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ONE-PARAMETER SUBMONOIDS
IN LOCALLY COMPLETE DIFFERENTIABLE MONOIDS

BY

MITCH ANDERSON (HILO, HAWAII)

Suppose X is a Banach space, D is a closed admissible subset of
X containing 0, and V is an associative multiplication from D x D into
X which is strongly differentiable at (0, 0) satisfying V(x, 0) = V(0, x) = x for
each x in D. Suppose further that there is a positive number b such that if
each of x and y is in D and has norm less than b, then V(x, y) is in D. If there
exists a function f: [0, 1] — D such that f(0) = 0, f is strongly differentiable at
0, and f'(0) # O, then there exists a function T: [0, 1]— D and a number s in
(0, 1] satisfying T(0) = 0, V(T(x), T(y)) = T(x+y) for each x, y, and x+y in
[0, 1], T is strongly differentiable at 0, and T’ (0) = sf’(0). This result sheds
some light on a question posed by Graham in [G2], regarding the existence of
one-parameter subsemigroups.

Before proceeding to the main theorem we will indicate some back-
ground.

The definitions in this paragraph are due to Graham in [G2] and [G3].
A subset D of the Banach space X is said to be admissible provided that each
point of D is a limit point of the interior of D. A function f, with domain the
admissible subset D of the Banach space X and codomain contained in the
Banach space Y, is strongly differentiable at.the point p in D provided there is
a continuous linear map T from X to Y such that for each positive number
c there is a positive number d such that if each of x and y is in D and within
d of p, then

|fO)—f ()= T(x—y) < clx—yl.

In this case T is unique and is denoted by f'(p).

The statement that the function f from D into the Banach space Y is C!
means that f is strongly differentiable at each point of D and the function f is
continuous as a function from D into L(X, Y). The statement that fis C*
means that f*~! is C'. A Hausdorff topological space S is a C* manifold
based on the Banach space X provided that for each point p of S there is
a homeomorphism g, from a neighborhood U of p onto an admissible subset
D of X containing 0 so that g,(p) = 0 and the composition g,0g, ' is C* on its



254 M. ANDERSON

domain for each choice of p and q in S. Finally, according to Graham,
a topological semigroup is said to be C* provided that it is based on a C*
manifold and the multiplication is C* as a function from Sx S into S.

Much of the calculus on C* manifolds mimics the standard theory. Most of
the difference is due to the possible non-convexity of admissible sets. This
non-convexity also implies that a C* monoid need have no non-trivial
one-parameter subsemigroups. For example, by [G2], the subset of the plane
to which (x, y) belongs only in case x is positive and y is between 0 and x? or
(x, y)=(0,0) forms a C* monoid under vector addition and contains no
non-trivial one-parameter subsemigroups.

A question Graham asks in [G1] is: Under what hypothesis does a C®
monoid contain a non-trivial one-parameter subsemigroup? He answers this
question, in [G1], in certain finite dimensional C* monoids with smooth
boundary.

In 1987, in [H2] Holmes shows that if S is a locally compact connected C*
monoid, then S contains a non-trivial C* one-parameter subsemigroup. Holmes
shows in [H1], in 1987, that if S is a locally complete C* monoid, k > 2, which
contains a C? curve starting at 1, then S must contain non-trivial C*
one-parameter subsemigroups. By using a much different approach, Theorem
2 in this paper improves on this result by requiring only that S be a monoid with
multiplication strongly differentiable at (0, 0) and that S contain a curve starting
at 1 which is strongly differentiable at 0. We now proceed with Theorem 1.

Let D be a closed admissible subset of the Banach space X, containing 0.
Let V be an associative multiplication from D x D into X which is strongly
differentiable at (0, 0) satisfying V(x, 0) = V(0, x) = x for each x in D. Suppose
there is a positive number b such that if each of x and y is in D and has norm
less than b, then V(x, y) is in D. Such a function is called a strongly differentiable
local monoid.

THEOREM 1. Suppose V is a strongly differentiable local monoid. If there
exists a function f: [0, 11— D such that f(0) =0, f is strongly differentiable at
0, and f'(0) # O, then there is a function T: [0, 1] - D and a number s in (0, 1]
satisfying T(0) = 0, T(x+y) = V(T(x), T(y)) whenever each of x, y, and x+y is
in [0, 1], T is strongly differentiable at 0, and T'(0) = sf’(0).

Theorem 1 will follow from a sequence of lemmas. Lemmas 1.1 and 1.4
were suggested from arguments in [B].

