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On the reduction theorems

by G. LusczoNok (Katowice)

1. In this paper we shall give new proofs of the classical reduction
theorems of affine and Riemannian geometry. This is an answer to a prob-
lem of J. Aczél and S. Golab (see [1], p. 154). The reduction theorems
have a long history, for the bibliography see [12], p. 155 and 165. The
first formulation of the reduction theorems is due to Christoffel in [4].
For further references see [2], [3], [6], [10], [11], [14], and [15].

Most authors consider the reduction theorems for the concomitants
regarded as quantities, with additional assumptions concerning those
objects. '

In this work we shall prove the reduction theorems for the pure
differential geometric objects of the first class. In our considerations
we presume the minimal regularity assumptions on the affine (i.e. sym-
metric) connexion and metrical tensor. The proofs base on the theory of
geometric objects and theory of functional equations.

We first recall the notion of the differential concomitant (see [6]
and [7]). Let Q' be any geometric object of the p-th class whose transfor-
mation law under a coordinate transformation & — ¢, 1 =1,...,n, is

(]-'1) QAI = FA,(QZ, Eva ‘Ev” L)7

where Le%; (%, denotes a differential group of rank p).
The components (2% 4, 2%, ..., Ony...00 Q%) determine a geometric
object with the following transformation law, '

Q" = FA’(-QZ7 Ev’ ‘fv,a L)’
0,27 = 0, FV(Q%, &, £ L),

-----------------------

QY = 60};:...,1:’11?/1’(92’ £, &, L),

(1.2)

b'--"”i

where the right-hand side of (1.2) is obtained by partial differentiation
of F* with respect to £v.

The geometric object (27,9, QF, ..., 0, Q%) is called a differen-
tial extension of Q* of rank p, and will be denoted by 8* Q.
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The geometric object OF is called a differential concomitant of rank p
of the geometric object Q4 if % is a concomitant of 97 Q.
It follows ([7], p. 51) that OF is given by the formula

(1.3) 0% = f*(87 2"),
where f*(0” 2) is an invariant function, i.e.
(1.4) 0% = f¥(0° Q") = 87 f*(0" Q%)

in every coordinate system &’ (87 denotes the Kronecker symbol).
Our formulation of the reduction theorem for the affine connexion
reads as follows:

THEOREM 1. Let Q2 be any pure differential geometric object of the first
class. If Q is a differential concomitant of rank p of the affine connexion I':,,
then Q is a concomitant of the tensors

R, V,,IR‘ . %

env) env?

A
‘Up_l, A RQ#'D’

where R),., V denote the curvature tensor and the covariant derivative with,
respect to I',.

Let {®;};_, .. s be a set of quantities (see [12], p. 68).

THEOREM 2. Let Q2 be any pure differential geometric object of the first
class. If Q is a differential concomitant of rank p of {Dy}y., . s and of
the affine connexion I'',, then Q is a concomitant of the quantities

{Vvl.....vldjk}7 l=0717---7}’; k=1,-..,8,
{Vvl,...,viRzy'L’}7 l = 0, 1, ---,_p—-l,
daf
VOQk =¢k'

We generalize this theorem to the case of the linear connexion I',.
Write Iy, = I, and 8}, = I,

1Y) [wv]”
THEOREM 3. Let 2 be any pure differential geometric object of the first
class. If Q2 s a differential concomitant of rank p of {Dy}y_, . s and of the

linear connexion I'y,, then Q is a concomitant of the quantities:
{sz,....vlcbkb v l=0,1,...,p; k=1, ceey 8y
{Vvl,...,vlsiv}a l=0117"'7.'p7

{ﬁvz,...,le;pv}’ - 1=0,1,...,p—1,

where R,,,, V denote the curvature tensor and the covariant derivative with

respect to I',. _
An important consequence of Theorem 2 is the reduction theorem

for a tensor a,, with the non-singular symmetric part -a;,.
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THEOREM 4. Let a tensor a;, have a non-singular symmetric part g;, = .
Denote by s,, the skew-symmetric part of a,,. If the pure differential geo-
metric object of the first class 2 is a differential concomitant of rank p of a,,,
then Q2 is a concomitant of tensors:

A A r
Bouos Vo, Bopoy -+ Vo g eerry Touos
Wy Vo Siuy oons va,._,,,,ls,,#,

where R,,,, V denote a curvature tensor and the covariant derivative with
respect to Christoffel’s symbols determined by g;,.

