VOL. LIX 1990 FASC. 2

ONE-PARAMETER SUBMONOIDS IN LOCALLY COMPLETE DIFFERENTIABLE MONOIDS

BY

MITCH ANDERSON (HILO, HAWAII)

Suppose X is a Banach space, D is a closed admissible subset of X containing 0, and V is an associative multiplication from $D \times D$ into X which is strongly differentiable at (0, 0) satisfying V(x, 0) = V(0, x) = x for each x in D. Suppose further that there is a positive number b such that if each of x and y is in D and has norm less than b, then V(x, y) is in D. If there exists a function $f: [0, 1] \to D$ such that f(0) = 0, f is strongly differentiable at 0, and $f'(0) \neq 0$, then there exists a function $T: [0, 1] \to D$ and a number s in (0, 1] satisfying T(0) = 0, V(T(x), T(y)) = T(x+y) for each x, y, and x+y in [0, 1], T is strongly differentiable at 0, and T'(0) = sf'(0). This result sheds some light on a question posed by Graham in [G2], regarding the existence of one-parameter subsemigroups.

Before proceeding to the main theorem we will indicate some background.

The definitions in this paragraph are due to Graham in [G2] and [G3]. A subset D of the Banach space X is said to be admissible provided that each point of D is a limit point of the interior of D. A function f, with domain the admissible subset D of the Banach space X and codomain contained in the Banach space Y, is strongly differentiable at the point P in D provided there is a continuous linear map T from X to Y such that for each positive number P there is a positive number P such that if each of P and within P of P, then

$$|f(x)-f(y)-T(x-y)| \le c|x-y|.$$

In this case T is unique and is denoted by f'(p).

The statement that the function f from D into the Banach space Y is C^1 means that f is strongly differentiable at each point of D and the function f' is continuous as a function from D into L(X, Y). The statement that f is C^k means that $f^{(k-1)}$ is C^1 . A Hausdorff topological space S is a C^k manifold based on the Banach space X provided that for each point p of S there is a homeomorphism g_p from a neighborhood U of p onto an admissible subset D of X containing 0 so that $g_p(p) = 0$ and the composition $g_p \circ g_q^{-1}$ is C^k on its

domain for each choice of p and q in S. Finally, according to Graham, a topological semigroup is said to be C^k provided that it is based on a C^k manifold and the multiplication is C^k as a function from $S \times S$ into S.

Much of the calculus on C^k manifolds mimics the standard theory. Most of the difference is due to the possible non-convexity of admissible sets. This non-convexity also implies that a C^k monoid need have no non-trivial one-parameter subsemigroups. For example, by [G2], the subset of the plane to which (x, y) belongs only in case x is positive and y is between 0 and x^2 or (x, y) = (0, 0) forms a C^k monoid under vector addition and contains no non-trivial one-parameter subsemigroups.

A question Graham asks in [G1] is: Under what hypothesis does a C^{∞} monoid contain a non-trivial one-parameter subsemigroup? He answers this question, in [G1], in certain finite dimensional C^{∞} monoids with smooth boundary.

In 1987, in [H2] Holmes shows that if S is a locally compact connected C^k monoid, then S contains a non-trivial C^k one-parameter subsemigroup. Holmes shows in [H1], in 1987, that if S is a locally complete C^k monoid, $k \ge 2$, which contains a C^2 curve starting at 1, then S must contain non-trivial C^k one-parameter subsemigroups. By using a much different approach, Theorem 2 in this paper improves on this result by requiring only that S be a monoid with multiplication strongly differentiable at (0, 0) and that S contain a curve starting at 1 which is strongly differentiable at S. We now proceed with Theorem 1.

Let D be a closed admissible subset of the Banach space X, containing 0. Let V be an associative multiplication from $D \times D$ into X which is strongly differentiable at (0, 0) satisfying V(x, 0) = V(0, x) = x for each x in D. Suppose there is a positive number b such that if each of x and y is in D and has norm less than b, then V(x, y) is in D. Such a function is called a strongly differentiable local monoid.

