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Generic properties of some iterative
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Abstract. In the paper equations of the form (1) are studied, where the functions h are
monotonic as functions of the second variable. It is shown that existence and uniqueness as well
as continugus dependence of continuous solutions of equations (1) are generic properties. The
density of the set of all equations (1) having no continuous solutions is also proved.

In papers [4] and [5] some properties of equations of the form
(1) @(x) = h(x, o [f (%)])

have been proved to be generic in suitable spaces # and & x # of given
functions h and pairs (f, h), respectively. Here we shall discuss the same
properties taking into account only equations (1) with real functions h which
are monotonic with respect to the second variable. Such assumptions may be
found, for example, in papers [1], [7], and [11]. Observe also that the linear
functional equation

oLf ()] =g(x)p(x)+F(x)

is of the form (1) with a function h which, as a function of the second
variable, is linear and thus monotonic. Some methods used in this paper are
patterned upon those presented by J. Myjak (cf. [10], Theorem 1.2).

In the sequel, given topological spaces X and Y we shall denote by
%(X, Y) the set of all functions mapping X continuously into Y. We shall

treat it as a topological space with compact-open topology (cf. [9], § 44).

Remark 1. If X is a topological space and (Y, d) is a metric space, then
the family of all sets of the form

{fe€(X, Y): d(f(x), fo(x) <t&, xeC},
where C is a compact subset of X and ¢ is a positive number, is a basis at
foeb(X, Y).
We omit a simple proof of this remark.
In the whole paper we shall assume that (X, g) is a metric space and ¢ is
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a fixed point in X. Denote by # the subset of (X, X) consisting of all
functions satisfying the inequality

Q(f(x)’ é)s})f(g(x’ é))a xEX,

where y, is an increasing and right-continuous real function defined on an
interval I containing the origin, and y,(t) <t for every tel\{0}.

Remark 2. If
(2) the ball {xeX: o(x, ¢ <o(xo, )} is compact for every xpeX,
then # is the set of all fe ¥ (X, X) such that f(&) = ¢ and

e(f(x), &) <e(x, &), xeX\i&}
(cf. [2], Theorem 3.3). If condition (2) holds, then X is a separable locally
compact space (cf. [5], Lemma 3).
Remark 3 (cf. [4], Remark 1). If fe & then the sequence (f*: ke N)(})

converges to ¢ uniformly on every compact subset of X and, in particular, &
is the unique fixed point of f.

Fix a real number 7 and denote by @ the set of all elements of ¢ (X, R)

taking the value n at the point &. Clearly, if fe &#, he (X xR, R) and pe®
is a solution of equation (1), then

3) h,m=n.

Therefore it is of interest to consider the set s of all functions he
% (X xR, R) satisfying equality (3). Here we shall be mainly interested in
those elements h of ¥ for which the function h(x, -) is monotonic for every
xe X (the kind of monotonicity of h(x, -) may depend on x). The set of all
these functions will be denoted by .#.

Remark 4. If X is a separable locally compact space, then .# is a
topologically complete space (metrizable by the metric of uniform conver-
gence on compact sets). If X is a topologically complete space satisfying
condition (2), then #, .#, and % x .# are topologically complete spaces
(metrizable by the metric of uniform convergence on compact sets).

Proof. Replacing above .# by # we get exactly the contents of [5],
Remarks 1 and 2. To get the assertion it is enough to observe that .# and
F x M are closed subsets of # and % x ), respectively.

We start with the following lemma.

LeEMMA 1. Suppose that h, h* € # and, for every x from a neighbourhood of
&, the functions h(x, -) and h*(x, -) are simultaneously increasing or decreas-
ing. Then for every positive number € there exists a function h'e # such that

lh(x, y)—h'(x, y)l <&, (x,y)e X xR,

() For every nonnegative integer k, f* denotes the kth iterate of f.
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and
h'(x, y) = h*(x, y)
for every (x, y) from a neighbourhood of (&, n).
Proof. Let U be a neighbourhood of £ such that for xe U the functions
h(x,-) and h*(x,-) are simultaneously increasing or decreasing. Fix a

positive number ¢ and choose an open neighbourhood V< U of ¢ and a
positive number 4 in such a manner that

4 lh(x, y)—h(x, n)l <e&/2, xeV, |y—nl <9,
and
5) |h*(x, y)—h(x, n)l <&/2, xeV,|y—nl <d.

