Indeterminate forms for multi-place functions

by A. I. Fine (Urbana) and S. Kass (Chicago)

§ 1. Introduction. A well-known theorem of Bernoulli, commonly called "l'Hospital's Rule" (cf. [1]), states that if a pair of differentiable 1-place functions \(f, g \) have a common zero or a common infinity at a point \(A \), which is not a limit point of zeros of \(g' \), then

\[
\lim_{A} \frac{f}{g} = L \quad \text{whenever} \quad \lim_{A} \frac{f'}{g'} = L.
\]

In this article we extend this theorem to higher place functions by proving that if a pair of differentiable \(n \)-place functions \(f, g \) have a common zero or a common infinity at a point \(A \), which is not a limit point of zeros of \(g_{a} \), then

\[
\lim_{A} \frac{f}{g} = L \quad \text{whenever} \quad \lim_{A} \frac{f_{a}}{g_{a}} = L,
\]

provided that, in the case where \(|g| \rightarrow \infty \), \(f \) and \(g \) are externally bounded. (Terminology and notation will be explained in § 2.) Just as in the classical case the theorem extends to the various "infinite cases" of \(L \) and \(A \).

For simplicity results are stated for 2-place functions; however each result holds for \(n \)-place functions: simply replace "2" by "\(n \)" in each proof and read the summation signs accordingly.

§ 2. Terminology. The symbol \(f(P) \) denotes the value of a function \(f \) at a point \(P : (p_{1}, p_{2}) \). Subscript notation will be used for partial derivatives. In particular,

\[
f_{a}(P) = (\cos a)f_{1}(P) + (\sin a)f_{2}(P) = \frac{\sum (p_{1}-a_{1})f(P)}{\sum (p_{1}-a_{1})^{2}}
\]

will be called the directional derivative of \(f \) with respect to \(A \). Here \(A : (a_{1}, a_{2}) \) is a fixed point, \(P : (p_{1}, p_{2}) \) a point variable, and \(a \) the angle between the positively directed \(x \)-axis and the directed line determined by segment \((AP) \). The symbol \((AP) \) \([AP]\) will be used to denote the open (closed) directed segment from \(A \) to \(P \).
It is important for what follows to observe that if \(X: (x_1, x_2) \) and \(Y: (y_1, y_2) \) are any pair of distinct points on \(\Delta P \), then \(\cos a = (x_1 - y_1)/\Delta \), and \(\sin a = (x_2 - y_2)/\Delta \), where \(\Delta = [\sum (x_i - y_i)^2]^{1/2} \). Thus for functions \(f \) and \(g \)

\[
(*) \quad \frac{f_i(P)}{g_i(P)} = \frac{\sum (p_i - a_i) f_i(P)}{\sum (p_i - a_i) g_i(P)} = \frac{\sum (x_i - y_i) f_i(P)}{\sum (x_i - y_i) g_i(P)}
\]

provided that these quotients are defined.

A point set \(S \subseteq E^2 \) is starlike with respect to point \(A \) if for each \(P \in S, (\Delta P) \subseteq S \).

A neighborhood \(N(A; \delta) \) in \(S \) is the intersection in \(E^2 \) of \(S \) with the open sphere of center \(A \) and radius \(\delta \).

Relative to a fixed point \(A \), we shall call a sequence of points \(\{Q_i\} \) external to a sequence of points \(\{Q_i'\} \) if for all but finitely many \(i \), \(Q_i \in (Q_i' A) \). We shall say that a function \(f \) is externally bounded with respect to \(A \) provided that the following condition holds for each neighborhood \(N(A; \delta) \) of \(A \): corresponding to each sequence \(\{Q_i'\} \subseteq N(A; \delta) \) which converges to \(A \), there exists a sequence \(\{Q_i\} \subseteq N(A; \delta) \), external to \(\{Q_i'\} \), on which \(f \) is bounded.

§ 3. Main results. We require the following extension of the Cauchy law of the mean to 2-place functions.

Lemma 1. Let \(f \) and \(g \) be 2-place functions defined on \(S \subseteq E^2 \). Suppose that \(S \) contains a line segment \(L \) directed from \(X: (x_1, x_2) \) to \(Y: (y_1, y_2) \) with \(a \) the angle between \(L \) and the positive \(x \)-axis.

