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INVARIANT FUNCTIONS FOR POSITIVE OPERATORS
ON NORMED KOTHE SPACES

BY

L. F. LAM (WATERLOO, ONTARIO)

The main result of this pa,i)er is as follows. Suppose T is a positive
operator on an absolutely continuous normed Kothe space (for example,
an L, space (1<<p < oo) or an Orlicz space with 4,-property) such
that sup||T"|| < oo, and f is a non-negative function in this space.

n
Then a sufficient condition for the existence of a non-negative invariant

function with positive values on the support of f is that
inf [ T"fdm >0,
n g

for any positive measurable set ¥ contained in the support of f.
This condition is necessary if the invariant function has the same
support as f.

Let (X, 2, m) be a finite measure space, r be a non-singular measur-
able transformation on X. The problem of finding the necessary and
sufficient conditions for the existence of non-trivial invariant measures
for v has been studied thoroughly. One of the well-known results ([1] and
[3]) is as follows:

v has a finite invariant measure equivalent to m iff limm(z="(4)) > 0
for all Ae 2 with m(4) > 0. "

In 1966, Dean and Sucheston [2] and, independently, Neveu [10]
have extended this result to the case of contractions in L,-spaces. Dean
and Sucheston show that a positive operator on L, with ||T}| < 1 (contrac-
tion) has a positive invariant function iff

iMfWhm>0
n 4
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for any A ¢ 2 with m(A4) > 0 (where 1 stands for the constant function of
value 1). Equivalently, Neveu shows that T has a positive invariant

function iff
Lim [ RT"fdm > 0
n

for any non-negative function k in L, — {0}, where f is any fixed element
in L, such that f> 0 a.e.

Their result not only covers the case of measurable transformations,
but also includes the case of invariant measures for Markov processes that
has been studied by Ito [6].

In 1970, Fong [5] generalized this result to the case of “semi-Mar-
kovian” (or “power bounded”) operators, i. e. positive operators in L,

with sup||T"| < oo.

n

While reading their papers, we found that the lattice properties
play a very important role in their proofs. So we wonder whether a similar
theory could also be set up in some other spaces that have the same sort
of lattice structure as L,. We shall discuss such kind of spaces in this
paper.

In the proof of the following lemmas, we shall make use of the theory
of Riesz spaces. By a Riesz space we mean a vector space over the real
field with a partial ordering < such that:

1) z2<y >zxz+z<y+=z for all z;

(2) 0 <2 = 0 < ar for any non-negative real number a;

(3) the least upper bound sup{z, y} exists for any « and y.

We shall write z,tx (resp. z,lz) to indicate an increasing (resp.
decreasing) sequence of elements in the Riesz space with

sup r, =« (resp. inf z, = x).

We let x™ = sup{z, 0}, *~ = sup{—w=, 0}, |»| = sup{wx, —z}, and
M* = {®we M: x> 0}, where M is a subset of a Riesz space.

A linear subspace B of the Riesz space L is called a band if

(1) for xe B,ye L and |y| < |2|, we have ye B;

(2) for A = B, if sup A exists in L, then sup A e B.

A Riesz space L is said to be Dedekind complete (resp. Dedekind
a-complete) if every subset (resp. countable subset) of L which is bounded
above has a least upper bound in L. A positive functional f on L is a linear
functional with the additional property that > 0 = f(x) > 0. A regular
functional is a linear funectional that can be expressed as a difference of
two positive functionals. It is well-known (for example, chap. VIII of
[11]) that the set L~ of all regular functionals on L forms a Dedekind
complete Riesz space and the greatest lower bound of two regular function-
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als f and ¢ is determined by the formula
inf{f, g}(y) = inf{f(2)+g(y—=): 0<w<y} for any ye L™

A regular functional is called a completely linear functional (an integral)
if ©,{0 implies f(x,) — 0.