Fix a closed neighbourhood W of £ contained in ¥. On account of
Urysohn’s Lemma (cf. [8], § 14, IV) there exists a continuous function p:
X — [0, 1] such that p(x) =0 for xe X\V and p(x) =1 for xe W. Define
a function F: X xR— R by

n—ap(x) if xeX and y <n-46p(x),
F(x,y) =<y if xe X and [y—ri < 3p(x),
n+dp(x) if xeX and y > n+dp(x).

Since the function F is continuous in each variable separately and the
function F(x, -) is increasing for every xe X, the function F is continuous.
Moreover,

(6) |F(x, y)—nl <dp(x), (x,y)eX xR,
and so (cf. 4))
(7) |h(x, F(x, y))=h(x, n)] <e/2, (x,y)eX xR.

The function hy: X x R — R defined by
ho(x, y) = p(x) B* (x, )+ (1 —p(x)) h(x, n)

is an element of .# and it follows from the assumption of the lemma that, for
every xe X, the functions hy(x, -) and h(x, -) are simultaneously increasing
or decreasing. Finally, in view of (6) and (5),

®)  |ho(x, F(x, y)=h(x, n)l = p(x)|h*(x, F(x, y))—h(x, n)| <e/2,
(x, y)e X xR.
Now define a function h': X xR— R by
K (x, y) = h(x, y)—h(x, F(x, y))+ho(x, F(x, y)).

Since, by the definition of F, for every xecX the functions
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h(x, -)—h(x, F(x, -)) and h(x, -) are simultaneously increasing or decreasing
and the same is true for the functions hy(x, -) and h(x, -), the function A’
is an element of .#. Moreover, on account of inequalities (7) and (8),

lh(x, y)—H(x, y)l <&, (x, y)e X xR.
If xe W and |y—n| <46, then p(x) =1 and F(x, y) =y, whence

K (x, y) = ho(x, y) = h*(x, y),
and the lemma is proved.

Let us denote by 5, and .#, the subsets of # and .#, respectively,
consisting of all functions taking the value 5 in a neighbourhood of the point

&, .

The following corollary is an immediate consequence of Lemma 1 and
Remark 1.

CoROLLARY 1. The set #, is dense in MA.
For any (f, h)e & x # define a mapping T(f, h): & - & by

T(f, B(@)(x) = h(x, o[ f(¥)]), xeX.
The next lemma follows directly from [5], Lemmas 4 and S.

LeMMaA 2. Let C be a compact neighbourhood of ¢ such that f (C) = C for
any fe #. Then, for every (fo, ho)e F x #, and any positive integer k, there
exist neighbourhoods Uc(fy, ho, 1/k) € F and ¥ ¢(fo, ho, 1/k) = # of fo and
ho, respectively, such that, for every pair (f, h) belonging to the set

a

2(C) = U U, K YR xS, B, 1/k),
k=1 (/' W)eF x#g
equation (1) has exactly one solution ¢ ® and for every @,c @ the sequence
(T(f, W*(po): ke N) of successive approximations converges to ¢ uniformly on
every compact subset of X.

Now we can prove an analog of Theorem 1 from paper [5].

THEOREM 1. Suppose that the point £ has a compact neighbourhood in X.
Then the set of all pairs (f, hhe F x M such that equation (1) has exactly one
solution @e® and for every @oe® the sequence (T(f, h*(po): ke N) of
successive approximations converges to ¢ uniformly on every compact subset of
X 18 residual in & x #A.