In particular, for the non-singular symmetric tensor g;, we obtain
the reduction theorem of the Riemannian geometry.

THEOREM 5. If the pure differential geometric object Q2 of the first
class 2 is a differential concomitant of rank p of g,,, then Q is a concomitant
of the tenmsors:

Gou s R:,uv’ Vlez,uv’ st 4 Ra

Vp—2s-+0? ouv"*
In Section 2 we shall prove the fundamental Lemma 1. Sections 3 —5
are devoted to the proofs of Theorems 1 —
For the particular case p = 1, Theorems 1 — 5, where proved in [8]
and [9].
In the sequel we restrict our cons1der&t10n to pure differential geo-
metric objects of the first class.

2. In this section we shall prove some lemmas. The basic role played
by the following

LEMMA 1. If numbers Ty . ., fulfil the equations

(i) Tgl.---:”w# T:;l, s VgQU Ué,. L veH?
2.1) (ii) T(vl N =Ti,,...,vlom

(1) Thy..open) = Topse.svgeus

(iv) T(”t» Sven) T 0,
where U, ., are given numbers, then T, ., are linear functions of
U...rvyou

We denote this fact by

(2.2) | T — B(U), 1=1,2,...

If T and U are tensors, then the function &, determines 7' as a conco-
mitant of U.

Proof of Lemma 1. We establish an arbitrary set of to lower indices
{vyy ..., v10u} of Téz.---,vwﬂ' Thus, for the every subset of indices 1,...,n
there correspond many components of 7' whose indices belong to this
subset. Now we have the essential
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Remark. If the set of two last indices pu of the components of T
coincide, then those components are equal.

Indeed; it follows from the symmetry properties (ii) and (iii). Denote
by {&i}k=),..,n the essential components of 7. For ¢, the equations
(2.1) have the form

N
(2.1) Ep— & = by, Z‘n,,gk = 0.
) k=1

The second equality of (2.1’) express (iv) in terms of &, (n; denotes
the number of components, of 7' which are equal &, n; > 1). Numbers b’;
are obtained in the following way:

Case 1° Let T o correspond to &, and T3
by (i), we put a = le, vgon

Case 2° Let Tﬁl,__,,vw, correspond to &, and Tf,bm,,,ae,,,,z,,l to &;. Then,
by the symmetry properties (ii) and (iii), we get the following equalities:

to &;. Then,

Uiy o00y Vg0 U144

2
Ex— 51 vz. - vion Tvl. <1 D3QHYY)

_ma A A o
- Tol,...,vlo,u Tul vzovlu—,_Tvl....,vzavlu Tvl,...,‘vaa#vz'vl

2 A 2
U’vl, ., vj0H + Tvl.---,v3902#171 - Tvl....,vsgyvzvl

— i A
- UU;» o Vjen + U"l'-w”a@”z””l’

and we put bk]' = U:J.l,...,'vlg,u-{_ Ugl,...,vagvzﬂ’vl'

In a similar way we proceed for every pair v, v;.

In view of the preceding Remark we can reduce every case to that
described above. By our assumptions there exists a solution of (2.1°).
We observe that this solution is unique. I_ndeed a difference @, of two
solutions &, n, of (2.1") fulfils,

@k_@j - O,

N
an@k = O .
k=1

By an elementary calculation we obtain a solution of (2.1'), -
N N-1
(2.3) [ ——— l+2 22% bu+1+2 bt
s=1 l=g
Consequently, the system (2.1) has the unique solution. We denote
this fact by (2.2). Equations (2.1) have the invariant tensorial form.
Therefore the function E, determines the tensor 7' as a concomitant of U.
This completes the proof.
Now we introduce the normal coordmate systemm of order p (see
(12], p. 158).
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DEFINITION. The coordinate system is called the normal coordinate
system of order p for the affine connexion I';, at a point &, if the equations
Fﬁv =0,

(2.4) :
a(vp,...,vl]-':v) =0
are satisfied in these coordinates at the point &,.
We recall the following (see [12], p. 158):

LEMMA 2. The normal coordinate system of order p can be introduced
by a C, coordinate transformation & = ¢¥ (&) with partial derivatives at
Eo (O Abgpes -y Ay, 0pw), Where &} 0L = 0% is the Kronecker symbol.