LeEMMA 1. Let L be a Dedekind o-complete Riesz space, f be a positive
completely linear functional, h be a positive functional such that inf {h, f} = 0.
Then for any ye LT and any positive real number ¢, there exists xe Lt with
0<z<y and h(z) =0, f(y—2) <=

Proof. If h(y) = 0, the proof is trivial (we can choose z = y). If
h(y) > 0, we let y, = y. Since inf{A, f}(y,) = 0, there is y,¢ L* such that
0 <y, <y, and h(y,) +f(¥o—¥1) < /2. Suppose y,, ¥, ..., Y, are defined.
We choose y,.,¢ Lt such that 0 <y,,., <y, and A(Y,.) +F(¥n—Yns1)
< g/2"*1. So we get a decreasing sequence (¥, satisfying these inequalities.
Let x = inf y,,. Since f is completely linear, we have

n

fly—2=) = f(y)—f(z) = f(y) —limf(y,) = li"m(f(y)—f(yn))
= li”m (f(¥) —f(y) + () —fW2) + oo+ (Unr) —F (W)

<lim(e/2 +¢/2*+ ... +¢/2") = &.
n

On the other hand, h(x) < h(y,) < /2" for any n. So h(z) = 0.

For a o-finite measure space (X, 2, m), the set L (X, 2, m) of essen-
tially bounded functions is a Dedekind complete Riesz space; a finitely
additive set function A on (X, 2) that vanishes on m-null sets can be
regarded as a regular functional on L_(X, 2, m) through the formula
A(h) = [hdA (ct. [4], p. 296). In particular, a measure on (X, X) that
is absolutely continuous with respect to m is a completely linear func-
tional on L (X, X, m). A finitely additive positive set function » is called
a pure charge if inf{», u} = 0 for any measure x4 on (X, 2). Yosida and
Hewitt [12] have shown that if x is a measure and » is a pure charge
defined on (X, X), then for any ¢ > 0 and any A e 2, there is a measurable
subset B < A with »(B) = 0 and u(4 — B) < ¢&. Our lemma 1 is a genera-
lization of their result.

We let .# to be the class of real-valued measurable functions on
(X, 2, m), where two functions which have the same values almost every-
where are considered identical. Suppose we can define a mapping
e: M — [0, co] satisfying

(i) e(f) =0 iff f=0;
(ii) o(f+11) < e(f) +e(f);

(iii) e(af) = |alo(f) for any real number a;
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(iv) FI< Il = e(f) < e(fi);

(v) o(fa) > o(f) for f, foe M and f,1f;

(vi) for AeZX with m(A) > 0, there is a measurable set K < A
with positive measure such that p(yz) < oo, where x5 stands
for the characteristic function of E.

Then the set L, = {fe #:o(f) < oo} is called a normed Koithe
space.

This kind of function spaces has been studied in detail by Luxemberg
and Zaanen ([8] and [13]), but they did not assume conditions (v) and
(vi) in the definition of a general Kothe space. They define the normed
Kothe space as a function space satisfying the first four conditions, where
(v) is considered as an extra condition — the Fatou property. Moreover,
a space with condition (vi) is considered to be saturated. So in [8] a function
space satisfying conditions (i)-(vi) is called a saturated Kothe space with
Fatou property.

We define ¢': .# — [0, oo] by the formula

o'(9) = sup {|f fgdm|: o(f) <1},

From § 69 and § 71, theorem 4 of [13], we know that ¢’ also satisfies
conditions (i)-(vi). Therefore the space L, = {ge #: o'(g) < oo} is also
a normed Kothe space — the associate space of L,.

On the other hand, a normed Kothe space is also a Dedekind complete
Riesz space (cf. [8]). For a fixed ge L,,, the mapping f — [fgdm is a comple-
tely linear functional on L,. It turns out that the set of all completely
linear funectionals is precisely the associate space L, (cf. [7], theorem 1.4).

It is worth-while to note that a normed Kothe space L, is also a Banach
space, since condition (v) implies the completeness of ¢ ([13], § 65). Again
the completeness of ¢ implies that the (continuous) dual space L: and
the space L, of regular functionals are identical ([8], p. 348). So L: is
also a Dedekind complete Riesz space.

For fe L, we define fe L, such that flg) = [fgdm for ge L,. The
mapping f — f is then an injection of L, into L;,. This injection also pre-
serves the lattice structure, and so L, can be considered as a subspace
of L’.. We shall identify f and f in the following discussion.

LeMMA 2. If L, is a normed Koithe space, then L, = L,®LZ, where

L = |ve Ly: inf{|v|,f} =0 for any fe L}}.