If both \(f \) and \(g \) are continuous on the open segment and differentiable on the open segment, then there is some point \(P \in (XY) \) such that

\[
[f(X) - f(Y)] g_i(P) = [g(X) - g(Y)] f_i(P).
\]

Proof. Form the function

\[
h(T) = \begin{vmatrix}
f(X) & g(X) & 1 \\
f(Y) & g(Y) & 1 \\
f(T) & g(T) & 1 \\
\end{vmatrix}
\]

and apply the law of the mean for 2-place functions at \(X \) and \(Y \).

Theorem 1. Let \(A: (a_1, a_2) \in E^2 \) and let \(f \) and \(g \) be functions whose domains include a set \(S \subseteq E^2 \) which is starlike with respect to \(A \). Suppose that on \(S \) the functions are differentiable and that \(g(A) = 0 \), the directional derivative of \(g \) with respect to \(A \), is never zero. With the understanding that all limits are taken from within \(S \) at \(A \), there are two cases:

(i) \(f(A) = g(A) = 0 \) or

(ii) \(|g| \to \infty \) and both \(f \) and \(g \) are externally bounded with respect to \(A \).

In either case we have that if
(iii) \[\lim_{\Delta} \frac{f_\Delta(X)}{g_\Delta(X)} = L \quad (i.e. \lim_{\Delta} \sum_{\Delta} \frac{(x_i - a_i) f_\Delta(x_i, a_i)}{(x_i - a_i) g_\Delta(x_i, a_i)} = L), \]
then
(iv) \[\lim_{\Delta} \frac{f(X)}{g(X)} = L. \]

Proof. We first note that if only \(\lim f = \lim g = 0 \) is assumed, then the hypotheses of case (i) are fulfilled if we define \(f(\Delta) = g(\Delta) = 0 \).

Case (i). Let \(\varepsilon > 0 \) be given. Then there exists a neighborhood \(N(A, \delta) \) such that for every point \(U : (u_1, u_2) \) in \(N(A, \delta) \)

\[L - \varepsilon < \frac{\sum_{\Delta}(u_i - a_i)f_\Delta(U)}{\sum_{\Delta}(u_i - a_i)g_\Delta(U)} < L + \varepsilon. \]

Let \(X \) be any point \((\neq \Delta)\) in \(N(A, \delta) \) and consider the quotient

\[\frac{f(X) - f(\Delta)}{g(X) - g(\Delta)} = \frac{f(X)}{g(X)}. \]

By the ordinary law of the mean, \(g(X) \neq 0 \) because \(g_\Delta(U) \neq 0 \) on \(N(A, \delta) \). \(N(A, \delta) \) is starlike with respect to \(A \); therefore \([AX] \subseteq N(A, \delta) \). Hence, by the lemma there exists a point \(P \in \{AX\} \) for which

\[\sum_{\Delta}(x_i - a_i) f_\Delta(P) \quad \sum_{\Delta}(x_i - a_i) g_\Delta(P) \]

Now (1) certainly holds for \(U = P \); therefore

\[L - \varepsilon < \frac{\sum_{\Delta}(p_i - a_i)f_\Delta(P)}{\sum_{\Delta}(p_i - a_i)g_\Delta(P)} < L + \varepsilon. \]

By \((*)\) and \((2)\), however

\[\frac{\sum_{\Delta}(p_i - a_i)f_\Delta(P)}{\sum_{\Delta}(p_i - a_i)g_\Delta(P)} = \frac{\sum_{\Delta}(x_i - a_i)f_\Delta(P)}{\sum_{\Delta}(x_i - a_i)g_\Delta(P)} = \frac{f(X)}{g(X)}. \]

Thus \(L - \varepsilon < f(X)/g(X) < L + \varepsilon \) for all \(X \in N(A, \delta) \), whence \(\lim f(X)/g(X) = L \).