LEMMA 1.1. If ¢ is a positive number there is a posmve number d such that if

each of x,, x,,...,x, is in D and Z |x;| < d, then l_[x is in D and

Here [] x; denotes V(x,, V(X,—y, ..., V(x;, X;) **).

i=1
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Proof. Choose a positive number b so that if each of x and y is in D and
within b of 0, then V(x, y) is in D. Suppose c is a positive number less than 1.
Using

V'0,0)(x,y)=x+y and [|V(x,y)—x—y| =|V(x, y)—V(x, 0)—y,

choose a positive number d, < b so that if each of x and y is in D and has norm
less than d,, then |V(x, y)—x—y| < c|y|. Let d be a positive number less than
d,/2. The proof is by induction on n. If each of x, and x, is in D and
Ix,]+Ix,] < d, then V(x,, x,) is in D by the choice of b, and

V(x3, x;)— x5 — x| < clx;] < c(lx,]|+1x,))

by the choice of d,. Next, suppose each of x,, x,, ..., x,isin Dand ) |x| <d.

i=1
n—1

If J]x; is in D and
i=1
l

n—1
Il—[ xi I 4 Z Ixi|’
i=1

i= 1
then

|[]x| 2Z|x|<d1<b

Therefore, since |x,| is also less than b,

I15- (,,nx)

n—1
is in D. Furthermore, since each of |x,| and | [] x| is less than d,, it follows that
i=1

T 5= 3 %1 < Vs T )=+ T +TT 5= 8, i< 5 1

=1

Lemma 1.1 now follows from induction. Note that associativity is not used in
the proof of Lemma 1.1.

Suppose x is in D and has norm less than b. Let x° =0, and if n is
a positive integer so that x"~! is defined and has norm less than b, let
x" = V(x, x"~1). Let f: [0, 1]— D be such that f(0) = 0, f is strongly differen-
tiable at 0, and f'(0) # 0. Let M =|f'(0)|+ 1. The corollary below follows
immediately from Lemma 1.1.

COROLLARY 1.2. There is a positive number d such that if x is in (0, d) and
each of n and m is a positive integer, then (f(x/nm))" is in D and

I(f x/nm))"| < 2Mx/m.
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LEMMA 1.3. If c is a positive number there is a positive number d such that if
each of x, y, a, and e is in D and |x|+|y|+|a| < d and |x|+|y| +|e| < d, then each
of V(x, V(a, y)) and V(x, V(e, y)) is in D and

[V(x, V(a, y))—V(x, V(e, y))—(a—e)| < cla—el.

The proof follows directly from strong differentiability of V at (0, 0) and
the chain rule. Lemma 1.4, unlike Lemma 1.1 which is true for non-associative
multiplications, relies heavily on the hypothesis that V is an associative
multiplication.

LEMMA 1.4. If c is a positive number there is a positive number d such that if

each of Xy, X5, ..y Xpy Y15 Va5 -» Ya is in D, Y |x| < d, and ) |y| <d, then
i=1 i=1

each of H x; and ]_[ y; is in D and

i=1 =1

) T x=TTr- 3 =yl < c 3 syl
i=1 i=1 i=1 i=

Proof. Suppose c is a positive number less than 1. Let d, be a positive
number less than b satisfying Lemma 1.3. Using Lemma 1.1, assume that d, is
a positive number lcss than d,/6 such that if each of X1s Xz5 - X is in D and

2. Ixl <d, then Hx is in D and

i=1 i=1

Finally, let d be a positive number less than d,/2. Suppose each of
Xy ooy Xps V15 ---» Yy 18 in D, and

Y Ixl<d, Y lyl<d.
i=1 i=1

It then follows from the choice of d, that if k is a positive integer less than n+1,
then each of

V(IT % Vs TT) and (T 5. TT0)

is defined. Moreover, using the choice of d, and the fact that
n k n .k
V( TT xi» Vs TT) =V( TT x» [1y) =V H X, Vi, H )
i=k+2 i=1 i=k+1 i=1 i=k+1
we see that (1) holds true.
We now have the following corollary to Lemma 1.4:
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COROLLARY 1.5. There is a positive number d such that if x is in (0, d) and
n and m are positive integers, then

2 \(fCe/m)) —(f Oc/mm))™| < 2n| £ (c/m)—(f (x/mm))™].

