mH', R, >m*HHA(1-k™ ', O0<k<l,

R,, R; >0, and 4 is taken from (6).

Let x: I,,—[0, c0) be any summable function satisfying
(60) x(x) = bj(x), xel,,
with some b = const > 1. Let Q be any constant such that

Q0> A(l+m*H'HQ2+p)), O<p<l.

We denote by K the class of all functions z: D,— R™, satisfying (2), the
inequality |z(x, y)| < @, and inequalities (10), (11) with Q, y defined above.

ASSUMPTION HA' There exist constants r,, Q,, g, =0 (k =1, 2, 3) such
that for all z, ZeK and (x, y), (x, ), (X, y)e D, we have

(61) IV®2)(x, y)—(VP2)(x, y) <7, llz—2ll,,
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(62) I(V®2)(x, y)l < @,

(63) (VR2)(x, )= (V®2)(x, DI < Qly~F1  (k=1,2,3),
(64 (V02)(x, )~ (VD2)E, ) < 4,]] 200 de],

(65) (V®2)(x,y) (k=2,3) are measurable in x;

here and below, V' (V®, V®) denotes each of the operators ViV
Lj=1,...,m (VP, VP, respectively, i=1,...,m; k=1, ..., 1.

COROLLARY 1. Under Assumptions Hy, H,, there exist a number a€(0, a,]
and a function zeK which satisfies (51) almost everywhere in D, and
(2) everywhere in R'. Furthermore, z is unique in K and depends continuously
on @.

Proof. Set
eu(x, ¥, 2(*)) = du(x, y, z(x, y), (ViP2)(x, y)).
Owing to (54), (10), (63) and (61) we have
low(x, ¥, 20 ) —aulx, 7, ()| < (DA +Q+Q)y— 7 +(L+r,) | z—2],].
Therefore, inequality (13) is satisfied with
I(x) = [(x)C,, where C,:=max(1+Q+Q,, 1+r).

Similarly, it can be shown that, under suitable notation of the functionals,
inequalities (14)18) hold for

L) =00()C,, C=CC,, C=C¢,
(66) my(x) =1, (x)+ C(L+q)x(x), ma(x) =rz(x)+ C(1+g,)x(x).

In order to show that condition (19) is satisfied, note first that in view of (66)
this condition takes the form

(67) x(x) 2 1(x)+(R,C+R;3C) g, x(x).
Decreasing R,, R, if necessary, we have
(68) (R,C+R,C)q, <1-b71.

Thus inequality (60) remains valid implying (67), that is, (19). Hence Theorem

1 yields Corollary 1.
Now, we deal with a system with retarded argument, i.e. system (51) with

(for simplicity)
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(69) (V(k)z)(x’ y) = z(ak(x’ y)’ ﬁk(xa y)) (k = 1’ 2’ 3)’

where a0 D, 1, By = (Bis, -, Bur): D,—~R" are given functions.
Let us retain Assumption H, and the definition of the class K. We make

AssUMPTION H,. 1° There are constants b,, b, such that
(70) 1Bilx, Y= Bi(x, N < byly—yi (k=1,2,3),

(71) B3 (x, Y)— By (&, ) < B | () a]

for (x, y), (x, 9), (X, y) e D,. The functions f,(x, y), f;(x, y) are measurable in
x for every yeR’,; |
2° the functions o, (x, y} (k = 1, 2, 3) are continuous in y for every xel,,

absolutely continuous in each of the variables y,,...,y, separately,
o, (x, y) £ x and

o (x,
(72) x(o (x, y)) a"a(; /) <N, (s=1,...,rk=1,2,3)

for all xel, and almost all yeR", where N, > 0 are some constants. The
function a,(x, y) is absolutely continuous in x for any yeR’, and

aal(x! y)
0x

for every yeR" and almost every xel,, where N >0 is a constant. The
functions a,(x, y), a;(x, y) are measurable in x for any yeR"

(73) 2o (x, ¥) < Ny(x)

COROLLARY 2. If a is sufficiently small and Assumptions H,, H; are
satisfied, then there exists in K a unique function z which satisfies (51) (with V®
given by (69)) almost everywhere in D, and (2) everywhere in R". Moreover,
z depends continuously on o.