Proof of Lemma 2. We notice that, by a coordinate transformation

with partial derivatives at & (63,0, ..., A%  ,iwes 0,...,0), we have

A A A
(2'5) avjv.,...,vi Pp’v’ = avk,...,vlrpv_l' Avk,...,vip’v’)

!’

where v; = v;,A = A, u = p', v =o', and the partial derivatives of I},
of order ¢ < k do not change.

For p =0 (see [5], p. 200) we obtain the result substituting
A, = —TI, to (2.5). '

We suppose that there exists a coordinate transformation fulfilling
the assumption of Lemma 2, for p =1,...,k—1, or r, =0o, 6(,,1]",’1,,)
=0,..., 5(%_1,...,”11"3») = 0. : :

Now we apply (2.5) with A5, ..y = — 0, ..o Tuy; Where v; = v,

@ = u, v = v. This completes the induction and the proof of Lemma 2.

3. Proof of Theorem 1. Let 2 be an arbitrary pure differential
geometric object of the first class with the followin transformation law

(3.1) . Q" =F(Q, L),
where LeGl(n, R) = #". Let & be a given point. The components of 0*I
in the normal coordinate system of order p at & will be denoted by an
asterisk overhead. By Lemma 2 we conclude

*
(3.2) Q =fI,...,0,

P

*

,...,vlFﬁv)’

*
where the components 0°I" fulfil equation (2.4).
For p = 0 there exist no a non-trivial concomitants of I',,, see [9].
Now we apply induction with respect to p. For p = 1 we have
0,1, —0,I" = R’

e uv st po opv *
We use Lemma 1 with ! = 1. Hence we obtain 0
and consequently 2 = f(0, E,(R;,,)).
Functions f and FE, are invariant with respect to the action of #7.
This completes the proof for p = 1. ’

sk
e I‘ﬁv E 1 (.R;nv
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Write VR = Vyp o Bl

We suppose that Theorem 1 is true for p =1,...,k—1 or, in the
normal coordinates of order k, we have

*
(3.3) Oy ..o Lo = Hy(R, ..., V;R) forl=1,...,k—1,

where H,; are invariant functions with respect to the action of #7. By
a differentiation of the formula defining the curvature tensor

Rz#v = za[e :10+2F€9|w1 :,]U
we obtain the equality
(3‘4) Vvk_l,....lezpm = avk_l....,vleriv'_avk_l,...,vlnF:v'l"Wk—l(ak_lr)7

where W;_, is a polynomial.
Of course, this formula is invariant with respect to the action of 7.
Hence we have
* * *
(3'5) a”k—l ..... vlgrzv_a ng = Vvk_l,...,le;yv—Wk—l(ak—lP)'

From the symmetry of the partial derivatives and of the affine con-

'vk_ 1,...,01[1

L ]
nexion (on the lower indices) it follows that components 6%_1“",1,191"3,,
fulfil the equations of Lemma 1 with

*
U:;k_l,....vlguv = Vﬂk_l,...,’vl‘R;u'U—Wk—l(ak—lr)’
Hence we obtain

% *
(3.6) ‘9 I, = By (Vi R+W,_, (8" T)).

’Dk_ 1,...,’019
From our assumptions we conclude that

(3.7) @ I

'Uk_ 1,...,1}19 v
= Ey(R+W,_,(0, Ey(R), Hy(R, V,R), ..., Hy_,(R, ..., V\_, R))).

Every function on the right-hand side of (3.7) is invariant with
respect to the action of #7. Substituting (3.7) into (3.2) we complete the
proof of Theorem 1.

Remark. We can give more express formulas for the components

*
of 0PI in the normal coordinates of order p:

¥
r,, =0,
)
aerpv = EI(R),

%

Oue Lo = Bo(ViR—W,(0, B, (R))),

By,,....onTis = Bpir [ Vo R—W, (0, By(R), BV, R—W, (0, B,(R)),
| ...,E,,(VP_IR—WP_I(O,...)))).
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4. Proof of Theorem 2. We apply induction with respect to p.
Let 2 be any pure differential geometric object of the first class with
transformation law (3.1). We shall give the proof for a pair of objects @, I'.
The reasoning for a system of objects {di,,}k L...sy I 18 analogous.

From (1.3) it follows that,

(4.1) Q = f(@*®,orT).

For p = 0 we have
Q=fD,I.

