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) Abstract. In this paper we give theorems concerning mixed inequalities occurring
between solutions of an almost linear differential equation of the first order with
a "retarded argument

az(z, y)
oz t
The theorems contained in this paper are generalizations of theorems given

in [4] concerning mixed inequalities botween solutions of an almost linear partial
differential equation of the first order.

P(z,y)

oz (z,
z(:y v - R(z,y,2(z. 9}, 2(z—1(2), 9)).

Assume that the functions «(x, Y) and v(@, Y) are solutions of
a partial differential equation of the first order

(1) 2, = fl&, Y, 2, 2yp),

where Y = (¥, ..., ¥), 2¢ = (%, .-., %,,). Assume also that these sol-
utions are generated by characteristics according to the definition given
in paper [9], p. 179. In paper [9] (Theorem 59.2, p. 179) sufficient con-
ditions are given for the strong initial inequality u(x,, ¥) < v(w,, Y) to
imply the strong inequality «(®, Y) <ov(wx, Y¥) in a certain set formed
by projections of characteristics of equation (1) into the space «, Y (cf.
also [8], Theorem 1). Papers [4]-[7] contain theorems concerning mixed
inequalities between solutions u (@, Y) and »(#, Y) of equation (1). Certain
generalizations of theorems from paper [9] concerning partial differential
equations and inequalities to the case of partial differential equations
and inequalities of the first order with a functional argument are given
in papers [10] and [11] (ef. also [3]).

In the present paper we shall give theorems concerning mixed in-
equalities occurring between solutions of a partial differential equation
of the first order with a functional argument. We shall quote theorems
cofiberning the mutual situation of the solutions u(z, ) and v(w,y) of
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an almost linear equation with a retarded argument

0z(w, ) 92(w, y)

The theorems contained in this paper are generalizations of theorems
given in [4] concerning mixed inequalities between solutions of an almost
linear partial differential equation of the first order.

We shall assume here that the solutions « and v of equation (2) are
defined in the set £u D and that

(2) =R(w’y!z(m1 y)7z(‘i’_7(w)) ZI))

(3) u(z,y) =v(@,y) for (@,y)cE
and
(4) “(a’y Y) <”($,y) for (a’!?/)eE_Ev

where E is a closed domain contained in E. We shall prove that in this
case there exists a set D < D formed by integral curves of an ordinary
differential equation and such that

w(@,y) =v(o,y) for (a’,y)‘ﬁ
and
uw(®,y) <v(@,y) for (@, y)eD—D.

We shall also consider the case where the solutions # and » of
equation (2) satisfy the initial inequalities (3) and (4) and the strong in-
equality « (@, y) <v(®,y) holds in D.

In Theorem 5 we shall consider the case where the solutions % and v
of (2) are equal in E and

i u(w,y) <v(®,y) for (@, y)ek,
and
uw(@,y)>o(®,y) for (z,y)ek,,
where E,, E, < B. We shall prove that there exists a set D < D formed
by integral curves of an ordinary differential equation and there exist
sets D,, D, =D such that
u(@,y) <viz,y) for (#,y)eD,,
u(x,y) = v(®, ¥) for (m’y)ei)y
u(®,y) > v(z,y) for (z,y)eD,.
1. Assumptions and Lemmas. We make the following assumptions:

AssumpTION H,
1° The function R of the variables (¢, y, z, u) i8 continuous, 8atisfies
the Lipschilz condition with respect to z and is strongly increasing with re-
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gpect to u in the domain £ of the space (w, y, 2, u). The projection of Q2 onto
the plane (@, y) contains the domain £2,. The function P of the variables
(@, y) is continuous and satisfies the Lipschitz condition with respect to y

for (@, y)eS2,.

2°F = {(@,¥): @c{@—7To, @) YelYo—b, Y +b>}, 7>0,b>0,

D = {(@,9): @@, a), a(z) <y < f(a)},

where a and B are functions of the class C' in the interval {@,, a) and
(8) (@) =%—b, Bl@) =%+d, d@>0, p@)<O
for melmy, a) and
(6) a’' (@) > P.(w, a(m)'), B (@) < Pla, (@), @elmy,a).
Assume that Eu D < Q,.

3° The function v is continuous in the interval {(@,, a) and inf [@—v(x)]

. ze{x),a)
‘= By— To. There exists a constant 6 > 0 such that v(x) = 6 for zel{w,, a).
4° The functions u and v are solutions of equation (2) defined in Dy K.