THEOREM 1. Suppose V is a strongly differentiable local monoid. If there exists a function $f: [0, 1] \to D$ such that f(0) = 0, f is strongly differentiable at 0, and $f'(0) \neq 0$, then there is a function $T: [0, 1] \to D$ and a number s in (0, 1] satisfying T(0) = 0, T(x+y) = V(T(x), T(y)) whenever each of x, y, and x+y is in [0, 1], T is strongly differentiable at 0, and T'(0) = sf'(0).

Theorem 1 will follow from a sequence of lemmas. Lemmas 1.1 and 1.4 were suggested from arguments in [B].

LEMMA 1.1. If c is a positive number there is a positive number d such that if

each of
$$x_1, x_2, ..., x_n$$
 is in D and $\sum_{i=1}^n |x_i| < d$, then $\prod_{i=1}^n x_i$ is in D and

$$\left|\prod_{i=1}^n x_i - \sum_{i=1}^n x_i\right| \leqslant c \sum_{i=1}^n |x_i|.$$

Here
$$\prod_{i=1}^{n} x_i$$
 denotes $V(x_n, V(x_{n-1}, ..., V(x_2, x_1) \cdots)$.

Proof. Choose a positive number b so that if each of x and y is in D and within b of 0, then V(x, y) is in D. Suppose c is a positive number less than 1. Using

$$V'(0, 0)(x, y) = x + y$$
 and $|V(x, y) - x - y| = |V(x, y) - V(x, 0) - y|$,

choose a positive number $d_1 < b$ so that if each of x and y is in D and has norm less than d_1 , then $|V(x, y) - x - y| \le c|y|$. Let d be a positive number less than $d_1/2$. The proof is by induction on n. If each of x_1 and x_2 is in D and $|x_1| + |x_2| < d$, then $V(x_2, x_1)$ is in D by the choice of b, and

$$|V(x_2, x_1) - x_2 - x_1| \le c|x_1| \le c(|x_1| + |x_2|)$$

by the choice of d_1 . Next, suppose each of $x_1, x_2, ..., x_n$ is in D and $\sum_{i=1}^n |x_i| < d$. If $\prod_{i=1}^{n-1} x_i$ is in D and

$$\left| \prod_{i=1}^{n-1} x_i - \sum_{i=1}^{n-1} x_i \right| \le c \sum_{i=1}^{n-1} |x_i|,$$

then

$$\left| \prod_{i=1}^{n-1} x_i \right| \le 2 \sum_{i=1}^{n-1} |x_i| < d_1 < b.$$

Therefore, since $|x_n|$ is also less than b,

$$\prod_{i=1}^{n} x_i = V(x_n, \prod_{i=1}^{n-1} x_i)$$

is in D. Furthermore, since each of $|x_n|$ and $|\prod_{i=1}^{n-1} x_i|$ is less than d_1 , it follows that

$$\left| \prod_{i=1}^{n} x_{i} - \sum_{i=1}^{n} x_{i} \right| \leq \left| V(x_{n}, \prod_{i=1}^{n-1} x_{i}) - (x_{n} + \prod_{i=1}^{n-1} x_{i}) \right| + \left| \prod_{i=1}^{n-1} x_{i} - \sum_{i=1}^{n-1} x_{i} \right| \leq c \sum_{i=1}^{n} |x_{i}|.$$

Lemma 1.1 now follows from induction. Note that associativity is not used in the proof of Lemma 1.1.

Suppose x is in D and has norm less than b. Let $x^0 = 0$, and if n is a positive integer so that x^{n-1} is defined and has norm less than b, let $x^n = V(x, x^{n-1})$. Let $f: [0, 1] \to D$ be such that f(0) = 0, f is strongly differentiable at 0, and $f'(0) \neq 0$. Let M = |f'(0)| + 1. The corollary below follows immediately from Lemma 1.1.