Proof. By Corollary 1 it is sufficient to verify that operators (69) satisfy
Assumption H,. Evidently, inequalities (61) hold for », = 1. Since ze K, (62)
holds as well. Let

}7;::(.)_)1,-”3 fs—l:y—s’ys+1a"'ay,-)’ j"0=y
(s=0, ..., r). Applying (11), (10), (70), (72) and a theorem on the change of the
integration variable [7], we deduce that
|z(ak(x, _V), ﬂk(x’ y))—z(tx,‘(x, ﬁ)’ :Bk(x’ _\7))|

r a(x.pa~-1)

<Y | [ x0d]+Qbly—jl

s=1  ak(x.9s)

< 2 Nily,= 3 +0byly—Jjl < (rNy+ 0b)ly— 7.
s=1
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Therefore (63) are satisfied with Q, = rN,+ Qb,. Similarly, (11), (10), (71), (73)
and the theorem on the change of the integration variable imply

|20ty (%, 1), By (x, ¥)—2(2y (%, ¥), By (%, 3)
ay(x,y)

<| [ x(®)dt]+Qb, |jx(t dt| < (N + Qb)) ”x(t)dtl

ai(x,y)

This means that (64) holds for g, = N+Qb,. By known facts on the
measurability of composite functions, (65) is true as well, which completes the
proof.

6. Boundary value problem (1), (3). As in [2] we write
Ay(x, y, 2(0)) = b+ Ay(x, v, 2(°)),
oylx, y, 2(°)) = dy+8y(x, , 2(-)),
bige(y) = 8y i+ bip(y)

and set

1,

oy =max[ sup Y |Ay(x, y, 2("))

Doy XK j=1

0, =max[ sup ) |dy(x, y, z("))],

I "DagxKj=1
Og = max [SUP Z 2 ll;zjk(Y)u
yeRr j=1k=1
K being the class defined in Sec. 2.
AssuMPTION Hg. 1° (1= (0o+0,)(1+0,) < 1;

2° there are constants A, >0, 7, >0 such that for all y, jeR" and
i=1,...,m we have

m N
W) — (D < Aoly =3, _Zl kzl Buw )= bi (D) < 7o ly—Jl.

Now we define a basic function class K. Let ke({, 1) and let C, C’, w, be
positive constants, w, < Q(1—-{)(1+0,)"'. The products Cw,, C'w, are
assumed to be so small that

(74) 05(00):= m[C' 0o+ Coolop+0,)+ Coo(l +0,)] <k—(,
where gy:=(1+0,)(1=0)" @, (< Q) 3.

(%) We make use of the improved estimate (44). Then assumption (a,) of [2] takes the form
doleo) < 1 and becomes superfluous because of assumptionl (a,) (having the same form as (74)).
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Let g be any constant such that g, < § < Q and §,(8) < k—{ (3). There is
pe(0, 1) such that

(75) 8o(0):=(1+p){+00(0) < 1.
We choose an arbitrary constant

(76) Q> Bo(1—-a,(@) "

with

(77 Bo:= (14 p)(1 +05) (Ao +a70) +8,(0).

Further, let y: I,,—[0, co) be an arbitrary summable function such that
x(x) 2= Romgy(x)+ Ry my(x),

where m,, m, are the functions appearing in Assumption H,, which we adopt
here, while R,, R, are any constants satisfying the inequalities

78) Ry > (1+0,)(1-60(2) 7",
Ry > (1+0,)(1-8,(0)) " [Ao+0@To + (0o +0,)Q+mClr+1)(1 +Q)].

Now we denote by K, the class of all functions z: D,—R™, such that
lz] £ 8 and inequalities (10), (11) (with @, y¥ chosen above) are satisfied.

THEOREM 2. Suppose that Assumptions H, and Hg hold. We assume that
;0| < wg (yeR",i=1, ..., m) and that Assumption H, is satisfied for C, C',
wy, Ky, x» Ry, R, defined in this section and for some constants R,, R,
such that

(79) R, >mg(14+0,)(1-8,(@)"", Ry;>ml[wy+d(oy+0,)](1—56,() "

Then, for sufficiently small ae(0, ay] and for any a, ..., ay€ [0, a] there
exists in K, a unique function z satisfying (1) almost everywhere in D, and (3)
everywhere in R'. This function depends continuously on \; in the same sense as in

(2], [4].