These solutions are of class C* in D and they fulfil the initial conditions

f

(7) u(@,y) =@y, v@y) =yp@y) for (z,y)E,
where the functions p and y are continuous in E. Assume that (m, Y, u(x, y),
u(@—v(w), y))e!) and
(0,9, v(@,9), v(@—7(a),9))eQ for (@,y)eD.
5° The functions g and h are continuous in the interval {@y— Ty, B>
and yo—b < g(2) < h(2) < Yo +b for @melmy— 1o, @),
E = {(@,9): 0el@y—1o, 7o), g(0) <y < h(@)}.
6° Let I* = {0": o, < 2' < a and @ — (@) < @, for welam,, @*)}. Denote
by a, the upper bound of I*. (It follows from assumption 3° that I* is non-
void and a,> d+w,.) Let '
¢ = max [g(a,), g(@—(@))], @ = min [k(a,), h{w,— ()]
Assume that
(8) c<d.
Let
K ={(@¥): @ =, Y—b<y<y+Db},
K ={(a,y): ¢ =a,, c<y<d}.:
7° Assume that y = y(w) 18 a soluiion of the differential equation

d
(9) % = P(o, y)
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and y(@,) = §, where (@, §)e K. Let I be the biggest interval contained in
(@0, a,) such that glz—r(@)) < y(®) <h(w—7(2) for @el (I = (@, a,
where @ < a, or I = (@,, a,). In the first case the inequality g(a)—t(w))
< yY(@) < h{w—<(a)) is satisfied for we<w,, &> and for each &> 0 there
eansts an @,¢(&, G-+ &) such that y(2,) < g(a, —~-z-(w,)) or y(@,) > h(w,— r(w,))
whereas in the second case the inequality g(o—7(7)) < y(@)< h(@—7(a))
18 satzsfzed for mel@,, a,).) We shall denote the curve y = y(a) for mel by C.
Let A denote the plane set formed by all curves C issuing from the segment K,
and 4 = {(®, ¥): @@y, @,), a(®) <y < ()} _

8° There ewists a finite sequence of interval I,,1,,...,1,, where
Iy = {&@y— 7o, @) Iy = (@, ), I =<a_y, 4> for k =2,3,...,n—1,
I, =<a,_,, a), satisfying the following condition: there ewists for each
ke{1,2,...,n} an 1e{0,1, ..., k—1} such that if wel;, then @ —x(®)el,.

Remark 1. If |P(x, y)| < M for (@, y)e £y, then the functions a(x)
=Yo—b+M(@—2), B(@®) =yo+b—M(a—2,) satisfy condition 2° of
Assumption H.

Remark 2. Assumption 8° is satisfied if the function n(®) = 2 —v(2)
is e.g. monotone by intervals. The function '

(@—a,) for ve(w,, a,>,

n(w) =

for @ > a,,
0-—0:1

where 4> 0, @, >0, a, > 2,, satisfies condition 3°, whereas condition
8° is not satisfied for # = a,.
Adopt the following definitions:

1. The solutions # and » of equation (2) satisfy in D mixed in-
equalities of the first type if there exists a set

={(@,9): ;<@ <d d@<y<f@)}
D < D, D # D, such that u(a,y) = (e, y) for (2,y)eD, and u(a,y)
< v(2,y) for (»,y)eD— D.
2. The solutions # and v of equation (2) satisfy in D mixed in-
equalities of the second type if there exist non-empty sets
D, = {(@,y): @< T <@y, a(z) <y < a(a)},
-Da = {(®,9): @ <@ < Gy, f(2) <y <B(@)},
= {(e, y): a)ogw <a, ax) < \B(m)}’

D,, D,, D < D, such that u(x, y) < v(@, y) for (@, y)eD,, u(c, y) = v(d, y)
for (@, y)eD and u(e, y) > v(@, y) for (2, y)eD,.
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In the sequel we shall use the following lemmas:
LEMMA 1. Assume that:

1° The function f of the variables (x, y)eG i8 continuous in G and satis-
fies the Lipschitz condition with respect to y.

2° The functions u and v of one variable are of class C' for @e{@,, ag)
and (o, u(@)) €@, (2, v(3))e@ for @elw,, ay).
3° (%) < v(@),

V(@) = f(w, v()) for ®elmy, ay),
w (@) < fle, w(@) for melz,, ay).
Under these assumptions the inequality u(w) < v(w) 8 satisfied for
T e @y, Q).

LemMma 2. Assume that conditions 1° and 2° of Lemma 1 are satis-
fied and that besides

% (@) < v(a,),

v’ (@) =f(‘v1 'D(a’)) Jor @elmy, ay),

u (@) < f(o, u(®@)) for me(ay, ay).
Under these assumptions the inequality u(x) < v(w) 18 satisfied for @e(&y, ay)-
Both these lemmas follow in a simple way from theorems concerning

ordinary differential equations and inequalities ([9], Chapter ITI, cf. also
Lemma 1 in [2] and [1)).

LEMMA 3. If conditions 1°—4° of Assumption H are satisfied and if

(10) p(@,y) <v(®,y) for (m,y)eE
and
(11) P(@oy Y) < (@, y) for Yye(yo—b, yo+b),

then the inequality
(12) u(®, y) < o(z,y)

i8 satisfied for (@, y)e{(z,y): & > @, (@, y)eD}.