COROLLARY 1.2. There is a positive number d such that if x is in (0, d) and each of n and m is a positive integer, then $(f(x/nm))^n$ is in D and

$$\left| (f(x/nm))^n \right| \leq 2Mx/m.$$

LEMMA 1.3. If c is a positive number there is a positive number d such that if each of x, y, a, and e is in D and |x|+|y|+|a| < d and |x|+|y|+|e| < d, then each of V(x, V(a, y)) and V(x, V(e, y)) is in D and

$$|V(x, V(a, y)) - V(x, V(e, y)) - (a-e)| \le c|a-e|.$$

The proof follows directly from strong differentiability of V at (0, 0) and the chain rule. Lemma 1.4, unlike Lemma 1.1 which is true for non-associative multiplications, relies heavily on the hypothesis that V is an associative multiplication.

LEMMA 1.4. If c is a positive number there is a positive number d such that if each of $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n$ is in D, $\sum_{i=1}^{n} |x_i| < d$, and $\sum_{i=1}^{n} |y_i| < d$, then each of $\prod_{i=1}^{n} x_i$ and $\prod_{i=1}^{n} y_i$ is in D and

(1)
$$\left| \prod_{i=1}^{n} x_i - \prod_{i=1}^{n} y_i - \sum_{i=1}^{n} (x_i - y_i) \right| \le c \sum_{i=1}^{n} |x_i - y_i|.$$

Proof. Suppose c is a positive number less than 1. Let d_1 be a positive number less than b satisfying Lemma 1.3. Using Lemma 1.1, assume that d_2 is a positive number less than $d_1/6$ such that if each of $x_1, x_2, ..., x_n$ is in D and $\sum_{i=1}^{n} |x_i| < d$, then $\prod_{i=1}^{n} x_i$ is in D and

$$\left| \prod_{i=1}^{n} x_{i} - \sum_{i=1}^{n} x_{i} \right| \leq c \sum_{i=1}^{n} |x_{i}|.$$

Finally, let d be a positive number less than $d_2/2$. Suppose each of $x_1, \ldots, x_n, y_1, \ldots, y_n$ is in D, and

$$\sum_{i=1}^{n} |x_i| < d, \qquad \sum_{i=1}^{n} |y_i| < d.$$

It then follows from the choice of d_2 that if k is a positive integer less than n+1, then each of

$$V\left(\prod_{i=k+1}^{n} x_i, V(x_k, \prod_{i=1}^{k-1} y_i)\right)$$
 and $V\left(\prod_{i=k+1}^{n} x_i, \prod_{i=1}^{k} y_i\right)$

is defined. Moreover, using the choice of d_1 and the fact that

$$V(\prod_{i=k+2}^{n} x_{i}, V(x_{k+1}, \prod_{i=1}^{k} y_{i})) = V(\prod_{i=k+1}^{n} x_{i}, \prod_{i=1}^{k} y_{i}) = V(\prod_{i=k+1}^{n} x_{i}, V(y_{k}, \prod_{i=1}^{k-1} y_{i})),$$

we see that (1) holds true.

We now have the following corollary to Lemma 1.4:

COROLLARY 1.5. There is a positive number d such that if x is in (0, d) and n and m are positive integers, then

(2)
$$|(f(x/n))^n - (f(x/mn))^{mn}| \leq 2n |f(x/n) - (f(x/mn))^m|.$$

LEMMA 1.6. Suppose F is a function from the subset U of the Banach space X to the Banach space Y such that F(0) = 0 and F is strongly differentiable at 0. If C is a positive number there is a positive number D such that if each of

$$x_1, x_2, ..., x_n, \sum_{i=k}^n x_i$$
 is in U for each $k = 1, 2, ..., n$, and $\sum_{i=1}^n |x_i| < d$, then

$$\left|F\left(\sum_{i=1}^{n}x_{i}\right)-\sum_{i=1}^{n}F(x_{i})\right|\leqslant c\sum_{i=1}^{n}|x_{i}|.$$

Proof. Suppose c is a positive number and let d be a positive number less than 1 such that if each of x and y is in U and within d of 0, then

$$|F(x)-F(y)-F'(0)(x-y)| \le \frac{c}{2}|x-y|.$$

This implies that if each of x, y, and x + y is in U and within d of 0, then $|F(x+y) - (F(x) + F(y))| \le |F(x+y) - F(x) - F'(0)(y)| + |F'(0)(y) - F(y)| \le c|y|$.