Case (ii). \(|g| \to \infty \). Let \(X \) be any point \((\neq \Delta)\) in \(N(A, \delta) \) and \(Y \) any point in \((AX) \). We repeat the argument in case (i), with \(A \) replaced by \(Y \), and find that

\[L - \varepsilon < \frac{f(X) - f(Y)}{g(X) - g(Y)} < L + \varepsilon, \]
for every \(X, Y \in N(A, \delta) \), where \(Y \in (AX) \). As before, \(g(X) - g(Y) \neq 0 \). We can assume \(g \neq 0 \) on \(N(A, \delta) \) and so may divide in \((3) \) to get

\[L - \varepsilon < \frac{f(Y) - f(X)}{g(Y) - g(X)} < L + \varepsilon. \]

(4) \[L - \varepsilon < \frac{f(Y) - f(X)}{g(Y)} - \frac{f(X)}{g(Y)} < L + \varepsilon. \]
Now consider any sequence of points \(Q_i \) of \(N(A, \delta) \) which converges to \(A \). By hypothesis there exists an external sequence of points \(Q_i \) of \(N(A, \delta) \) on which both \(f \) and \(g \) are bounded. (4) is satisfied when \(X \) and \(Y \) are replaced by \(Q_i \) and \(Q_i \), respectively. Thus

\[
L - \varepsilon < \frac{f(Q_i)}{g(Q_i)} < \frac{f(Q_i)}{g(Q_i)} < L + \varepsilon.
\]

Since the \(g(Q_i) \) are bounded, for large enough \(i \), say in the neighborhood \(N(A, \delta') \), we have that \(1 - \frac{g(Q_i)}{g(Q_i)} > 0 \) for all \(Q_i \in N(A, \delta') \). Thus

\[
(L - \varepsilon) \left[1 - \frac{g(Q_i)}{g(Q_i)} \right] + \frac{f(Q_i)}{g(Q_i)} < \frac{f(Q_i)}{g(Q_i)} < (L + \varepsilon) \left[1 - \frac{g(Q_i)}{g(Q_i)} \right] + \frac{f(Q_i)}{g(Q_i)}
\]

for the \(Q_i, Q_i \in N(A, \delta) \), where \(\delta = \min(\delta, \delta') \). If \(i \to \infty \), then \(1 - \frac{g(Q_i)}{g(Q_i)} \to 1 \)
and \(\frac{f(Q_i)}{g(Q_i)} \to 0 \), from which it follows that

\[
L - 2\varepsilon < \frac{f(Q_i)}{g(Q_i)} < L + 2\varepsilon
\]

for all \(Q_i \) in some subneighborhood of \(N(A, \delta) \). Since the sequence \(Q_i \) was chosen arbitrarily, \(\lim_{A} (f/g) = L \).

Corollary 1. In the theorem, \(L \) may be replaced by either of the symbols \(\infty, -\infty \).

Proof. We consider only \(\infty \). If \(\lim_{A} (f/g) = \infty \), then for given \(M > 0 \) there exists \(N(A, \delta) \) such that for all points \(P : (p_1, p_2) \in N(A, \delta) \) we have

\[
\sum (p_1 - a_1) f_i(P) > \sum (p_1 - a_1) g_i(P).
\]

As before, this gives

\[
\frac{f(X) - f(Y)}{g(X) - g(Y)} > M
\]

for all points \(X, Y \in N(A, \delta) \) such that \(Y \in [AX] \) in case (i) and \(Y \in (AX) \) in case (ii).

Setting \(Y = A \) in case (i), we obtain immediately that \(f(X) / g(X) > M \) for all \(X \in N(A, \delta) \).

In case (ii), for any sequence \(\{Q_i\} \) converging to \(A \) we have for sufficiently large \(i \)

\[
\frac{f(Q_i)}{g(Q_i)} > \left(1 - \frac{g(Q_i)}{g(Q_i)} \right) M + \frac{f(Q_i)}{g(Q_i)}
\]
where \(\{Q_i\} \) is a sequence external to \(\{Q'_i\} \) on which \(f \) and \(g \) are bounded. It follows that as \(i \to \infty \), \(\frac{f(Q'_i)}{g(Q'_i)} \to \infty \).

Corollary 2. If \(A \) has coordinates \((a_1, a_2)\) where either \(a_1 \) or \(a_2 \) is one of the symbols \(\infty, -\infty \) then sufficient conditions that \(f(X)/g(X) \to L \) as \(X \to A \) are provided by using Theorem 1 to show that \(f(X)/g(X) \to L \) as \(X' \to A' \), where \(X' \) and \(A' \) are defined as follows. With \(X: (x_1, x_2) \), let \(X': (x'_1, x'_2) \) and \(A': (a'_1, a'_2) \) be given by having, for each \(i \), \(x'_i = a_i \) and \(a'_i = a_i \) iff \(a_i \) is finite, while \(x'_i = 1/x_i \) and \(a'_i = 0 \) iff \(a_i \) is either \(\infty \) or \(-\infty \).