Proof. Let I, = {o*: @y < 0* < a and o—1(2) < a3, for gelm,, a*)}.
Denote by a, the upper bound of I, . (It follows from condition 3° of Assump-
tion H that I, is non-empty and a, > § +a,.) Let

4, = {(@,y): @e(my, 6,), a(@) <y < f(o)}.
I. In the first place we shall prove that inequality (12) is satisfied
in Al'
Let y = y(«) be a solution of equation (9) satisfying the initial con-
dition y(@,) =y, where %e(yo—b,y,+b). Assume furthermore that.
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(@, y(@))e 4, for oel,. I, = (@, a,) or there exists an @e(a,, a,) such
that I, = (@,, 4,>. We shall prove that

(13) u(w) <v(@) for mel,,

where (o) = u(o, y(@)), v(0) = v(@, y(@), @cl,.
It follows from (10), (11) and from conditions 1°-4° of Assumption
H that

(14) u(@o) < v(@),
(15) w' (@) < Ry(0, u(@), (@) =Ry(o,v(@) for o,

where R,(@,2) = R(2, y(), 2, p(a—7(a), y(a))).

From Lemma 1 we obtain u (@) < v(#) for z<Int I,.

If I, = {(@,, a,), then the proof of inequality (13) is completed. Le
tus therefore consider the case where I0 = {@y, @p), Gy < a,. Since

(16) u(z) <v(@) for we (w,y, a)

we have u(a,) < v(d,). Suppose that u(a,) = v(a,). Then it follows from
‘condition 1° of Assumption H and from (15) and Theorem 9.6 of [9] (p. 27)
that u (@) > v(x) for x¢(@,, d,), which contradicts (16). Therefore u(a,) < v(a,)
and the proof of (13) is completed.

It follows from (13) that inequality (12) is satisfied along an arbi-
trary integral curve of equation (9) situated in A, and issuing from the
point (@,, ¥), where ye(yo—b, yo+b).

To complete the proof of inequality (12) for (@, y¥)e 4, it is sufficient
to show that every point P(Z, 7) of the set 4, can be joined by means
of an integral curve y = y(®) of equation (9) with some point (a,, ¥),
where §e(y,—b, yo+b) and (2, y(2))ed, for e (@, ).

Suppose that there exists a point (Z, 7)e4, and a curve y = ¥(o),
where 3(w) satisfies equation (9) and is such that (%) = 7, (@) = 5(a'),
where @, < @' < %, and that for me(e, Z) the inequality (@) < B(@) holds.
(We proceed in a similar way in the case where the curve y = y(@) pos-
sesses a common point with the curve ¥y = a(@).)

Since

dy(@) _

8l

( 7?/(‘”)) for we{a’, ),

d

(@)
do

and B(a¢’) = %(a'), it follows from Lemma 2 that B(@) < 7(®@) for we(a’, Z),
which contradicts the assumption that (@) < f(«) for @we(a', 7).
For a = a, the proof of Lemma 3 is completed.

8l

< Po, B(w)) for wela, 2>
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II. Assume that a, < a. It is easy to prove that in this case u (@, ¥)
< o(w,y) for 2y < ¢ < @, and (@, y)eD. Let

I, = {&*: a;, <2*<a and ¢—7(2) < g, for wea,, 2*)}

and let us denote by a, the upper bound of I,. The set I, is non-void
and a, > d+a,. Just as in I we can show that «(z, ¥) < v(w, y) for

(@, 9)edy ={(®,9): 0, <@ < ayy a(®) <y < (o)},

In an analogous manner we define the sets A4,,...,4, <D and
show that u(w,y) <v(@,y) for (#,y)ed; and ¢ =3, ...,n. It follows
from condition 3° of Assumption H that there exists an index » such

n
that D = | 4,.
i=1
The proof of the lemma is finished.
2. Mixed inequalities of the first type.

THEOREM 1. Assume that conditions 1°-7° of Assumption H are satis-
Jied and that

(17) 9@, 9) = y(@,y) for (v,9)<E,
(18) o(@,y) < yp(@,y) for (,y)eE—E.
Under these assumptions

(19) w(@,y) =v(@,y) for (a,y)ed,
(20) w(@,y) <o(@,y). for (@,y)ed—4.

Proof. I. We shall demonstrate that «(«, y) = v(w@, y) for (o, y)eﬁ.

Let y = §(«) be a solution of equation (9) and % (@) = #, where (,, ¥) e K.

Suppose that the curve y = §(a) is situated in A for weI <= <(a,, a,), where
= (@, @), & < a, or [ = {@,, a;). Thus we obtain

(21) gle—r(e)) < §(@) < hle—r(@) for mel.

It is easy to verify that the functions u (@) = u(w, §(@)), v(@) = 'v(m, 7 a;)),
wel, satisfy respectively the differential equations

dz d
7 =R1(“’) 2), ™ = Ry(«, ?),

where

R,(@,2) = R(z, §(2), 2, p(0—1(2), §(2))),
Ry(w, z) = R(w, §{(®), 2, v([@—7(a), §(2))).

It follows from (7) and (17) that u(w,) = v(w,). From (21) we obtain
(@~ (2), y(m))eE for aef and hence and also by (17) we ‘come to the
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conclusion that R,(x,2) = R,(, 2) for zel. By condition 1° of Assump-
tion H we get (@) = v(@) for @eI. The integrals « and v of equation (2)
are therefore equal along an arbitrary curve ( issuing from the seg-
ment K.