Therefore, if each of $x_1, x_2, ..., x_n$ and $\sum_{i=k}^n x_i$ is in U for each k = 1, 2, ..., n, and $\sum_{i=k}^n |x_i| < d$, then

$$\left| F\left(\sum_{i=1}^{n} x_{i}\right) - \sum_{i=1}^{n} F(x_{i}) \right| \leq \sum_{k=1}^{n-1} \left| F\left(\left(\sum_{i=k+1}^{n} x_{i}\right) + x_{k}\right) - \left(F\left(\sum_{i=k+1}^{n} x_{i}\right) + F(x_{k})\right) \right| \\
\leq c \sum_{k=1}^{n-1} |x_{k}| \leq c \sum_{i=1}^{n} |x_{i}|.$$

Notice, since [0, 1] is a subset of the real numbers and f is strongly differentiable at 0, that if c is a positive number, there is a positive number d such that if each of $x_1, x_2, ..., x_n, \sum_{i=1}^{n} x_i$ is in [0, d), then

$$\left|f\left(\sum_{i=1}^{n} x_{i}\right) - \sum_{i=1}^{n} f(x_{i})\right| \leqslant c \sum_{i=1}^{n} x_{i}.$$

We are now in a position to show that if s is sufficiently small, then sequences of the form $\{(f(s/2^n))^{2^n}\}_{n=1}^{\infty}$ converge in D. Furthermore, they converge to non-zero elements.

LEMMA 1.7. There is a positive number B such that if s is in (0, B), then the sequence $\{(f(s/2^n))^{2^n}\}_{n=1}^{\infty}$ is Cauchy in D and converges to a non-zero element.

Proof. As before, let M = |f'(0)| + 1. Choose B in (0, 1] so that

- (i) if x is in (0, B) and n is a positive integer, then $(f(x/n))^n$ is in D and $|(f(x/n))^n| \le 2Mx$ by Corollary 1.2;
- (ii) if x is in (0, B) and n and m are positive integers, then inequality (2) holds by using Corollary 1.5;
 - (iii) if x is in (0, B) and n is a positive integer, then

$$\left| \left(f \left(\frac{x}{n} \right) \right)^n - n f \left(\frac{x}{n} \right) \right| \le \frac{n}{2} \left| f \left(\frac{x}{n} \right) \right|$$

by Lemma 1.1;

(iv) if each of $x_1, x_2, ..., x_n$ is in D and $\sum_{i=1}^n |x_i| < d$, then $\prod_{i=1}^n x_i$ is in D and

$$\left|\prod_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i\right| \leqslant \sum_{i=1}^{n} |x_i|$$

by Lemma 1.1; and

(v) if each of $x_1, x_2, ..., x_n, y_1, y_2, ..., y_n$ is in D, and

$$\sum_{i=1}^{n} |x_i| < 2MB, \qquad \sum_{i=1}^{n} |y_i| < 2MB,$$

then

$$\left| \prod_{i=1}^{n} x_{i} - \prod_{i=1}^{n} y_{i} \right| \leq 2 \sum_{i=1}^{n} |x_{i} - y_{i}|$$

by Lemma 1.4.