Proof. It suffices to show that for a 2-place function \(F \), if \(\lim_{X \to A'} F(X) = L \), then \(\lim_{X \to A} F(X) = L \). There are \(3^2 - 1 = 8 \) possibilities for \(A \). Since \(X \to A \) the argument is similar for each, we shall just illustrate it for the case \(A: (a, -\infty) \). Then, for given \(\varepsilon > 0 \), we have \(\delta_1, \delta_2 > 0 \) such that \(|F(x_1, x_2) - L| < \varepsilon \) provided \(0 < |x'_2 - a| < \delta_1 \) and \(0 < |x'_2| < \delta_2 \). It follows, since \(x'_1 = x_1 \) and \(x'_2 = 1/x_2 \), that if \(0 < |x_1 - a| < \delta \), and \(x_2 < -1/\delta \) then \(|F(x_1, x_2) - L| < \varepsilon \). Hence

\[
\lim_{x_2 \to -\infty} F(x_1, x_2) = L.
\]

§ 4. Remarks. (i) It can be shown that if \(f/g \) has no unique value as \(X \to A \) from within \(S \), then \(L_1 \subseteq L_2 \), where \(L_1 \) is the set of all limit points of \(f/g \) and \(L_2 \) is the set of all limit points of \(f/g \).

(ii) The operator \(D \) defined by \(Df(x_1, x_2) = x_1f_1(x_1, x_2) + x_2f_2(x_1, x_2) \) is a derivation. When \(f \) is homogeneous of degree \(k \) then \(Df = kf \). Thus if \(f \) and \(g \) are homogeneous functions of distinct (non-zero) degrees that meet the conditions of Theorem 1 with \(A \) at the origin, then either \(\lim_{A} (f/g) = 0 \) or else the limit does not exist.

(iii) The theorem takes on a particularly useful and simple form when reformulated in terms of polar coordinates \(r, \theta_1, \ldots, \theta_{n-1} \) with point \(A \) set at the origin. Then \(f_n = rF_r, \ g_n = rG_r \) and \(f_n/g_n = F_r/G_r \). Here \(F \) and \(G \) are the functions in polar coordinates corresponding to \(f \) and \(g \) respectively, \(F_r \) and \(G_r \) have their usual meanings with respect to the polar coordinate \(r \), and limits are taken as \(r \to 0 \) uniformly in the remaining polar coordinates \(\theta_i \).

(iv) If one knows that the limit of \(f/g \) exists, one can readily find it by applying the familiar one-dimensional form of the theorem along an appropriate path of approach. Thus in practice the theorem is useful not so much as a device in computing \(\lim_{A} (f/g) \) but to guarantee the existence of the limit within a given set \(S \), which is starlike with respect to \(A \). In some cases, one may actually find the largest set \(S \) for which
the limit of \(f/g \) exists, as well as \(L_1 \) of (i), which is always an interval of the real line.

We give an example. Consider the quotient \((xy^3+2y^2)/(x^4+y^2) \) at the origin. This seems to fall under case (i) of our theorem, but the computation there yields an even more complicated quotient. Divide numerator and denominator by \(y^4 \) to get \(f/g \) with
\[
 f(x, y) = x/y + 2/y^2 \quad \text{and} \quad g(x, y) = x^4/y^4 + 1/y^2.
\]
This quotient comes under case (ii) and one easily finds that \(f/g \to 2 \). Nevertheless, the quotient has no limit at \((0, 0)\), as one can verify by trying the paths \(y = x \) and \(y = x^2 \). One might suspect, however, that the limit is 2 if taken from within some “nice” region and indeed a routine working out of the hypotheses of Theorem 1 produces such a region: it is \(E^3 \) with certain open wedges excluded; viz., all points \((w, y)\) between \(y = \varepsilon_1 w, y = -\varepsilon_2 w\), for \(\varepsilon > 0 \), arbitrarily small.

References