The proof of statement (19) is completed.

II. We shall now prove inequality (20).

(a) Assume that y = y(«) is a solution of equation (9) issuing from
the segment K and that (z,y(z))ed for ze(zy, @) and (z,y(x))ed—4
for xeI, where I = (a, ay), ay < a, or I = (a, a,). We shall prove that
u(z,y) <v(@,y) along the curve ¥y = y(z) for weIntl.

1° Assume that there exists a constant 8, > 0, such that (m—r(a:),
y(@))eE— E for xe(d, a6+ ). (This means that y(@) < g(w—r(a)) or ¥(@)
> h{o—7(w)) for @e(d, @+ 8).) It follows from (18) that ¢(®—7(w), y(a))
<y(@—<(@),y@) for @e(d,a+d), and hence, using also condition
1° from Assumption H, we conclude that the functions u(x) = u(m, y(w))
and v(®) = v(®, y(o)) satisfy the conditions

(22) u(a) = v(a),
do(o) = Rlo,v(®)), wxed@,a+3d)
dm ’ ’ 1 b
(23)
du (@)

7o < R(w,u(®), we(d,a+ o),
where R(@, 2) = R(m, y(@), 2, p[@—7(a), y(a:))). It follows from Lemma 2
and from condition 1° of Assumption H and also from (22) and (23) that
u(®) < v(@) for we(a, G+ 6).

If (a, a+ 8) = IntI, then u(z, y) < v(«, ¥) along the curve ¥ = y (o)
for weIntl.

Assume that the set IntI —(a, @+ é) is non-empty. We shall prove
that u(2) < v(@) for @me{IntI—(d,ad+ )}

Let IntI—(d,a+8) =<G+8,a) and d<ao <id+d. We then
have

(24) u(a') < o(a'),
do(o) du (o)
da do
It follows from Lemma 1 and from condition 1° of Assumption H and
also from conditions (24) and (25) that u(®) < v(w) for ze{a’, a'), which

completes the proof of the inequality (@) < v(@) for weInt I.

2° Assume that in an arbitrary right-hand side neighbourhood of
the point @ there exist numbers @ such that (0—v(«), y(s))eE—FE and
also numbers @ such that (@ — 7(w), ¥ («)) E. The functions u(¢) = u(z. y(a))

(25)

= R(z, »(2)), < B, u(@)) for wela, a).
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and v(@) = v(w, y(a;)) then satisfy the following conditions:
u(a) = v(a),

do (@) du ()

dao

It follows from Theorem 11.1 from [9] (p. 35) that u(®) < v(@) for @wel.

We shall now prove that for @eIntl the strong inequality « (@) < v(®)

holds.
Suppose that there exists an #, #eIntI, such that

(26) w(F) = o(d).

= R(o, v(2)), < R(o, u(@)) for wel.

Since in any right-hand side neighbourhood of the point @ there exist
such numbers o that (@—7(@),y(@))eE—E and y(a), v(®) are continu-
ous functions, there exists an interval (@, @) < IntI such thata <a <&
and (@ —7(@),y(®))eE—E for 2¢(@, @). Thus we have

u(a) < v(a),

du(w)

do(a) = B(w, v(2)), we@,a), F < Rl@,u(@)}, we(a,a).

do

From Lemma 2 we obtain the inequality (@) < v(«) for we(d, a). Let
Ze(a, a). Then we have

%(T) < v(7),
d’l;gﬂ) _ R(m, 2(@)), d";{(:’) < BR(o, u(w)) for welZ,a).

It follows from Lemma 1 that (@) < v(w) for we{Z, a’). Since F¢<{7, a'),
we have in particular (@) < v(®), which contradicts condition (26).
Therefore (@, y) < v(®, y) holds along the curve y = y (@) for weIntl.

We shall now prove that inequality (20) holds along the solutions
of equation (9) issuing from the set K — K.

Let )

L, ={(@,9): (@,y)eK— K, u(m,y, y) < v(2, ¥)},
L, = {(#,9): (@,y)eK— K, u(@, y) = v(@, ¥)}-

(b) We shall prove that u(w@,y) <v(w,y) holds along the curve
¥y = y,(@w), where y,(®) is a solution of equatlon (9) and y,(@) = Y4,
(@, Y1)€L,. Suppose that (@, y1(@))ed— A for welmy, dy), (1, ¥1(d))
eFr(4— 4), G, < a,. The functions () = (0, y,(d), v(@) = v(z, y,(@))
satisfy the conditions:

% (@) < v(a@,),
du (o)
dw

dv(2)
o

= Ry(0, v(a)), < Ry(w, u(@)) for welm,, d,),
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where B, (@, 2) = R(m, Y1(2), 2, pl@— (@), v, (@ )) It follows from Lenima 1
that u(x) < v(w) for @e{(®,, a,). It follows hencefrom that inequality (20)
holds along any integral curve ¥ = y,() of equation (9), where (wo, yl(w,,))
eL, and @wela,, a,). _
(¢) Suppose that y = y,(®) is a solution of equation (9) satisfying
the initial condition y,(#,) = #,, where (@, ¥;)¢L,. Assume that (@, y,(z))
ed — 4 for zelm,, G,), where d, < a, and (@25 Y2(ds ))eFr(4— A). It follows
from (18) and from the definition of the set 4 that there exists an mterval
(@, @)y W< < &z, such that (0—7(2),y.(@))eE—E for welm,a
Therefore @(z— (@), ¥,(¢)) < (@ — (@), ¥:(2)) for ze(®,, @"). The func-
tions «(@) = u(®, y,(¢)) and v(z) = v(o, y,(#)) satisfy the conditions
u(@y) = (),
dv () du(x)
do

= Ez(a” v(@)), Telmy, ), < Rz(a’s u(“’)); Te(my, @),
where R, (@, 2) R(w, Yo (@), 2, v,u(av—-r @), Y (@ ) It follows from Lemma 2
that u (@) < v(a) for we(wo,w) If 2 = a,, then u{e@,y) <v(®,y) along
the curve y = y,(«) for ze(=,, a,).

Assume that &’ < a,. The proof of the inequality (@) < v(z) for
we{a’, a,) is analogous to the proof of the similar inequality given in 1(a).

(d) Each point P(Z, ¥), T > @,, belonging to 4 can be connected
by the integral curve y = y(z) of equation (9) with some point (e, ¥ (a)) K
and (m, y(m)):A for @e(zy, 7). The proof of this property of the set 4
is analogous to the proof of a similar property of the set 4, in Lemma 3.

(e) Let Z = {(w,y): (®,y)ed— 4, y = a(@) or y = B(v)}. We shall
now prove that u(z, y) < v(w, y) for (@, y)eZ.

It follows from I and II(a)- d) that (e, y) <v(@,y) for (w,y)eZ.
Suppose that there exists a point (¢*, ¥*) eZ such that

(27) u(z*, y*) = v(a* y%).

It follows from I and II(a)-(d) that there exists a set D* = E*uU 4%
where

={#,y): T—7<o<EZF-b<y<y+b},
= {(@,9): B<o<3d,a@) <y<fa)},
such that
1) E*uA* <« EuD, (a*,y")ed*, o*> 7%,
2) o—t(@)eE* for welZ, @),

3) wux,y)<o(z,y) for (@, y)‘E‘
and % (Z,y) <v(Z,vy) for ye(y—b,F+0b).
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It follows from Lemma 3 that u(z, y) < v(x, y) for (@, y)e4* and ¢ > Z.
Particularily (2" y*) < v(e*, y*), which contradicts assumption (27).
The proof of Theorem 1 is completed.
If we accept additional assumptions for the functions g and h, we
shall be able to obtain the set 4 in a simple way.

Exampres. 1. If
D_(k{@w—(a)) > Plo, hlo—z(2))), @elm,ay),
D_(glz—(2)) < Pz, glo— (@), @elm, ar),

then A is the set formed by integral curves of equation (9) issuing from
the segment K for we{w,, a,). (D_f(x) denotes the left-hand lower Dini
derivative of the function f at the point «.)

2. If
(28) D_ [gle—7(@)) > Plo, gl —z(2))), @e<as, @),
(29) D_(h(w—r(w))) <P(m, h(w—r(m))), @ e{Ty, @y),
and
max [g (@ — (@), §(%)] = g{w— 7 (%)),
min [k (@, — (o)), B ()] = k(@0 — 7 (o)),
then

4 = (@, y): 2elmy, ay), glo—7(®)) <y < k(z—7(a))}.
3. Assume that inequalities (28) and (29) are satisfied and. that

max [g(2,— (%)), 9(2o)] = g(0),
‘min |2 (@, — (%)), k()] = k().

Denote by y,(@) and y,(@) solutions of equation (9) satisfying the initial
conditions y,(@,) = ¢(@), ¥2(®y) = h(@,). Let

I, = {welmo, ay): y1(2) > 9(‘”—‘5 m))]
I, = {welm,, ay): yy(w) < h(m—r(m )}
Denote by § and h the functions

. ¥ (@) for @el,,

§(@) = -
g(o—z(@)) for welzy, ay) — I,

b — Yo () for zel,, )
h(o— 7 () tor zelz,, a,)—1I,.

Under these assumptions 4 = {(#, ¥): @, <z < a,, §(#) <y < k(x)}.
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4. Assume that conditions (28) and (29) are satisfied and

(30) max [g(a, — (@), 9(@0)] = g(@— 7(20)),
(31) min [h (20— T(a’o))y h(%)] = h(a,).
Denote by y = y,(@#) the solution of eguation (9) satisfying the initial
condition y, (@) = k(@) and assume that y,(@) > g(w — v(0)) for e lmy, a,).
Under these assumptions

d=|ey): s<o<a, go—7@)<y<h@),

where k(@) = min [y,(2), h(o—7(@))].