Moreover, if 2> 0 in Ly, we have f >0 in L,, v > 0 in L% such that
A=f+w

Proof. Since L,. is the set of all completely linear functionals
on L,, and the set of completely linear functionals is a band of L, ([8],
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p. 348), L, is a band of L, . On the other hand, by theorem 1, § 71 of
[13], we have o = ¢". So L, is a band of L, . Since L, = L, in our case,
L, is a band of the Dedekind complete Riesz space L;..

From § 3, chapter IV of [11], we know that L:, can be decomposed
into direct sums of the bands L, and L‘: by two positive projections. Hence
the result.

A normed Kothe space L, is said to be absolutely continuous if it
satisfies the condition
(vii) If f,e L, and f,|0, then o(f,) — 0.

All the L,-spaces (1< p < oo) are absolutely continuous normed
Kothe spaces. More generally, if ¢: [0, oc0) - [0, c0] iS a non-decreasing
left continuous function with ¢(0) = 0, define y: [0, o0) — [0, o] by

inf ¢~ ({«}) if x in the range of ¢,

p(@) = | u if ¢(u) <@ <e@(u+0),
00 if > supe(y).
>0

The functions @, ¥ on [0, oc) defined as

@ () =f¢dm, ¥ (2) =f¢dm

are called the complementary Young functions.
If # is the set of measurable real functions on a o-finite non-atomic
measure space (X, 2, m), the function g,: # — [0, o] defined as

1
e

eolf) = inf{ a >0, [ ®(laf) < 1}
satisfies conditions (i)-(vi). The corresponding Kothe space L, = {fe .#:
0o(f) < oo} is called the Orlicz space with respect to @. Similarly we can
define o, and Ly. It can be shown that o, is equivalent to gp and L is
the associate space of L,. Moreover, if the function @ satisfies the so-
-called 4,-condition (i.e. @(x) > 0 for all x > 0 and there exists a positive
real number M such that @ (2x) < M®(x) for all x > 0), then L, is abso-
lutely continuous ([9], p. 47).

An operator T defined on a normed Kothe space is said to be power
bounded if there is a positive real number A such that o(T"f) < Ao(f)
for any fe L,. If we write

IT"] = sup{e(IT"f): o(f) <1},

then T is power bounded iff sup|7"| < oo.
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We shall use S(f) to denote the set {xe X: f(x) % 0}. Furthermore,
the notation A < B always means that almost all elements of A are
in B.

LeMMA 3. If L, is an absolutely continuous Kothe space, T: L, — L,
8 a power bounded positive operator, f and f, are two functions in L} with
S8(f1) = 8(f), and g is a function in L}, then

infng"fdm > 0 tmplies infng"fldm > 0.
n n

Proof. Let
6 =inf [ gT"fdm, M = sup|T"|.

From the assumption S(f,) > S(f), we know that (f—kf,)*|0 as
k— co. So o((f—kf,)*)|0 as L, is absolutely continuous. We choose
a positive integer %k, such that o((f—k,f;)*) < /2M o’(g). On the other
hand, since f = kif, + (f—kuf1) < kufi+ (f—kuf1)™, we have

8< [T fdm <k, [ gT"frdm+ [ gT"(f— k. fy)* dm

< ky [ 9T frdm + o(T™(f— k1 f2)*) @' (9)
< ks [ gT"frdm+Mo((f— ki f)*) e’ (9)
<k, f gT"f,dm+48/2 for any positive integer n.

Therefore 6/2k, < [gT"f,dm for any n. Hence the result.

We shall utilize the concept of a Banach limit in the proof of our
theorem. A Banach limit LIM is a linear functional defined on the space
of all bounded real sequences with the following properties:

(2) lima, < LIM(x,) < lim(a,),
(b) LIM(x,) = LIM(x,,,).

The existence of a Banach limit can be easily deduced from the
Hahn-Banach theorem (see [4], p. 73).

THEOREM. Let L, be an absolutely continuous Kothe space, T: L,— L,
be a positive operator with sup||T"|| < oo. If there exists a function fe L}
such that i

in.fng"fdm>0 for all ge L with g-f + 0,
n

then there is a non-negative function he L7 with S(h) > S(f) and T (h) = h.
Conversely, if h # 0 is a non-negative fixed point of T, then for any
fe L} with 8(f) = 8(h), we have

inf [ gT"fdm >0  for all ge L} with g-f 0.



OPERATORS OF KOTHE SPACES 265

Proof. Assume that

inf [ gT"fdm >0 for all ge L} with g-f 0.