Theorem 2 can be deduced from Theorem 1 of [2] in the same way as our
Theorem 1 from Theorem I of [4]; there is no need to repeat the pro-
cedure.

7. Corollaries to Theorem 2. First we consider the problem (51), (3). Let
Aﬂu(x’ Y, w, v) = 8;;+ Ajj(x, y, w, v),

&i](x’ Y, w, U) = 6ij+a;'j(xs Y, W, U).

(*) We introduce § which replaces @ appearing in [2]. This change is inessential for [2]. In
our case it simplifies the [ormulation of the results below.
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Set

(80) oy =max[ max ¥ |44(x, y, w, v)]],
i Duoxﬁj._.l

(81) 0, =max[ max Y jo(x, y, w, v)|],
b DapxQj=y

where Q =[—Q, QI™*".

Let us formulate some assumptions needed for Corollary 3 below. We
retain Assumption Hg (with o,, ¢, understood according to (80), (81)).

Now we introduce a function class K. As in Sec. 6, choosing any ke({, 1),
C,C, w5 >0, 0y < Q1—{)(140,)"" we assume that the products Cw,, C'w,
are so small that (74) holds. Then we take any ge(gy, Q] such that
90(@) < k—{, and, as in Sec. 6, define Q by (76). Further, let § be given by (59)
with any numbers Ry, ..., R, satisfying (78), (79), and let y: I,,—[0, o) be
any summable function such that

(82) x(x) = bji(x), b>1.

Now K will stand for the class of all functions z: D,— R™ such that |z| < §
and (10), (11) (with Q, y defined by (76), (82)) are satisfied.

In the sequel, we retain Assumption H, provided that K is understood as
in this section.

i AssuMPTION H,. Suppose C, C’, w, are not greater than in the definition of
K and satisfy (aside from (74)) the inequality

(83) do(@o) < (b—1)((1+4g,)b—1)""
Assume [{;(y)] € w,.

COROLLARY 3. Let Assumptions H, H,, H, (with 6, a,, K redefined in this
section) be satisfied. Moreover, let Assumption H, hold for C = CCT!,
C'=C'C;', where C, =max(1+Q+Q,, 1+r). If a is sufficiently small,
0 < a < ay, then for any a,, ..., ay€[0, a] there exists a unique function zeK
satisfying (51) almost everywhere in D, and (3) everywhere in R". This function
depends continuously on ;.

Proof. This corollary will be derived from Theorem 2. Obviously
Assumptions H,, H, are fulfilled. As in the proof of Corollary 1, applying
Assumptions H, and H, one can show that (13)~(18) hold for C = CC,,
C'=C'C, and m,, m, defined by (66).

As we know, in order to prove (19) it is sufficient to prove (67). Decreasing
0 (in (g,, £2]) if necessary (which does not extend the K) we may assume that
(83) holds with g, replaced by §. The latter inequality is equivalent to

4,60(@)(1-08,(@) "' <1-b71.
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By (79),
R,C+RyC' > 6,(8)(1—85(0) "

Hence, decreasing R,, R, if necessary (in such a way that they still satisfy (79))
one can get

(84) q,0,(0)(1 —80(0))"' <(R,C+R;C)gq; < 1-b~1.

This procedure preserves inequality (82), which, jn view of (84), implies (67).
Therefore Assumption H, (with K, replaced by K) is satisfied. This completes
the proof.

The final corollary concerns a system with retarded argument, i.e. we treat
the problem (51), (3) with the operators ¥* given by (69).

COROLLARY 4. Let Assumption Hy (with ¢, o, defined by (80), (81)) be
satisfied. We retain the definitions of Q, x and K given in this section. Further, let
Assumptions Hg (with Q, y defined here) and H,, with q, = N+Qb,, hold.
Finally, suppose Assumption H, holds for C=CCq!, C' =CCq!,
Co=max(l+Q+rN,+0b,, 2).

Under these assumptions, for sufficiently small a€(0, ag] and for any
a,, ..., ay€ [0, al, there exists a unique function z: D,— R"™ satisfying (51) (with
V% given by (69)) almost everywhere in D, and (3) everywhere in R', and
belonging to K. The function z depends continuously on ;.

The proof is an easy combination of the proofs of Corollaries 2 and 3; we
omit the details.