5. Assume that conditions (28)—(31) hold. Denote by y = y,(@)
the solution of equation (9) satisfying the initial condition y,(@,) = h(m,)
and assume that y;(@)> g(m—-r(m)) for @elwy, Z), @y < T< @, and
¥5(%) = g(£—7(%)). Under these assumptions

d=|@,9): 8<0<Z, gl0—7(0) <y<h@),
where h(0) = min [y,(a), k(0 —v(@))].
6. As in examples 4 and 5, the set 4 can be determined in the case
_where conditions (28), (29) and also the conditions
max [g(zy — (@), 9(20)] = (@),
min [h(@, — 7 (%)), k(%) = h{@— 7(2))
are satisfied.

The proof of the construction of the sets 4 in examples 1-6 is quite
simple. It is based on the fact that each point P(Z, §)e4 can be joined
by mea.ns_'of an integral curve y = y(®) of equation (9) with some point
Q (@, §)eK and (v, y(@))ed for delay, ).

THEOREM 2. Assume that conditions 1°—6° of Assumption H — with
the ewception of inequality (8) — are satisfied. Assume now that ¢ > d and
that the initial functions ¢ and y satisfy the conditions
(32) p(@,y) = y(@,y) for (@, y)eE,

(33) p(@,9) < y(@,y) for (¢,y)<E—E.

Under these assumptions the inequality

(34) u(w, y) <v(@,y)

ts fulfilled for (@,y)ed—K = {(®,y): 0, <@ < a,, a(®) <y < (o)}
Proof. Denote by L, and L, the sets:

L, = {(@,y): (@, y)eK, u(®,, y) < v(w, ¥)},
L, = {(a’y y): (@, y)eK, u(uy, y) = v(m,, ?/)}
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Assume that (@, ¥;)eL, and that y = y,(w) is the solution of equation (9)
satisfying the initial condition y,(®,) = y,. Assume also that (@, y1(@))ea
for @el,, where I, = (@, 4,), G;<a; and (a,,y,(a,))eFrA. Inequality
(34) is satisfied along the curve y = y,(«) for wel,, which follows from
the conditions

u(&,) < v(m,),

du (@) dv(z)

da

where u(@w) = “(47’ yl(w))’ (@) = v(m! yl(w)), Rl(wy z) = R(a” Y1(®), 2,
ylo—z(@), yl(w))) and also from Lemma 1.

Assume that (@, y,)eLl, and that y = y,(#) is the solution of
equation (9) satisfying the initial condition y,(w®,) = y,. Assume also that
(@, ya (@) e A for wel,, where I, = (@, G5), 43 < @, and (d,, Ya(@,))<Fr A.
Inequality (34) is satisfied along the curve y = y,(«) for @wel,, which
-can be proved with the help of Lemma 2 (cf. the proof of Theorem 1,
II(c)).

Since K = L,V L, and every point (Z, ¥)ed can be joined by means
of the integral curve y = y(@) of equation (9) with some point of the
segment K and (m, y(w))eA for ze{w,, Z), it follows from what was said
above that wu(z,y) <o(w,y) for (@,y)e{(@,¥): Bp<@<ay,a(@®)<y
< B(a)}. :

Inequality (34) for (¢,¥)eZ = {(#,y): @<z <a,,y =a(z) or ¥y
= f(x)} follows in a simple way from Lemma 3 (cf. the proof of Theorem 1,
II(e)).

Remark 3. If a, < a, then it is easy to prove by Lemma 3 that
inequality (34) is satisfied for (z, y)e{(®, ¥): @, <@ < ay, a(@) <y < B(2)}.

Theorems 1 and 2 concerned the mutual situation of solutions of
equation (2) in that part of the set D, where we (%, a,). From these
theorems and from Lemma 3 we shall obtain Theorems 3 and 4 concern-
ing mixed inequalities between solutions of equation (2) in the entire
set D. .

Suppose that Assumption H holds and that the initial functions ¢
and y satisfy conditions (17) and (18). Denote by D, (k =1,2,...,n)
the sets ' '

<R1($, u’(a’))y wefn

=-E1(w,'v(a’))’ ""ju

Dy, = {(#,9): ®el,a(r) <Y< ﬁ(m)}r

where I, is the interval defined in Assumption 8°. We shall now define
a sequence of sets

(35) D,, Dy, ..., D,
in the following way:

6 — Annales Polonici Mathematid XXXIILS
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Consider the differential equation (2) in the set Eu.D,. It follows

from Theorem 1 (cf. also Remark 3) that there exists a set D, = D, such
that

u(z,y) =o(x,y) for (m,y)‘-ﬁn
w(w,y) < v(®,y) for (m,y)eD,— D;.
It follows from Assumption H that there exist continuous functions g,
and ?, such that
-Dl = {(@, ¥): @ < @< Gy, §1(0) <Y < My(2)},
where @, < a,.