Proof. Since there exists a compact neighbourhood of & we can find a

compact ball C centered at £. Observe that f(C) = C for any fe &. In view
of Lemma 2, the set

© #O=0 U UK YRVl K, k)~ 4]

k=1 (fh)eF x Ao

is a G, subset of the space # x .#. Moreover, since .#, is a dense subset of
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M (cf. Corollary 1) and F x M, = #*(C), #*(C) is also a dense set.
Consequently, the set #£*(C) is residual in & x .#. Clearly, #*(C) < #(C),
thus the theorem follows from Lemma 2.

In a completely similar way (making use of Lemma 2 and Corollary 1
or [4], Lemmas 4 and 2) we get the following analog of Theorem 1 from
paper [4].

THEOREM 2. Suppose that the point £ has a compact neighbourhood in X.
Then, for every [ € &, the set of all functions he .# such that equation (1) has
exactly one solution @e® and for every (@oe® the sequence
(T(f, W*(@o): ke N) of successive approximations converges to ¢ uniformly on
every compact subset of X is residual in M.

Now we shall study the set of all “pathological” equations (1) having no
solution in the class @ (cf. [4], Theorem 2, and [5], Theorem 3). First we
shall prove two lemmas.

LemMMA 3. The set of all functions he # for which there exists a
neighbourhood U of £ such that all functions h(x, -), xe U, are simultaneously
increasing or decreasing is dense in M.

Proof. Fix a function hye .# without the property required in the
lemma. Then there exist sequences (x,: ne N) and (x,: ne N) of elements of
X converging to ¢ such that, for every ne N, the function hy(x,, -) is
decreasing and the function hy(x,, -) is increasing. Hence, in view of the
continuity of hy, the function hy(&, -) is constant, i.e.,

(10) ho(S,y)=1n, yeR.
Fix a neighbourhood 4 of hy. By Remark 1 we can assume that
U= ‘the M: |h(x, y)—ho(x, y)l <e, xeC, ly~nl < a},

where C is a compact subset of X, -and a and ¢ are positive numbers.
According to (10) we can find an open neighbourhood V of ¢ such that

(11) lho(x, y)—nl <&, xeV, |y—n <a.

Let Wc V be a closed neighbourhood of €. On account of Urysohn’s
Lemma there exists a function pe €(X, [0, 1]) such that p(x) =0 for xe W
and p(x) =1 for xe X\ V. The function h: X xR — R defined by

h(x, y) = p(x) ho(x, Y)+(1—p(x)n

belongs to .#. Moreover, for every xe W, the function h(x, -) is constant,
and, in view of (11) and the properties of p,

|h(x, y)—ho(x, Y) = (1—p(X))|ho(x, Y)—nl <&, xeX, |y—nl <a.

In particular, he  and the lemma is proved.
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LemmMma 4(%). Suppose that fe & and the set {f*(x,): ke N} is infinite for
an xoc X. Then, for any ac {—1, 1}, there exists a function ge €(X, R) such
that:

M) g() =(1-a)n;

(1) if he o and h(x, y) = g(x)+ay for every (x, y) from a neighbourhood
of (&, n), then equation (1) has no solution in the class &.

Proof. Let (y,: ke N) be a sequence of real numbers such that
(12) lim y, =0,

k— o

and
(13) the series ) y, diverges.
k=1

Put F = {f*(xo): ke N} U {¢} and define a function §: F — R by
(14 g =(-an and FL *x)]=dap+(1-a)n, keN.

Since F is infinite and fe #, we have

f*(xo) # &, keN,
and
fi(xo) =f7(xo) implies i=j,i,jeN.

Thus the definition of g is correct. By Remark 3, ¢ is the unique accumula-
tion point of the set F. Hence, and from (12), it follows that F is a closed
subset of X and the function g is continuous. Using the Dugund)i Extension
Theorem (cf. [3], Chapter II, Theorem 3.1) we can find a function
ge %(X, R) such that g|y =g and, by (14), condition (i} holds.

Now, passing to the proof of (ii), suppose that he »# and

(15) h(x, y) =g(x)+ay, (x,y)eUxV,

where U and V are neighbourhoods of ¢ and »n, respectively.