Now suppose s is in (0, B) and c is a positive number. Let d_1 be a positive number less than 1 such that if x is in $[0, d_1)$, then $|f(x)| \le Mx$. Let d_2 be a positive number less than d_1 such that if each of $x_1, x_2, ..., x_n$ is in D and

$$\sum_{i=1}^{n} |x_i| < d_2, \text{ then } \prod_{i=1}^{n} x_i \text{ is in } D \text{ and}$$

$$\left| \prod_{i=1}^{n} x_{i} - \sum_{i=1}^{n} x_{i} \right| \leq \frac{c}{4M} \sum_{i=1}^{n} |x_{i}|.$$

Let P be a positive integer such that $Ms/2^P < d_2$. Then, if n and m are positive integers such that $P \le n \le m$, it follows that

$$2^{m-n}|f(s/2^m)| \leq 2^{m-n}Ms/2^m = Ms/2^n < d_2$$

which implies

$$\left|2^{m-n}f\left(\frac{s}{2^m}\right)-\left(f\left(\frac{s}{2^m}\right)\right)^{2^{m-n}}\right| \leqslant \frac{c}{4M}2^{m-n}\left|f\left(\frac{s}{2^m}\right)\right| \leqslant \frac{cs}{4\cdot 2^n}.$$

By Lemma 1.6, let N be a positive integer greater than P such that if n and m are positive integers with $N \le n \le m$, then

$$\left| f\left(\frac{s}{2^n}\right) - 2^{m-n} f\left(\frac{s}{2^m}\right) \right| = \left| f\left(\sum_{m=1}^{2^{m-n}} \frac{s}{2^m}\right) - \sum_{m=1}^{2^{m-n}} f\left(\frac{s}{2^m}\right) \right| \leqslant \frac{cs}{4 \cdot 2^n}.$$

Therefore, if $N \le n \le m$, then by the choice of B, N, and P it follows that

$$\left| \left(f\left(\frac{s}{2^n}\right) \right)^{2^n} - \left(f\left(\frac{s}{2^m}\right) \right)^{2^m} \right| \le 2^{n+1} \left| f\left(\frac{s}{2^n}\right) - \left(f\left(\frac{s}{2^m}\right) \right)^{2^{m-n}} \right|$$

$$\le 2^{n+1} \left(\left| f\left(\frac{s}{2^n}\right) - 2^{m-n} f\left(\frac{s}{2^m}\right) \right| + \left| 2^{m-n} f\left(\frac{s}{2^m}\right) - \left(f\left(\frac{s}{2^m}\right) \right)^{2^{m-n}} \right| \right)$$

$$\le 2^{n+1} \left(\frac{cs}{4 \cdot 2^n} + \frac{cs}{4 \cdot 2^n} \right) = cs < c.$$

In order to complete the proof, we next show that there is a positive number r such that $|(f(s/n))^n| > r$ for sufficiently large n. There is a positive number e less than 1 such that if x is in [0, e), then

$$|f'(0)(x)-f(x)| \le \frac{|f'(0)(1)|x}{2}.$$

Therefore, if n is sufficiently large, then

$$\left|f\left(\frac{s}{n}\right)\right| \geqslant \left|f'(0)\left(\frac{s}{n}\right)\right| - \frac{|f'(0)(1)|s}{2n} = \frac{|f'(0)(1)|s}{2n}.$$

It then follows from property (iii) in the choice of B that if n is sufficiently large, then

$$\left| \left(f \left(\frac{s}{n} \right) \right)^n \right| \ge \frac{n}{2} \left| f \left(\frac{s}{n} \right) \right| \ge \frac{|f'(0)(1)| s}{4},$$

which is positive by the hypothesis on f. Setting

$$r = \frac{|f'(0)(1)|s}{4}$$

concludes the proof of Lemma 1.7.

Denote by Q the set of dyadic rational numbers in [0, 1]. For each positive integer n, let

$$T(1/2^n) = \lim_{m \to \infty} (f(s/2^{n+m}))^{2^m}.$$

For each pair (m, n) of positive integers such that $m \leq 2^n$, let

$$T(m/2^n) = (T(1/2^n))^m$$

and let T(0) = 0. The existence of T on Q is shown in Lemma 1.8. Since

$$(T(1/2^n))^2 = T(1/2^{n-1})$$

for each positive integer n, it follows that T is well defined on Q. It is also clear from Lemma 1.7 that T is non-trivial. The next lemma shows that T has a unique continuous extension to [0, 1].

