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Let G be a finite simple regular graph with. n vertices. Let A be the
adjacency matrix of G and d the degree of G. The n xn matrix whose every
entry is 1 will be denoted by J. A matrix C is the defect of G if C satisfies
the equation

(+) A*+A—(d-1)I=J+C.

If C is the zero matrix then (*) is the equation of the Moore graph (of
diameter 2). With the exception of the case d = 57, all graphs satisfying this
equation were found in [5]. The case of C being the adjacency matrix of a
matching with n vertices was solved in [4].

Alan J. Hoffman told me that the Md&bious ladder M, satisfies (*) with
C being the adjacency matrix of the 8-cycle and he asked if there are any
other such graphs. We shall show here that M, is the only solution.

THeorReM. If C is the adjacency matrix of the n-cycle then d = 3.

This paper was essentially written during my sabbatical stay at the IBM
Research Center in Yorktown Heights. I would like to thank IBM and
particularly Alan J. Hoffman for the hospitality. I later discussed the proof
with Dr. It6 and that helped me make some simplifications.

Proof. Since J commutes with 4 and C therefore C commutes with A4
and hence all three matrices can be diagonalized so that corresponding
eigenvalues have a common eigenvector.

Corresponding to the eigenvector (1, 1, ..., 1) the matrices 4, J and C.
have respectively eigenvalues d, n, and 2 and thus
(1) n=d*-1.

Because G has diameter 2, G must be triangle -free; otherwise G would
have at most 1+(d—2)(d—1)+2(d—2) = d>—d —1 vertices. Similarly we can
see that every vertex of G must be contained in exactly two 4-cycles of G.
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This implies that the number of 4-cycles of G = 2n/4, i.e. n is even. Thus (1)
implies that

) d is odd and n is divisible by 4.

Since n is even —2 is a simple eigenvalue of C. Let B be the
corresponding eigenvalue of 4. Corresponding to —2, C has the eigenvector
(1, —1,1, —1, ..) and since —2 is a simple eigenvalue this vector is also an
eigenvector of A corresponding to f. Thus we have

(3) B is an integer.

Because n is divisible by 4, 0 is an eigenvalue of C and since n is the
only nonzero eigenvalue of J the corresponding eigenvalues of A satisfy the
equation

A+Ai—(d-1)=0,
i.e. they are

—1+s —1—s

> and 4, = 5 where s = 4d 3.

j’l=

We shall prove now

LEMMA. s is a rational.

Proof. Because vectors (1,1, —1, —1,1,1, -1, —1,..) and (1,
-1, -1,1,1, —1, —1, 1, ..)) are linearly independent eigenvectors of C we
can assume that A, and A, have respectively the eigenvectors P = (1, p,
-1,p,..) and Q=(1,4, —1, —gq,...). Since P and Q are orthogonal it
follows that

4 pg=—1.
We also have integers k, I, x and y such that

-1
5) tS okt
2
and
—1+s
(6) 5P =Xx+)p.

Let us suppose now that s is irrational. Then there are unique rationals a
and b such that

7 p=a+bs.
Because ¢ (a+bs) = a—bs is an automorphism of Q(s) such that ¢(4,)
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= A, and because coefficients of 4 are rational it follows that
®) q = a—bs.
Multiplying (6) by g and using (8) we get

s—1

2
Substituting (7) into (6) we have

= —y+x(a—bs) = xa—y— xbs.

—1+s

;= k+la+ Ibs
and thus we can conclude that
&) x=1
and hence also that

(10) y =k+2la.

From (5) and (7) we have that k+la = —1. Therefore because y and k
are integers (10) implies

(11) 2la is odd.

Let v be the vertex of G corresponding to the first component of P, and let
Y1, Y2, ¥3 and y, be numbers of neighbors of v such that corresponding
components of P are respectively 1, —1, p and —p. Then

—1+s
2

= (y1—72)+(3—74dp=k+Ip.

Thus [ is even iff y; and y, have the same parity. Because d = y, + 7, + 73+ 74
and by (3) d is odd we can conclude that k and ! have opposite parities. The
same argument shows that x and y have opposite parities. Moreover, also
(10) and (11) imply that y and k have opposite parities. But this contradicts
(9) and thus proves the Lemma.

We can now prove the Theorem. Since s is rational both ;s are integers.
Hence the equation x?+x—(d—1) =0 has an integer solution a. But (3)
implies that the equation x>+ x—(d—1) = —2 has an integer solution B.
Letting k be f—a we get that

2uk+k*+k = —2.

Thus k= +1, or k= +2. Therefon_e o« =1 or —2 and in both cases d = 3.
This proves our Theorem.

It is easy to verify that the Mdobious ladder M, is the unique solution.
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