8. Final remarks.

Remark 2. In [8], [10], [17], [19] the system (51) was treated in the
particular case when the functions A;; do not depend on the last variable, i.e.
the V"' do not occur in any form. On the other hand, in [9], [11], [18], [20]
the operators V") are allowed to appear (in [9], [11], as in [8], [10], the
operators V% (k =1, 2, 3) are of the form (69)), but the assumptions on all
functions /iij, 0ux, f; are stronger than those in [8], [10], [17], [19]. Our
corollaries join together these two kinds of results under considerably weaker
assumptions.

Let us give the following example, which, in particular, reveals the
generality of conditions (72), (73).

EXAMPLE. Suppose that
mq(x), my(x), m,(x), M4(x) <%y x*, 0<x<1,

with some constants %, > 0, » > — 1. Then the function y(x) = %, x* with large
»y > 0 satisfies (60) (and Corollaries 1 and 3 hold). Additionally we choose

x, y) = xMsiny[¥, A= 1,y = 1/x+1),
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i=1,2,3; r=1 Then inequalities (72) (with N, =x,v,) and (73) (with
N = 1)) are satisfied (and Corollaries 2 and 4 hold).

On the other hand, no case when 7, is not essentially bounded (as in this
example) and, at the same time, a certain V! is not the identity operator, is
treated in [8]-[11], [17]-[20].

Remark 3. One of the purposes of this paper is to present a method
allowing a generalization of some results known for quasi-linear equations to
the corresponding equations whose coefficients (and/or free terms) are func-
tionals. The method exemplified by the proof of Theorem 1 is based, roughly,
on the following observation. The coefficients of a quasi-linear equation are
composite functions of a given function and the unknown one. Each of the two
functions is assumed to satisfy some conditions. In the proofs, however, it is
often sufficient to use the conditions satisfied by the composite function only.
In such cases the composite function can be replaced by another function
having the required properties, e.g. by a certain functional. Let us mention
several further examples.

Remark 4. In the way described above also some other results, e.g.
Theorem II of [4] and the results of [15], can be generalized to systems with
functional coefficients. Such a generalization is especially easy for the results of
[3], [5], concerning system (20) with A;; = §;; (the first canonical form).

In the same simple manner, starting from the existence theorem of [13]
related to the so-called mixed problem for system (20) with 4;; = §;;, r = 1, one
can get a corresponding theorem for system (1) with A4;; = §;;, r = |, containing
the result of paper [21] which is devoted to the mixed problem for system (51)
with AAU = 5U’ r=l. .

Note finally that certain results for quasi-linear differential equations (or
systems) of parabolic or elliptic type, found in e.g. [6], [12], can be immediately
transferred, in the way outlined in Remark 3, to the corresponding equations
with functional coefficients.

Remark 5. It is obvious that each system of the form (51) is a system of
the form (1)." Note that, conversely, each system of the form (1) can be
represented (in many different ways) in the form (51). The simplest way is to
choose, in (51), the particular functions

Aijx, y, w,0)=v, dalx,y, w,v) =0,
fix,y,w,oy=v, ij=1,...,mk=1,..7r
and n=1 (ie, v is a scalar variable). Then
Ay(x, v, 2(x, y), (ViP2)(x, v) = (VP 2)(x, ),

and similar relations hold for gy, f;. Clearly each function 4;;(x, y, z(*)) is an
operator of type (Viz)(x, y). Thus, we have shown that the class of systems of
the form (1) is identical with the class of systems of the form (51).

7 — Annales Polonici Math. 53.3
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Let us also notice the following fact. In, say, Corollary 1, one can slightly
change some assumptions on the operators V,g”, ViR, Vi3 (with n = 1, see their
definitions) and on the functions A;; i» Oiks fi in such a way that the operators
satisfy conditions of the same type as the conditions needed for the whole
corresponding coefficients of system (51). Consequently, instead of system (51),
one can consider the system whose coefficients are the corresponding
operators:

(85) Z(V“’ )x, y)[az( . V) +Z(V}3>z)(x y) (yk )]

=(‘/i(3)z)(x’ y), i= 1,""m)

that is, a suitable system (1).

Even a direct treatment of the obtained system (85) or (1) (the application
of the method used in the proof of Theorem 1 is not always possible) is much
simpler than for system (51) and, obviously, leads to the same results.

Similar observations can be made for Corollary 3 and the papers
[173-[22], directly treating system (51) or its particular cases.
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