Suppose now that the sets D,, D,, ..., D, have already been co.-
structed. We define D, , as follows:

Consider the differential equation (2) in the set Ev D,V D,V ... VD, ,
and take EvD,UD,V ... uD, as the initial set and

¢(z,y) for (@,y)cE,
?x(®, y) =
u(w,y) for (z,y)eD, VD,V ... VD,
y(®,y) for (z,y)ek,
ve(®, y) =
o(w,y) for (m,y)eD,UD,V...uD,

as the initial functions. It follows from assumptions 2° and 8° that there
exists an le{0,1,..., k} such that if (¢, y)eD,,,, then (v—z(x), y)eD,.
The set D, < D, can have the form

D, = {(2,y): wel}, g(0) <y < By(2)},
where I, = I,and where g, and h, are continuous functions and a(x) < g;(x)
< hy(@) < B(w) for mel,. '

1° I gi(ag, ¥) < ve(ay, y) for ye(a(a®), B(a*)), then we easily find
from Lemma 3~that w(z,y) <vo(w,y)for (v,y)e{(®,y)eDy,,: a, < T < @y}
In this case D,,, is an empty set.

2° If max [g;(a,—v(ay)), g,(a;)] > min [k;(a,—7(a,)), hy(a;)], then we
eagily find from assumption 8° and Theorem 2 that u(a,y) <ov(z,y)
for (@, y)e{(®, ¥)eDy.,: @, < @ < a;,,}. In this case .l.),,+1 is an empty set.

3°f max [gz(ak—f(“k)); gl(ak)] < mi{l Ihz(ak—f(ak))y hi(a;)], then
Theorem 1 implies the existence of the set D,,, < D, ., formed by integral
curves of equation (9) such that

u(®,y) =o(@,y) for (,y)eDy,,,
w(z,y) < v(@,y) for (2,y)eDy,, —Dy,,.
D,., can be presented in the form

1.)1:4.1 = {(=, ¥): “"fkﬂs e (2) <y < by, (@)},
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where f,,,+1 < I,,,and g;,,, b, are continuous functions and a(z) <g;., ()
< by 1 (@) < (=) for mel,,,. We therefore have the following

THEOREM 3. Assume that Assumption H holds and thal the initial
Sfunctions ¢ and y satisfy the conditions

p(@,y) =p(@,y) for (¢,y)ek,
p(2,9) < yp(x,y) for (¢,y)eE—E.
Let D = | ) D,. Under these assumptions
i=1
u(z,y) =o(@,y) for (#,y)e D,
w(w,y) < o(z,y) for (¢,y)eD—D.

We shall now prove the following

THEOREM 4. Assume that conditions 1°—6° — with the ewmception of
inequality (8) — hold. Assume that ¢ > d and that the initial functions ¢
‘and y satisfy the conditions

(36) o(@,y) = p(@,y) for (0,y)eE,
(37) p(e,y) < y(e,y) for (@,y)eE—EK.
Under these assumptions the inequality

(38) u(e, y) < vz, y)

18 satisfied for (@,y)eD—K.

Proof. We define the sequence of numbers a,,a,,...,a,, where
< <a,<..<a, =a, as follows:

a, is the constant defined in assumption 6°.

Assuming that the numbers a,, a,, ..., a, have already been defined,
we define a,,, as follows: let

I ={o*: qp<a*<a, s—2(2)< a, for welay,a")}.

We denote by a,,, the upper bound of I;. It follows from assumption 3°
that I}, is non-void and that a,,, > a,+ 9.

Let I, = <&, a,),I, =<ay_,,a, for k¥ =2,3,...,n—1, and
1, =<a, ;,a). By D, (k =1,2,...,n) we denote the sets

Dy = {(z,9): zely, a(z) <y < B(2)).

We shall now prove that inequality (38) is satisfied in each of the sets
D,—K, D,, ..., D,.

It follows from Theorem 2 and Lemma 3 that u(z, y) < v(x, y) for
(z,y)eD;— K. -
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Assume that (38) holds in the sets .D,— K, D,,..., D,. We shall
show that the same inequality is satisfied also in D,,,. Consider the
differential equation (2) in FuD,vD,V ... UD,,, and take EUD,VD,U

... UD, as the initial set and

p(w,y) for (@,y)eck,

w(m,y) for (@,y)eD,VD,V... UD,,
v(#,y) for (@,y)eE,

v(w,y) for (@#,y)eD, VD,V ... UD,

(@, y) = l

V’k(wy ?/) =

as the initial fupctions. Then we have
Pe(®, ¥) < yp(0,y)  for (2,9)e EUD,VUD,U ... UD,
V(0 Y) < Vi@, ) for ye(a(ay), B(ay).
Thus we infer from Lemma 3 that «(», y) < v(z, y) for (#, ¥)eD,,.
Since D—K = D,—Kv C) D,, the proof of Theorem 4 is finished.

k=2
3. Mixed inequalities of the second type.

THEOREM 5. Assume that:

1° Conditions 1°-6° of Assumption H hold.