We define a linear transformation A: L, — R such that
Ag) = LIM [ gT"fdm = LIM [ fT*"gdm,
where T* is the conjugate of 7. Since
A(g)l =|LIM [ gT"fdm|< LIM| [ gT"fdm|< ¢'(9)supe(T"])
< @'(9)e(f)sup T,

we have Ae L.

It is also obvious that 4> 0. Therefore, by lemma 2, there exist
peL,,ve L3 such that > 0,»>0and A = p+».

Define

B ={ueLj: fugdmgl(g) for any geLj,}.

We claim that » < u for all ue B. Since u —u < A—u =» and » > 0,
80 (u — pu)* < ». Therefore (u —u)* = inf{(u—u)*, »} = 0 as ve L2, whence
u < u. So we can conclude that 4 = supB.

Secondly, we claim that Tue B. Since

[9Tuam = [ uT*gdm = u(T*g) < A(T*g) = LIM [ f-T*™* gdm
= LIMff-T"”gdm = A(g) for all ge L},

we have Tu < u.
Now we let b = inf T"u; so (T"u — h)|0. Since L, is absolutely contin-

n
uous, we have o(T"u —h) — 0 and, therefore,
’ “u

o(Th—h) < o(Th—T"u)+ o(T" u—h)
< |Tlo(h—T" ' u)+ o(T"u—h) — 0.

So Th = h.

To complete our proof, we have to show that S(k) o S(f). First
we prove that S(u) > S(f). Suppose to the contrary that there is a meas-
urable subset A in S(f) such that m(4) >0 and An8(u) =G. By
condition (vi) in the definition of a normed Kéthe space, there is a measur-
able subset E of A with m(E)> 0 and ygze L,. Therefore [uyxzdm = 0
and [fxgdm > 0.
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We let ¢ = }[fygzdm. Since inf{f,»} = 0, by lemma 1 there exists
ge L, such that 0 < g < yz and »(g9) =0,

f(XE —g)fdm < e.
Therefore [gfdm > [fygdm —e = }[fyzdm > 0. That means gf + 0.

So by the assumption we have

(%) 0 <inf [ gT"fdm < LIM [ gT"fdm = i(g).

On the other hand, since 0 < g< yr and [uyzdm =0, we have
fugdm = 0. It follows that 2(g) = u(g)+r(9) = fugdm-+v(g) =0,
a contradiction to (). Hence S(u) o S(f) holds.

Since S(u) = 8(f), by lemma 3 we have

inf [ gT"udm > 0

for those ge L, such that g-f + 0. Since gT™u} gh, we then have [ghdm > 0
for those ge L, with gf # 0. By means of condition (vi) in the definition of
a normed Kothe space, we can easily draw the conclusion that S(k) > S(f).

Conversely, let A = 0 be a non-negative fixed point of T, and fe L]
be such that S(f) = S(h). Since

inf [ gT"hdm = [ ghdm > 0

for any ge L} with gf # 0, by lemma 3 we have
inf [ gT"fdm > 0
n

for all ge L} with gf +# 0.

In case where the structure of L, is not clear, the condition
inf f gT"fdm > 0 seems to be useless. But if we consult condition (vi)
n

in the definition of a normed Kothe space, we can easily restate the theorem

in the following form:

Let L, be an absolutely continuous Kithe space, T: L, — L, a positive
operator with sup||T"|| < oco. If there exists a function fe L} such that
n

inf [ T"fdm > 0
" E

for any measurable set E with m(ENS(f)) > 0, then there is a non-negative
function he L] with S(h) > S8(f) and T(h) = h.

Conversely, if h # 0 is a non-negative fized point of T, then for any
fe LY with 8(f) = S(h), we have

inf [ T"fdm > 0
n g

for all measurable sets E such that m(EnS(f)) > 0.
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Remark. The quantity inf f T"fdm is not necessary finite in the
n K

above theorem.

If there is a strictly positive element f in the normed Kothe space
(i.e. f=0 and S(f) = X), then T has a strictly positive fixed point iff
inf f T"fdm > 0 for any measurable set E with positive measure.

vn E
Since any Orlicz space with 4,-property is an absolutely continuous

normed Kothe space, this theorem also holds for such an Orlicz space.

The author wish to express his gratitude to Prof. B. Forte for his
valuable suggestions and encouragement during the preparation of this

paper.
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