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1. The problem. The following two properties play a particular
role in the topological theory of curves (i.e. of 1-dimensional metric con-
tinua):

(1) the absence of indecomposable subcontinua (i.e. of subcontinua which
are not unions of two their subcontinua no one of whose contains
the other); this property is called hereditary decomposability;

(2) the presence, for each pair of points, of a unique arc joining them;
we call this property one-arcwise conneciedness.

Properties (1) and (2) appear especially in the study of dendroids
(i.e. of curves acyclic in the sense that for each pair of their points there
exists exactly one continuum irreducible between them, which is an are).
Some information on this matter can be found, for example, in papers
[3], p. 239, and [4], p. 197, by Charatonik ().

It is known that (2) does not imply (1), at least for 2-dimensional
continua in the euclidean 3-space. Such is, e.g., the cone C over the
pseudo-are, i.e., the hereditarily indecomposable continuum X', (see my
paper [6], p. 275 -279).

During his stay in Wroclaw in 1974, Sam B. Nadler, Jr. posed a ques-
tion whether also in the plane, thus for curves, (2) does not imply (1).
Each plane 2-dimensional continuum contains disks (see [11], Theo-
rem 4, p. 81), therefore many arcs between the same pair of points, and
it also contains indecomposable continua (see [10], p. 327).

The answer is affirmative. The example of a plane curve & that will
be constructed in this paper has property (2) without having property
(1), which shows in particular that, also in the plane, property (2) alone
does not suffice to assure hereditary decomposability of a continuum.

(1) I wish to express my gratitude to J. J. Charatonik for his contribution in
the preparation of the present paper and for English translation. I would like to
thank also T. Maékowiak.
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2. The union #. The construction will heavily depend on the
union # of a family containing 2% disjoint curves, each homeomorphic
to the continuum defined by the conditions

(3) y=sin% for 0< o<1,

(4) -1<y<1l forxz=0

and situated in the square ¢ with the opposite vertices (0, 0) and (1, 1).
This family of curves has been constructed in my paper [7] (see Fig. V,
P. 286, with the under-text and three final propositions, p. 288 and 289).

Let M be the Cantor discontinuum in the segment 0 <z <1,y =0
and let I be the set composed of the points (0, 0), (1, 0) and of the left
end-points of the intervals contiguous to iR. Let M, be a line homeomorphic
to (3) and L, be the vertical segment playing the role of (4) for M,, where
LM, = & for every (t,0)e M\I. Thus every of these L,UM, is a con-
tinuum irreducible between the points (¢, 0) and (1,1 —¢), and the first
of these two points is the lower end-point of L,, whereas the members
of the union # for values ¢ satisfying 0 %t 1 and (¢, 0) € I are, in the
construction of # mentioned above, broken lines, thus some arcs. Note
the following easy property of &:

(5) t =limi, implies LM, = Lim(L, VM, ),
Nn—+00 n-—>00

which means that the decomposition of # into the curves L,uM, is con-
tinuous (see [9], p. 61 and 62).

3. The continuum #£,. Let #, be the simplest indecomposable con-
tinuum composed of all semicircles D, with ordinates y > 0, having the
center (27!, 0) and passing through all points (f, 0) e Nt and of all ones
of ordinates y < 0 with the centers (6-2~'-37", 0), where n =1, 2, ...,
passing through all the points (7, 0) e R} with 2-37" < ¢ < 37",

Put N, = {(¢,0) e N: 2-37" <t <3~ "*!}. Thus we have

(6) N ={0}uv UR,,
n=1
and putting
(7) B= U D, B,= |J D
(¢,0)eM (2,0)eRy,
we obtain
(8) #, = Bu U B,.
n=1

The set #, is an indecomposable continuum (see [8], p. 40).
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4. The union #*. The leading idea of the construction of the curve
& consists in the replacing of the semicircles, the curve %, is composed
of, by curves homeomorphic to irreducible continua L,UM, transformed
in a proper way in order to obtain a new indecomposable continuum;
we denote it by #£,. But it needs some preliminary considerations.

Since the union of curves L,UM, for (f, 0) e R\I is not a closed set,
it should be replaced by a subunion #* which is closed.

To this end let J denote the set composed of points (0, 0), (0, 1)
and of end-points of all intervals of the complement of the Cantor set
N to the unit interval 0 < # < 1. The set R\J is obviously homeomorphic
to the set C of binary irrational numbers of the interval 0 < # <1 under
the Cantor step-function (“la fonction scalariforme de Cantor”, see [2],
p- 386). Let i}’ be the homeomorphic image in |\J of some perfect subset
contained in C. Further, the sets :t and N’ being perfect, 0-dimensional
and linear, a homeomorphism

(9) B: >N

between them can be chosen in such a way that it preserves the order <
between corresponding points ([1], p. 146). Denote by #* a subset of
the union # formed from the curves L,uM for (¢, 0) e N, i.e.,

F* = U(LuM,: (t,0)eN).