In the normal coordinates of order p is
Q' = F(Q,(8)) = 2 =f(2%,0

But for the quantities we have @* = @ and consequently 2 = f(®, 0).
This proves Theorem 2 for p = 0.

We next suppose that Theorem is true for ¥ < p—1 and that in
the normal coordinates of order p the following holds true
(4-3) 0 ...,1:1@ = Sk(@, V1¢7 sey Vk¢, R’ VlRy very Vk—lR)7

Uk,
where S, is an invariant function with respect to the action of #7.
Further consideration will be preceded by

Remark. Covariant derivative of quantity @ can be written invari-
antly with respeect to the action of %} in the form

(44) Vo it 018, = 00 g + Py (810, 810,

bula

where P; is a polynomial.
Indeed, we have the formula ([5], p. 190)

= ﬁl,...,;. — ;‘13 )'1: @) --420 =
(4'0) Vvl ¢”1 ----- I‘qr - avl ¢”]: aF ¢ :"‘qr + 1’19]_1 ¢F i ’if‘qr _!
a
+ IyLoe ¢‘1
where

q
Aty enns A _ ay a a _ A
T”llﬁlv--'?ﬁq —valﬁ 61"1 651 16‘5:1'{ t ﬁg’ F”l - Pl‘
i=1
and a is the weight of @.

This proves the Remark for | = 1. By a differentiation of formula
(4.4) with respect to v,,, we obtain,

2 A
) LRERT] q — 1 )
V‘l’t_’_],...,'t)l@il,...,ﬂf avl+1,...,v1¢ +avl+1Pl+
’lls szq I3+ @ 0}, ' T T ’rr ;11 l
+ Fvl+ 19]5 -9 Vvll Y ¢f‘ "‘r Fvl+l "-’l P‘l 'y /11, Valn . ¢le r +

taly, V..o @i

Yyl Uy Ml,...,pr'
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From our assumptions it follows that the polynomial

Py = Oy PrtTiia | U, @Rty —

11 U+1 91’-- Bps-e By .- "‘r
lel-’{-] ;’cz'l'1l’v1s;17»-~-rﬂr V"z’- QDZI’ v’r 2+al’ U+ V ] q)ilf:':-':»%r
fulfils (4.4) for I+ 1. This completes the induction.
Now we finish the proof of Theorem 2. From (4.4) we obtain,

(4.6) 9, ® =V

L'p,...,’vl

vp,_",,,ldi—Pp(af’“dn ar—'r.
Thus, in the normal coordinates of order p, we have, by (4.3),

(4.7) 0y ,..0® = va,. P—P, (D, 8:.(D, V19),8,(P, V19, V¥, R),

,,_,(qb Vi ®,...., Voo, ®, R, ..., V,_,R)).

Therefore the partial derivatives 6,,1,““,”1(25 are expressed by the quantity
@, the curvature tensor F and their covariant derivatives V,, @,k = 1,...,p,
ViR, 1 =1,...,p—1. Every function on the right-hand of (4.7) is an
invariant function with respect to the action of #7. Substituting formula
(4.7) to (4.1) we conclude our supposition for p. This completes the indue-
tion and the proof of Theorem 2.

5. Proof of Theorem 3. We notice that the object: linear connexion

I, is equivalent to the system of objects I}, and 8%,, where I, = Ty
and 8,, = I},,;- We search for the differ entla,l concomitant of rank p

of the objects I'',, 8%, {® ). - Now we apply Theorem 2.

Proof of Theorem 4. Let I'}, denote Christoffel’s symbols determin-
ed by g,,. We consider the system of objects; 6”a, 0" 'I. Object 07 'I
is the differential concomitant of rank p of the tensor a,,. Hence we
obtain the following simple;

Remark. Every differential concomitant of rank p of a,, is a con-
comitant of the system d”a, 0PI

Now we apply Theorem 2 to the system of objects a,,, I',. We con-
clude that the pure differential geometric object (2 of the first class is
a differential concomitant of rank p of the tensor a, if 2 is a concomitant
of the tensors:

RA

Qs Ve @apy -y V ovd *

vpr :vl '1# ’ — 99y v] 9.“'”.

S .

But for Christoffel’s symbols we have V. ., g, =0, 1=1,..., and

consequently V., . a,, =V, . 8,. This completes the proof of Theo-
rem 4.
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