Suppose, contrary to our claim, that a function ¢ e @ satisfies equation
(1). Since the function ¢ is continuous at ¢ and ¢ (&) = n, there exists a
neighbourhood W of £ such that W< U and ¢ (W) = V. We can also assume
that f(W) < W. If xe W, then (x, o[ f(x)])e U x V and, in virtue of (15),

(16) e(x)=h(x, o[f(D]) =g +ap[f ()], xeW.

By Remark 3, f"(xo)e W for a positive integer n. It follows from (16) (cf. [6],

(3) This lemma remains true (with no changes in the proof) if R is replaced by an
arbitrary nontrivial normed space.
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Chapter II, Theorem 2.11) that the series
Y, dgLf* " (x)]—(1—a)n)
k=1

converges. On the other hand, in view of (14),

Zl (g " (xo)]—(1=a)n) = k; dd My =d" Y Y,

k=n+1

which contradicts property (13). Thus the proof is complete.

THEOREM 3. Suppose that fe€ F and the set {f*(x,): ke N} is infinite for
an xqe X. Then the set of all functions he .# for which equation (1) has no
solution in the class ® is dense in M.

Prool. Fix a function hye .# and its neighbourhood %. We can assume
(cf. Remark 1) that

U= the M: |h(x, y)—ho(x, y)| <&, xeC, |y—nl < a},

where C is a compact subset of X, and a and ¢ are positive numbers. On
account of Lemma 3, there exist a function he .# and a neighbourhood U of
¢ such that

(17) lh(x, ) —ho(x, y)| <&/2, xeC,|y—n|l<a,

and all the functions h(x, -), xe U, are simultaneously increasing or de-
creasing.

Put a = —1 if the functions h(x, -), xe U, are decreasing and a = 1 if
the functions h(x, ), xe U, are increasing. Let ge (X, R) be a function
satisfying conditions (i) and (ii) in Lemma 4. The function h*: X xR— R
defined by

h*(x, y) = g(x)+ay

is an element of .#. In view of Lemma 1 there exists a function h'e .# such
that

(18) lh(x, y)—H(x, y)l <¢/2, (x, y)e X xR,
and
h (x, y) = h*(x, y) = g(x)+ay
for every (x, y) from a neighbourhood of (£, 5). By (i), the equation
¢(x) = H(x, o [f(x)])

has no solution in the class &, and, in virtue of (17) and (18), ' e %. This
ends the prool.

It has been proved (cf. [S], Lemma 7) that if X is a convex subset of a
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normed space, then the set of all functions fe.# such that the set
{f*(xo): ke N} is infinite for an x,e€ X is dense in %. Hence, and from
Theorem 3, we deduce the following result, which is an analog of [5],
Theorem 3.

THEOREM 4. Suppose that X is a convex subset of a normed space. Then
the set of all pairs (f, hye F x .# for which equation (1) has no solution in the
class @ is dense in F x . 4.

The results given below concern the problem of the continuous de-
pendence of continuous solutions of equation (1). They are immediate con-
sequences of those given in [5] (cf. [5], Theorem 2 and Corollary). If (f, h)e
F x # and equation (1) has exactly one solution in the class @, then we
shall denote it by ¢ ,. By &, where C is a subset of X, we shall mean the
set of all restrictions of functions from & to the set C.

THEOREM 5. Let C be a compact neighbourhood of £ such that f(C) = C
for any fe # and let #*(C) be given by (9). Then the map Ac: F*(C) — P
given by

Ac(f, h) = (Pf.hlc

is well defined and continuous in #* (C) (which is a residual subset of F x ).
CoroLLARY 2. Let (C,: ne N) be a sequence of compact neighbourhoods

of & such that X =) C,, C,cIntC,,,, neN, and f(C,) < C, for every
n=1

e &)

fe# and neN. Then the map A: [\ #*(C,) — @ given by
1

A, D) =@

is well defined and continuous in ﬂ #*(C,) (which is a residual subset of
n=1
F x .H).

Note also that suitable versions of Theorem 3 and Corollary from paper
[4] can be proved.
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