LEMMA 1.8. T is uniformly continuous on Q.

Proof. Suppose n is a positive integer and m is a non-negative integer less than 2^n . Notice that if k is a positive integer, then

$$|T(1/2^k)| = \lim_{m \to \infty} |(f(s/2^{k+m}))^{2^m}| \le 2Ms/2^k$$

by the choice of B in (i). Therefore,

$$m|T(1/2^n)| \leq 2Msm/2^n.$$

Thus, by the choice of B in (iv), $T(m/2^n)$ exists. Moreover, the choice of B in (v) yields

$$|T(m/2^n) - T((m+1)/2^n)| = |(T(1/2^n))^m - (T(1/2^n))^{m+1}| \le 2|T(1/2^n)| \le 4Ms/2^n.$$

This implies that T is Lipschitz on Q.

LEMMA 1.9. If p is in Q, then

$$T(p) = \lim_{n \to \infty} (f(sp/2^n))^{2^n}.$$

Proof. Suppose c is a positive number, k is a positive integer, and y is a non-negative integer less than or equal to 2^k . Choose a positive integer N such that if n is a positive integer greater than N, then

$$\left| \left(f \left(\frac{s}{2^k} \frac{1}{2^n} \right) \right)^y - y f \left(\frac{s}{2^k} \frac{1}{2^n} \right) \right| < \frac{c}{2^{n+2}}$$

by Lemma 1.1 and the continuity of f at 0; and

$$\left| y f\left(\frac{s}{2^k} \frac{1}{2^n}\right) - f\left(\frac{sy}{2^k} \frac{1}{2^n}\right) \right| < \frac{c}{2^{n+2}}$$

by Lemma 1.6. Hence, if n is a positive integer greater than N, it follows from the choice of B in (ii) and the choice of N that

$$\begin{split} \left| \left(\left(f\left(\frac{s}{2^{k}} \frac{1}{2^{n}} \right) \right)^{y} \right)^{2^{n}} - \left(f\left(\frac{sy}{2^{k}} \frac{1}{2^{n}} \right) \right)^{2^{n}} \right| &\leq 2^{n+1} \left| \left(f\left(\frac{s}{2^{k}} \frac{1}{2^{n}} \right) \right)^{y} - f\left(\frac{sy}{2^{k}} \frac{1}{2^{n}} \right) \right| \\ &\leq 2^{n+1} \left(\left| \left(f\left(\frac{s}{2^{k}} \frac{1}{2^{n}} \right) \right)^{y} - yf\left(\frac{s}{2^{k}} \frac{1}{2^{n}} \right) \right| + \left| yf\left(\frac{s}{2^{k}} \frac{1}{2^{n}} \right) - f\left(\frac{sy}{2^{k}} \frac{1}{2^{n}} \right) \right| \right) \\ &< 2^{n+1} \left(\frac{c}{2^{n+2}} + \frac{c}{2^{n+2}} \right) < c. \end{split}$$

Extend T to be continuous on [0, 1]. It is clear by construction that T(0) = 0 and T(x+y) = V(T(x), T(y)) for each x, y, and x+y in [0, 1]. It only remains to be seen that T is strongly differentiable at 0 and T'(0) = sf'(0). With this goal in mind we first show that if c is a positive number there is a positive number d less than 1 such that if x is in (0, d), then

$$|T(x)-f'(0)(sx)| \leq cx$$
.