2° The initial functions ¢ and y satisfy the following conditions:

(39) (@, y) < p(@,y) for (@, y)ek,,
(40) p(z,y) = p(e, '.'/) for (z,y ‘Ea
(41) p(@,y)> y(@,y) for (@,y)ek,,
where

E, ={(#,y): ®e{@—7o, By, Yo— b <y <g(mw)},
E, = {(@, y): ®e{@y— Ty, @), h(®) <y < yo+b}.

2° The functions h(z) = hip—z(@)), (@) = glo—7(x), velay,ay),
satisfy the differential imequalities

(42) D_h(a) > P(z, k(m)),
(43) D_§(a) < P(a, §(a))

for welw,, a,).
Under these assumptions the following assertions hold:

(44) w(@,y) =ov(@,y) for (@, y)ed,
(45) w(®,y) < v(@,y) for (z,9)ed,
(486) w(@,y)> v(@,y) for (@,y)edy,
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where A is the set formed by integral curves of equation (9) issuing from the
segment K and A,, 4, are sets formed by integral curves of equation (9)
issuing from the segments

K, = {(®@,9): @ =, ye{§o—D, )},
K, ={(@,9): @ =&, ye(d, % +b)},
respectively, where
¢ = Imax lg(mo—f(a’o)): g(w.,)l, d = min[h(wo—"(-’”o)), h(wo)] .
Furthermore J, zil, 4, satisfy the condition
(47) A=4 u./j'zuA',

where 4 = {(@,y): delm,y, a,), a(@) <y < f(a)}.

Proof. We shall demonstrate_equality (44) in t.ht:,_ first place. Assume
that the curves y = g(@) and ¥ = h(x) are in 4 for wel, and wel,, respect-
. ively, where I,,I, = I, = {(®,, a,). Assume that y = y(@) is a solution
of equation (9) issuing from segment K and that (w,y(w))eA for wel
= {@y, @), Where' a4 < a,. The functions y(®), §(®), 2(«) satisfy the in-
itial inequalities 3

g (@) < y(@o) < h(m,).
Since y = y() satisfies (9) and the functions §, h satisfy the differential
inequalities (42) and (43), we have
g(m—-r(ar)) = j(o) < y(w) for wel,n1,
y(@) < h(@) = hl@—1(e)) for wel,n 1.
It follows from these inequalities and from the definition of 4 that the

points (#—rv(®),y(w)) are in E for wel. Therefore the functions u()
= u(w, y(@)) and v(®) = v(w, y(2)) satisfy by (40) the differential equation

dz -
F = R(»,2),

where R(z,2) = R(m, y(@), 2z, p(@—v(x) ,y(m))) Since u (@) = v(x,), we
have u (@) = v(w) for wel. The integrals w and v of (2) are therefore equal
along an arbitrary solution of (9) issuing from K and situated in 4 and
are therefore equal in A.

We shall now prove (45). Let

-K(ll) = {(@, ¥): ® =@, ye{yp—b, ¢), u(@, y) < v(a@, ¥)},
K(lz) = {(@,9): ® =@y, ye{Yp—b, 0), (@, y) = v(, ¥)}.

Let y = y:(®) be a solution of equation (9) satisfying the initial con-
dition y,(®,) = y,, Where (2, ¥,) e K" and (¢, y,(«)) < 4 for wel,. It follows
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from (42) and (43) that (»—v(®),y,(»))eB, for @el,. Inequality (45)
is fulfilled along the curve y = y,(w) for meIntl,. The proof of this prop-
erty proceeds in the same manner as the proof of the analogous in-
equality given in II(b) of Theorem 1.

Let ¥y = y,(@) be a solution of (9) satisfying the initial condition
Y2(@) = ys, Where (@5, ¥3)e K and (v, ys(9))ed for @el,. It follows
from (42) and (43) that (0 — (@), ¥4 (®)) e E, for @el,.

Inequality (45) holds along the curve y = y,(@) for weIntl,, which
can be shown in the same way as for the the analogous inequality of II(ec)
of Theorem 1.

In the same way as in II(e) we can show that (45) holds in the set

Z, = {(®@,y)edy: y = a(a) or y = B(a)}.

The proof of (46) is analogous. We shall not quote here the simple proof
of (47).

Remark 4. Assume that conditions 1°~6° and 8° of Assumption H
hold and that

4 = {(@, y): 2Dy, ay), 0, < @, §:(0) <Y < hy(2)},

where the functions §,(®) = g,(®—v(a)), b (@) = hy(@—v(a)) satisfy the
differential inequalities ( 42) and (43). Then we infer from Theorem 5

that there exist sets A AI,A c D, = {(z,y): oel;, a(@) <y<p(a)}
(the interval I, is def.med in 8°), such that

Dy = AU 4,0 4y,
u(z,y) < v(w,y) for (o, y)ej,,
u(@,y) =v(o,y) for (@,3)e4,
u(o,y) > v(w,y) for (@, y)ej,.
If Az satisfies the conditions contained in the assumptions of Theorem b,

then the initial inequalities (39)~(41) hold also in further subsets of D
contained in D, = {(#, y): @del;, a(d) <y < f(»)).
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