Thus the set #*, defined in this way, is compact, it has — similarly
a8 & — property (5), but — contrary to # — no its member is a broken
line, but all are irreducible continua L,UM different from arcs. This
property of the set #* is essential for the construction of the curve 4,.

5. The indecomposable continuum %, and the curve &. The following
notation will be used in the sequel. For every ¢ with (¢, 0) ¢ #’ the member
L,UM, of the union #* is irreducible between points (f, 0) and (1,1 —1).
Let N'’ be the set of these points, i.e.

N ={1,1—-t):teR'} <@
and let — similarly to (9) —

(10) B': N—-N"’

be a homeomorphism preserving the order < between corresponding
points.

Having defined the set #* which lies in the unit square @, we are
ready to describe the curve %#,. To begin with we define a geometrical
operation I' on the compact set

B = D,

tedt
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-

(see (7)) which is the union of semicircles D, (with ordinates y > 0). Let
(see (6))
(11) N, = M\RN,.

Thus RN, is the set of left end-points of semicircles D,, and N, is the
set of their right end-points. Obviously both these sets are homeomorphic
with the Cantor set N. Let yo: N, - N and y,: N, > N be homeomorphisms
preserving the order, i.e. defined by formulae

yi()) =3t—2 for teR,.

Let us divide every of the semicircles D, (¢ € i), which are members
of the union B, into three equal parts and remove from each of them the
arc being the middle one-third of the semicircle D,. In the free place
obtained in this way in the plane we put the image ¢ (@) of the unit square
@ under a similarity transformation y so that the points

11 2)

11
(3:3) =700 wma (5,5-3) =0

are opposite vertices of the square y(Q) and that

1 1 1 1
0,0)=|———, — ——]).
(0, 0) (2 9’9 9).3
Put
hy = yh'ye: \y—y(N’) and by = yh" y1: Ry =y (N,

where A’ and A’ are homeomorphisms (9) and (10).

Now let us take away the remaining left and right one-third parts
of the semicircles D, and join every point (f,0) e R, with its image
ho(2, 0) € (M) = y(Q) by the straight line segment A; and, analogously,
join every point (Z, 0) e N, with its image &,(¢, 0) e y(RN’') < »(@) by the
straight line segment A4,. Observe that for different points (i, 0) e N,
(or (¢, 0) eRN,, respectively) the corresponding segments A; (or A;, re-
spectively) are disjoint.

Finally, put

(12) I'(B) = UJ(4;: (5, 0) e R)uy(F)v U(4): (2, 0) e Ry).

In this manner every semicircle D,, being a member of the union B,
has been replaced, to form I'(B), by an irreducible continuum composed
of straight line segments 4; and 4, for proper indices ¢, and ¢, and of
the image y(L,VUM,), lying between these segments, of the irreducible
continnum L,UM, < F* (for some (u, 0) e N’). More exactly, if a point
(¢, 0) e N, is the left end-point of the semicircle D, being a member of
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the union B (see (7)), then to obtain I'(B), the semicircle D, is replaced
by A;uy(L,VM,)UA,, where (see (9) and (10))

(13) (u, 0) = h'(t, 0)
and
(14) (v, 0) = (A")7(1, 1 —u)).

We obtain in this way the following equivalent description of the
operation I':

(15) I'(B) = Ul4;9y(L, VM,V 4, (t,0) e RN,
where the indices # and v are defined by equalities (13) and (14).

Observe that, according to the definition of segments A4; and A4, ,
we have

(16) Ainy(M,) = {hit, 0))}
and
(17) ANy (L,) = {h((v, 0))}.

Exactly in the same manner we define the operation I" on compact
sets B, for n =1,2,... (see (7)), every of which is — similarly to
B — the union of semicircles D,, where (t,0) e R,. Consequently, for
every natural n and for every point (¢, 0) € i, , the semicircle D, is replaced
by an irreducible continuum composed of two straight line segments
joined by a homeomorphic image of a curve described by formulae (3)

and (4).
Finally we define
(18) 4, = I'B)u U I'B,)
n=1
and
(19) & =AB,U{,0): 0<r<1}.

6. Proofs of properties. First we show that 4, is an indecomposable
continuum.

Recall (see [8], p. 40 and 41) that the union of the sequence of semi-
circles 8;, 83, ..., 8,, ... in #,, where 8,, §,, ... have points (0, 0), (1, 0),
(2:3740), (37 0), ... as their end-points successively, and the common
end-points of §, and 8,,,,, for every n =1, 2, ..., pass through all points
of the set J which is dense in 9. Therefore it is easy to verify that the
union

8S=U8~,

n=1

(which is a connected set) is dense in #, (which is thereby a continuum).
Similarly, \J =N, whence #£,\8 = #,. Further, £, is irreducible
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between every point p € 8 and every point g € £,\8 (see [8], property
(), p. 41) which is sufficient for #, to be indecomposable (see [5], Theo-
rem IV, p. 215).