Suppose c is a positive number. Let d_1 be a positive number less than 1 such that if x is in $[0, d_1)$, then $|f(x)| \leq Mx$. Let d_2 be a positive number such that if

each of
$$x_1, x_2, ..., x_n$$
 is in D and $\sum_{i=1}^n |x_i| < d$, then $\prod_{i=1}^n x_i$ is in D and

$$\left| \prod_{i=1}^{n} x_{i} - \sum_{i=1}^{n} x_{i} \right| \leq \frac{c}{5Ms} \sum_{i=1}^{n} |x_{i}|.$$

Let d be a positive number less than d_1 and less than d_2/Ms . Suppose x is in (0, d). Let p be in Q such that

$$0 , $|T(x) - T(p)| < \frac{cx}{5}$, and $|p - x| < \frac{cx}{5|f'(0)(s)|}$.$$

By Lemma 1.9, let n be a positive integer such that

$$|T(p)-(f(sp/2^n))^{2^n}| < cx/5, \quad |2^n f(sp/2^n)-f'(0)(sp)| < cx/5.$$

Hence

$$|T(x)-f'(0)(sx)| \leq |T(x)-T(p)| + |T(p)-(f(sp/2^n))^{2^n}| + |(f(sp/2^n))^{2^n}-2^nf(sp/2^n)| + |2^nf(sp/2^n)-f'(0)(sp)| + |f'(0)(sp)-f'(0)(sx)| \leq cx,$$

since each of these summands is less than cx/5. This shows that T is differentiable at 0 and T'(0) = sf'(0). Since V'(0, 0)(x, y) = x + y, there is a positive number e such that if each of x and y is in. D and within e of (0, 0), then

$$|V(x, y)-x-y| = |V(x, y)-V(0, y)-x| \le cx.$$

Therefore, the fact that T is strongly differentiable at 0 follows from the inequality

$$|T(x) - T(y) - f'(0)(s(x-y))| = |V(T(x-y), T(y)) - T(y) - f'(0)(s(x-y))|$$

$$\leq |V(T(x-y), T(y)) - T(x-y) - T(y)| + |T(x-y) - f'(0)(s(x-y))|$$

$$\leq c(x-y)$$

for sufficiently small x, y, and x-y in [0, 1]. This completes a proof of Theorem 1.

Locally complete monoids. A C^k monoid in which $k \ge 1$ and which has a neighborhood U of 1 so that $g_1(U)$ is a closed subset of X is called a locally complete monoid. It is clear, since $g_1(U)$ is closed in X and each C^k monoid is strongly differentiable at its identity, that Theorem 1 can be applied to the setting of differentiable semigroups as defined by Graham. Thus we have the following theorem:

THEOREM 2. Suppose $k \ge 1$, S is a C^k locally complete monoid, and there is a function $h: [0, 1] \to S$ such that h(0) = 1, h is strongly differentiable at 0, and $h'(0) \ne 0$. Then S has a C^k one-parameter submonoid T and T'(0) = sh'(0) for some s in $\{0, 1\}$.

REFERENCES

- [B] G. Birkhoff, Analytical groups, Trans. Amer. Math. Soc. 43 (1938), pp. 61-101.
- [G1] G. Graham, Manifolds with generalized boundary and differentiable semigroups, Ph. D. Dissertation, University of Houston, Houston, Texas, 1979.
- [G2] Differentiable semigroups, pp. 57-127 in: Recent Developments in the Algebraic, Analytical, and Topological Theory of Semigroups (Oberwolfach, 1981), Lecture Notes in Math. 998, Springer-Verlag, Berlin-New York 1983.
- [G3] Differentiable manifolds with generalized boundary, Czechoslovak Math. J. 34 (109) (1984), pp. 46-63.
- [H1] J. P. Holmes, One-parameter subsemigroups in locally complete differentiable semigroups, Pacific J. Math. 128 (1987), pp. 307-317.
- [H2] One-parameter subsemigroups in locally compact differentiable semigroups, Houston J. Math. (to appear).

UNIVERSITY OF HAWAII AT HILO DIVISION OF NATURAL SCIENCES 523 W. LANIKAULA STREET HILO, HAWAII 96720-4091, U.S.A.

> Reçu par la Rédaction le 30.12.1987; en version définitive le 12.9.1989