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On the uniqueness of the solution of the equation
of transverse vibrations of a plate

by Z. StoJEK (Krakow)

1. Introduction. We define a plate [1] as an elastic, material, flat
surface in repose, which, while bent, gains a potential energy called the
elastic energy, equal to the integral of a certain quadratic form of the
main curvatures of the bent surface. This definition gives the model
of a plate called the thin plate by the theory of elasticity. In the case
of the isotropic plate, the elastic energy is expressed by the formula
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where p, and p, are the main radii of the curvature of the deflected plate,
D(xz,y) is a non-negative function, defining the rigidity of the plate
against bending, » is the so-called Poisson ratio (0 <» < 0.5) and Q
corresponds to the domain of the plate.

In the present paper we give the proof of the uniqueness of the
solution of the problem of transverse vibrations of a plate—when applied
to a given group of boundary conditions. The method of the proof is
related to the method applied to hyperbolic equations by S. Zaremba,
K. Friedrichs and others (cf. [2]) and to that used in the paper of
A. Dawidowicz [3]. In this article we present the physical interpretation
of the proof and point to the connection existing between the method
of the proof and the derivation of the equation of the plate and of the
boundary conditions from Hamilton’s principle.

2. The differential equation of transverse vibrations of
a plate and of boundary conditions as derived from Hamil-
ton’s prineiple. Let us consider the problem of transverse vibrations
of a plate assuming that the vibrations are small enough to permit the
assumption [1]
1,1 1 Pw w (8%0)

2 4+ = =Adw —_— = — | ——
2) 01 0 ’ 010 Ox* oy* \owoy®

where w(x, y,t) = the function of deflection of the plate.
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By the said assumptions, the elastic energy of the plate is expressed
by the formula
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Yet, if a) the function p(x,y,t) defines the strain of external forces
acting along the vertical axis upon the surface of the plate, b) ¢(s, t)
is the function of the strain of normal forces acting upon the edge of
the plate, and c¢) m(s,t) corresponds to the strain of the bending mo-
ments acting upon the edge of the plate on planes normal to the edge—
then the form of the potential energy of the external forces will be:
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The kinetic energy of the plate is expressed by
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where u(x,y) = the surface density, being a function continuous and
positive in L.

As we know the formulae E, U and U,, we can use Hamilton’s
principle as a starting point when deriving the differential equation
of the transverse vibrations of the plate:
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The variation of the first term leads to
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since, by Hamilton’s principle, dw = 0 for ¢ =¢, and t = ¢,. The varia-
tion of the second sub-integral term yields
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and the variation of the third sub-integral term gives
9) am:-ffpawdmdy—f(qanrm%"’f)ds.
2 FQ "

According to Hamilton’s principle we therefore obtain
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We convert the left side of equation (10) by applying Green’s formula
to expression (8). Therefore we assume that D(z,y) is the function of
class C? in 2 and 2 is a normal domain with respect to the two axes
z and y.
Considering the apparent identities

.

DAwAdw = A(D Aw)dw +

2 déw ¢
0 adw o
dw *ow 0* *w
2D ooy swey — 2 6a;8y (D axay)6w+
*w chbw 0 *w
5 awau'Ty'—ég( é&a—y)"“’]Jr
(11) Fw oddw 0 dw
+ — ——— — | D——) dwl|,
oy| oxdy cx ax oy
Pw Pow &t (L Fw
D’a? ayr y( 6w‘)6w_r
0 cw ¢dw @ *w
| Doy ey P ]
w Pow  * o*w .
Da—w'ﬁ“a?z(l’ayz)"“*

-87833 ox



288 Z. Stojek

we obtain from Green’s expression the equality
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where % is the external normal and the direction of the boundary is pos-
itive (fig. 1). Substituting the operators d/on and 9¢/os for the operators
ofox and o/oy, we obtain a different form of expression (8):
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Since the last integral has been ilitegrated along a closed curve, and

the functions D % and dw are unique, consequently we have the

equality

(12) fD(l— );‘;’8 a;s:; =—f(1—v) ( )a wds
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and accordingly the form of expression (8) becomes
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Fig. 1

By (8") instead of equality (10) we obtain the equivalent (*) equality
{a )
' b7
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Taking advantage of Lagrange and Du Bois-Reymond lemma, we obtain
from (13) the following equalities:

(*) Hamilton’s principle, assuming that éw = 0 for { = ¢, and ¢ =1{,, does not
interfere with the proof of the equivalence of (10) and (13).
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for (x,y)eFQ and t>0(%).

Equation (14) is the differential equation of transverse vibrations of
a plate of variable rigidity, whereas the dependencies (15) form the group
of boundary conditions of our problem. E.g. the boundary conditions
of a plate supported freely along its whole adge are as follows:

w(z,y,t) =0,

2 2,
D(x,y)(%+v%)~m(s,t}=0 for (z,y)eF2 and >0

this means that the deflection on the contour of the plate is equal to 0;
that the sum of the bending moment of the. plate on its edge

o*w *w
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and of the moment acting opon the contour of the plate in planes normal
to it with the strain of m(s,t) equals 0.

Likewise, w(z, {) = 0, and ow(z, v, t)/on = 0 for (x,y) e FQ and t > 0
are the boundary conditions of the plate fixed along its whole boundary;
and

cw  Sw
DG +v5)~m =0,

0 Aw S 0 Pw
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for (x,y) e FQ2 and t > 0 represent the boundary conditions of a plate
free along its whole edge, upon which act forces normal to the surface
of the plate, their strain being ¢(s,?!), and moments with strains of
m(s, ).

(?) Conditions (15) on the boundary F{Q can be dulfilled gradually, by several steps.
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for (z,y) e FQ and t > 0 are the boundary conditions of a plate fixed
on its edge, with free displacement transverse to the surface of the plate,
the forces acting upon the edge having the strain of q(s, t).