Let us come back to %,. Consider the sequence D;, D,,..., D,,..., an
analogue to 8,;,8gy...,8,,..., where every D, is that continuum, de-
scribed in the previous construction of the set #,, which has replaced the
semicircle S,, i.e., D, is composed of two straight line segments and of
a line homeomorphie to sin(1/x)-curve ((3) and (4)) that joins the proper
end-points of the two segments.

Moreover, as for the sequence 8,, 84, ...y 8,, ..., the continuum D],
joins the points (0, 0) and (1, 0) and, for every n =1, 2, ..., the common
part D,nD,,, =8,n8,,, reduces to the common end-point of both
these continua.

Let

o0
D=\ D,.
n=1

It is easy to verify by induction, in the same way as for 8, that
J < D and, since J =N, we have D = #,. This set is therefore a con-

tinuum. Simultaneously, R\J = R, whence Z,\D = B,. Thus D is a set
both dense and boundary in #,. The remaining part of the proof that
the continuum %, is indecomposable, namely that it is irreducible between
{0, 0) and every point of #,\D, is completely analogous to the corre-
sponding part of the previous argumentation for #,. Therefore it is also
established by (19) that & does not have property (1).

To prove that & has property (2) let us remark that, according to
(15) and (18), the continuum 4%, is decomposed into disjoint lines C, with
(t, 0) e N, detined as follows. For ¢ = 0, C, is the union A ,uy(M 0.0
< I'(B). For t # 0, C, is the union of two arcwise connected sets having
{t, 0) a8 the only common point: one of them is equal either to 4;Uy(M,)
(see (13) and (16)) or to A Uy(L,) (see (14) and (17) with v =¢ and
u = w) and is contained (see (15)) in I'(B) (y = 0); the other has a similar
form and is contained in I'(B,) (v < 0), where n is defined by (¢, 0) e R,.
Therefore every C,; is an arc-component (and it is one-arcwise connected)
of #,, i.e. it is the union of all subares in %, which contain a given point
of G‘. Thus

{20) every arc-component C, has — by the definition — exactly one point
in common with the straight line y = 0, namely the point (1, 0) e N.

Consequently,
(21)  two points which belong to different arc-components Cy and C,, , in
particular two points (t,,0) and (t,,0) of N with t, <t,, cannot
be joined by an arc lying in A,.
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It follows immediately from (19) that every arc which joins two
points p € 0, and g € G, in & goes along the z-axis from (i,, 0) to (i,, 0);
therefore this arc is of the form

Pg = P (t1, 0)V (4, 0)(te, 0)U (24, 0)g.

According to (18) and (19) such an arc there exists indeed. The
question is to prove that it is unique. Suppose that there exists another

one, say A. By (20) we have ANE\%B, # O. Let us order the points of

A linearly starting with p, and let r be the first point of £\ 4%, in A. Thus
all points of A that precede r are in %,, which is closed by the definition,
whence r € #,. Let C, be an arc-component of £, such that r e C;. The
arc pr joins points p € 0, and r e C; in %,, whence, by (21), we have
t, =t and thus r = (¢, 0) by (20). Therefore the uniqueness of the initial
arc p(t,, 0) and, by the symmetry of assumptions, of the final arc (¢,, 0)¢q
has been established. Finally, if there would exist another intermediate
arc, say 7, in &, besides the segment (¢,, 0)(¢;, 0) in the straight line
y = 0, the union (i,, 0)(;, 0)UT would contain a simple closed curve
composed of two arcs, say ab and ba, such that ab < (¢,, 0)(t;, 0) and
ba = T. But no straight line contains two distinct arcs having the same
end-points, and since the segment (¢, 0)(%;, 0) containing ab is contained
in the straight line y = 0, the arc ba must be contained in #,, which
is impossible by (20) and (21). Thus the proof of the uniqueness of the
arc pq < & is complete.

7. Remarks. The plane curve & which satisfies (2) without satistying
(1) contains the only indecomposable continuum £,. To construct in
the plane an analogous example containing a finite or countable family
of disjoint indecomposable continua is obviously sufficient to prolong
the segment 0 < # < 1 along the x-axis to a finite or infinite sequence
of smaller and smaller consecutive segments (and adjoin their limit-point
of course), and to repeat the construction of & on each of them. However,
it is not known if one can go further in this direction, i.e. the following
problem seems to be open: does there exist in the plane a one-arcwise
connected continuum which contains uncountably many disjoint inde-
composable continuat (P 1138)
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