LEMMA 1.6. Suppose F is a function from the subset U of the Banach space
X to the Banach space Y such that F(0) = 0 and F is strongly differentiable at 0.
If c is a positive number there is a positive number d such that if each of

n n
Xys Xg5 eees Xpy O, X; is in U for each k=1,2,...,n, and Y |x;)| <d, then
i=k i=1

|F (iil x;)— .il F(x)|<c .Zn:l Ix4.

Proof. Suppose c is a positive number and let d be a positive number less
than 1 such that if each of x and y is in U and within d of 0, then

IF()— F() = F O (x—y)| < 51x— ).

This implies that if each of x, y, and x+y is in U and within d of 0, then
|F(x+y)—(F(x)+ F))| < IF(x+y)=F(x)=F' Q)W) +1F ©) () - F(y) < clyl.

Therefore, if each of x,, x,, ..., x, and z x;isin U foreach k=1, 2, ..., n,

and ) |xj| <d, then
i=1

F(%, %)= 5 Foal < S IF( S, x)ex)—(F( 3 x)+Fou)

i=1 +1

cZIx,‘l chx

Notice, since [0, 1] is a subset of the real numbers and f is strongly
differentiable at O, that if ¢ is a positive number, there is a positive number

d such that if each of x,, x,, ..., x,, Y. x; is in [0, d), then
i=1

A(Z %) 3 e <c 35

i=1

We are now in a position to show that if s is sufficiently small, then sequences
of the form {(f(s/2")*"}»=, converge in D. Furthermore, they converge to
non-zero elements.

LEMMA 1.7. There is a positive number B such that if s is in (0, B), then the
sequence {(f(s/2")*"}x=1 is Cauchy in D and converges to a non-zero element.



258 M. ANDERSON

Proof. As before, let M =]|f'(0)|+1. Choose B in (0, 1] so that

@i) if x is in (0, B) and n is a positive integer, then (f(x/n))" is in D and
|(f(x/m)y'| < 2Mx by Corollary 1.2;

(ii) if x is in (0, B) and n and m are positive integers, then inequality (2)
holds by using Corollary 1.5;

@iii) if x is in (0, B) and n is a positive integer, then

by Lemma L1 (G -G <3h )

(iv) if each of x,, x;, ..., x,isin D and ) |x;| < d, then [] x; is in D and
i=1 i=1

n

<=
2

by Lemma 1.1; and '
(v) if each of x,, x,, ..., X,, ¥15 V25 ---» Y, 18 In D, and

Z [x;] < 2MB, lyl < 2MB,
i=1 i=1
then
IH xt—n y"l Szz |x| YII
i=1 i=1 i=1
by Lemma 14.

Now suppose s is in (0, B) and c is a positive number. Let d, be a positive
number less than 1 such that if x is in [0, d,), then |f(x)] < Mx. Let d, be
a positive number less than d, such that if each of x,, x,, ..., x, is in D and

Y Ixj <d,, then []x; is in D and
i=1 i=1
15— % 5 < 557 3 b
i=1 i i=1 : \4Mi=1 i.
Let P be a positive integer such that Ms/2F < d,. Then, if n and m are positive
integers such that P < n < m, it follows that

2R £(s/2™) < 2™ "Ms/2"™ = Ms/2" < d,,

f(zi) <

which implies

~A2HE) -

Y

cs
42"

c
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By Lemma 1.6, let N be a positive integer greater than P such that if n and
m are positive integers with N < n < m, then
cs

@)= HED Erp)es

Therefore, if N < n < m, then by the choice of B, N, and P it follows that

- e W)
el 20

<2~+1(%+4f;,)=cs<c.

In order to complete the proof, we next show that there is a positive
number r such that |(f(s/n))"| > r for sufficiently large n. There is a positive
number e less than 1 such that if x is in [0, e), then

l/" @) (1)] x
5

2n+1

If @) (x)—f(X)| <

Therefore, if n is sufficiently large, then

s won[ S\ OMs _ 1S OM)s
f(;)>f‘°’(;>‘ 2w
h

It then follows from property (iii) in the choice of B that if n is sufficiently large
‘( f(§)> o SOl
n

then
)
- =
2 f(n) 4

which is positive by the hypothesis on f. Setting

_1O@)s
B 4

concludes the proof of Lemma 1.7.
Denote by Q the set of dyadic rational numbers in [0, 1]. For each
positive integer n, let
T(1/2") = Lim (f(s/2"*™)*"

For each pair (m, n) of positive integers such that m < 2", let
T(m/2") = (T(1/2")"
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and let T(0) = 0. The existence of T on Q is shown in Lemma 1.8. Since
(T(1/27)* = T(1/2"" 1)

for each positive integer n, it follows that T is well defined on Q. It is also clear
from Lemma 1.7 that T is non-trivial. The next lemma shows that T has
a unique continuous extension to [0, 1].