Besides the aforesaid four kinds of boundary conditions, the group
of boundary conditions (15) comprises also the cases where one segment
of the contour is free, another being fixed, etc.

When deducing equation (14) and conditions (13), besides the as-
sumptions concerning the domain 2 and the functions D(z,y) and
u(z,y), we have taken for granted that the function w(x,?) belongs
to class C? in the semi-cylinder X2: {(x,y) e 2, t > 0} and that it has
continuous derivatives of fourth order with respect to the variables
x and y in 2, and that the function dw belongs to class C* in ZX.

=0,

3. The uniqueness proof of the problem of transverse
vibrations of a plate.

THEOREM 1. The differential equation (14) when the initial conditions
are given
ow(x, y,t)

20D _ga,y) for  (3,y) <0
(=0

16) w(z,y,0) =@z, y),
and the boundary condilions chosen from group (15)—has at most one solu -
tton within the range of the functions of class C* with 4th order continuous
derivatives with respect to spatial wvariables in the semi-cylinder 2
{(z, y) €2, 2 normal domain relative to axes x and y, t > 0} (*).

To verify this theorem, we only have to prove the following theorem:

THEOREM 2. The only solution of the partial differential homogeneous
equation

o2 2w 0% ow
(17)  A(DAw)+(1—») [ o (1)5506—?/)_.37”E (Da—yz)_

am=>] the =
by homogeneous initial conditions

ow(z, y, )

ot =0

t=0

(18) 'w(m7 Y 0) =07

(®) The normally of the domain can be weakened to such an extent as to make
possible the application of Green's theorem.
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and established homogeneous boundary conditions chosen from the group

D (6’w ﬁ2w) _ or ow

- — =0 and
n

onz ' o

19) ¢ (9211_7 *w\] | ¢ ( AN . B
in |[P\owe 722 )| 7207 55 Ponas) =0 7w =0

for  (z,y)eFQ and 1>=0

within the range of functions of class C* with continuous derivatives of 4th
order with respect to the spatial variables in the semi-cylinder is the func-
tion w(x,y,t) =0 in 2.

Proof. We will integrate over the area (fig. 2) @: {(z,y) £,
0 <t< T} (where 7T is an arbitrary number 0 < T < oo) the expression

%’ {A (DAw) + (1) [2 3;);& (DC%:% -
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¢
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and, as the function w(x, y, t) is the solution of the homogeneous equa-
tion (17), the above expression is equal to 0 within the area ©. Moreover,
we will integrate over the surface I': {FQ x [0, T]} the expressions

G car

onot  \on? ost)’

cw o >Aw Pw & 2w \\
_Et'lé‘ﬁ[D(W+”asz)]+2(l ") 55 (Da_nasl’
which are also equal to 0 on the surface I', since the function w(z, y, t)
fulfils the boundary conditions chosen arbitrarily from (19) (e.g.: if

dwfen = 0 for (z,y) e FQ and for ¢ > 0, then P*w/onét = 0 for (x,y) e FQ2
and 1 > 0).
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Summing up the integrals thus constructed, we obtain the equality

(20) fdtff {y e+ 4(Ddw) + (1 aan( ;;awy)_
() S e
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Equality (20) is a particular case of equality (13) (with p =0,
m =40, ¢ =0), obtained from Hamilton’s principle, namely when dw
= owfét and ¢, = 0 and ¢, = T. Since equality (13) by adequate assump-
tions of regularity is equivalent to equality (10), in our case the equality

o0 [ f[ (2 s

Pw Fw Pw Pw Pw Fw
is equivalent to equality (20).

We could obtain equality (21) without resorting to equalities (10)
and (13), by applying Green’s theorem and by taking into account iden-
tities similar to (11).

Considering the identities
2
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we obtain from equality (21)
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ayz) ]} it =0,
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whence

(23) %faf </‘(%1:‘,)2+D{V(AQ)2+
ool (2 G2

Since the function w(z, y,?) fulfils the initial conditions (18), the
subintegral expression (23) for t = 0 equals 0; moreover, 7 is an arbi-
trary number from the range (0, co), and thus the equality

@) 5 [ [ (u(%) +pfawr+
2

2 2 2 2.

ot ) 2 e s -
is true for an arbitrary t > 0.

On the other hand, we know from our assumption of u(z,y) >0
and D(z,y) >0 in 2 that 0 <» < 0,5; and, since the subintegral ex-
pression is continuous, the necessary condition for the fulfilment of
equality (24) in the semi-cylinder X is the equality ow/dt = 0 occurring
in 2. This equality shows that the functions is independent of the time-
parameter, and thus w(x,y,t) = v(z,y) in 2; and, since the function
is continuous and must fulfil the initial homogeneous conditions (18),
it is identically equal to 0 w(z,y,t) =0 in X, qu.e.d.

The expression

L[S o+ 0o o)+ (G2 + G e

can be interpreted physically, since it corresponds to the entire energy
E+U of the freely vibrating plate. In case of free vibrations, we have
to do with a conservative system, and so the entire energy is constant.
As the homogeneous initial conditions imply, the entire energy is equal
to 0, which is expressed by equality (24).

drdy =0.

References

[1] R. Courant und D. Hilbert, Methoden der mathematischen Physik, Got-
tingen 1924,

[21 M. Krzyzanski, Réwnania réiniczkowe rzqstkowe rzedu drugiego, t. 1, War-
szawa 1957.

[3] A. Dawidowicz, Dowdd jednoznacznoéci rozwiqzania dla réwnania bryly drga-
jacej, Czasopismo Techniczne, 1959, nr 3, p. 142.

Regu par la Rédaction le 3. 1. 1961