LEMMA 1.8. T is uniformly continuous on Q.
Proof. Suppose n is a positive integer and m is a non-negative integer less
than 2". Notice that if k is a positive integer, then
IT(1/2% = Lim |(f(s/2**™)*"| < 2Ms/2*
by the choice of B in (i). Therefore,
m|T(1/27)| < 2Msm/2".
Thus, by the choice of B in (iv), T(m/2") exists. Moreover, the choice of B in (v)
yields
|T(m/2") — T((m+ 1)/2")| = |(T(1/2")"—(TQ/2m)"+*| < 2|T(1/2") < 4Ms/2".
This implies that T is Lipschitz on Q.
LEMMA 19. If p is in Q, then
T(p) = lim (f(sp/2")"".

Proof. Suppose c is a. positive number, k is a positive integer, and y is
a non-negative integer less than or equal to 2*. Choose a positive integer
N such that if n is a positive integer greater than N, then

() (33

by Lemma 1.1 and the continuity of f at 0; and

1
523

by Lemma 1.6. Hence, if n is a positive integer greater than N, it follows from
the choice of B in (ii) and the choice of N that

() e (2
e ()b 22

< 2"“<§£—2+#) <c.

C
2n+2

C
2n+2

n+1
=<

)
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Extend T to be continuous on [0, 1]. It is clear by construction that
T(0) = 0 and T(x+y) = V(T(x), T(y)) for each x, y, and x+y in [0, 1]. It only
remains to be seen that T is strongly differentiable at 0 and T'(0) = sf”(0). With
this goal in mind we first show that if ¢ is a positive number there is a positive
number d less than 1 such that if x is in (0, d), then

IT(x)—f"(0)(sx)| < ex

Suppose c is a positive number. Let d, be a positive number less than 1 such
that if x is in [0, d,), then | f(x)| < MXx. Let d, bea posmve number such that if

each of x,, x,, ..., x, is in D and z Ix;| < d, then ]_[x is in D and

i=1 i=1

|I]x x|\ - le.-|-
Ms, =

Let d be a positive number less than d, and less than d,/Ms. Suppose x is in
0, d). Let p be in Q such that

cx cX
O<p<x, |[Tx)-TpP)<—, and |p—x|<_—F——.

P Pl < P <SP oe)
By Lemma 1.9, let n be a positive integer such that

IT@) —(f(sp/2)"| < ex/5,  12°f(sp/2")—f" (O)(sp)| < ex/5.

Hence

ITC)—1"(0) ()| < ITC)—T@) +|T(@)—(f(sp/2")*"|
+|(f(sp/2)*" = 2°f (sp/2")| + 12°f (sp/2") —f " (0) (sP)]
+1'©)(sp)—f"(0) (sx)| < ex,

since each of these summands is less than cx/5. This shows that T is differentiable
at 0 and T'(0) = sf'(0). Since V'(0, 0)(x, y) = x+y, there is a positive number
e such that if each of x and y is in. D and within e of (0, 0), then

WV(x, y)—x—yl = [V(x, y)—V(©0, y)—x| < cx

Therefore, the fact that T is strongly differentiable at 0 follows from the
inequality

|T(x)— T@)—f"(0)(s(x— y)I = |V(T(x—y), TG))— T~ ©)(s(x—y))
< [V(T(x—y), Tp)—T(x—y)—TE)|+|Tx—y)—f"0)(s(x—y))|
< c(x—y)

for sufficiently small x, y, and x—y in [0, 1]. This completes a proof of
Theorem 1.
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Locally complete monoids. A C* monoid in which k > 1 and which has
a neighborhood U of 1 so that g,(U) is a closed subset of X is called a locally
complete monoid. 1t is clear, since g, (U) is closed in X and each C* monoid is
strongly differentiable at its identity, that Theorem 1 can be applied to the
setting of differentiable semigroups as defined by Graham. Thus we have the
following theorem:

THEOREM 2. Suppose k > 1, S is a C* locally complete monoid, and there is
a function h: [0, 1]— S such that h(0) = 1, h is strongly differentiable at 0, and
W(0) # 0. Then S has a C* one-parameter submonoid T and T'(0) = sh’'(0) for
some s in (0, 1].
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