GRAPHS OF DIAMETER 2 WITH CYCLIC DEFECT

BY

S. FAJTLOWICZ (HOUSTON, TEXAS)

Let G be a finite simple regular graph with n vertices. Let A be the adjacency matrix of G and d the degree of G. The $n \times n$ matrix whose every entry is 1 will be denoted by J. A matrix C is the defect of G if C satisfies the equation

(*)
$$A^2 + A - (d-1)I = J + C.$$

LI

If C is the zero matrix then (*) is the equation of the Moore graph (of diameter 2). With the exception of the case d = 57, all graphs satisfying this equation were found in [5]. The case of C being the adjacency matrix of a matching with n vertices was solved in [4].

Alan J. Hoffman told me that the Möbious ladder M_4 satisfies (*) with C being the adjacency matrix of the 8-cycle and he asked if there are any other such graphs. We shall show here that M_4 is the only solution.

THEOREM. If C is the adjacency matrix of the n-cycle then d = 3.

This paper was essentially written during my sabbatical stay at the IBM Research Center in Yorktown Heights. I would like to thank IBM and particularly Alan J. Hoffman for the hospitality. I later discussed the proof with Dr. Itô and that helped me make some simplifications.

Proof. Since J commutes with A and C therefore C commutes with A and hence all three matrices can be diagonalized so that corresponding eigenvalues have a common eigenvector.

Corresponding to the eigenvector (1, 1, ..., 1) the matrices A, J and C have respectively eigenvalues d, n, and 2 and thus

$$(1) n=d^2-1.$$

Because G has diameter 2, G must be triangle-free; otherwise G would have at most $1+(d-2)(d-1)+2(d-2)=d^2-d-1$ vertices. Similarly we can see that every vertex of G must be contained in exactly two 4-cycles of G.

This implies that the number of 4-cycles of G = 2n/4, i.e. n is even. Thus (1) implies that

(2) d is odd and n is divisible by 4.

Since n is even -2 is a simple eigenvalue of C. Let β be the corresponding eigenvalue of A. Corresponding to -2, C has the eigenvector $(1, -1, 1, -1, \ldots)$ and since -2 is a simple eigenvalue this vector is also an eigenvector of A corresponding to β . Thus we have

$$\beta$$
 is an integer.

Because n is divisible by 4, 0 is an eigenvalue of C and since n is the only nonzero eigenvalue of J the corresponding eigenvalues of A satisfy the equation

$$\lambda^2 + \lambda - (d-1) = 0,$$

i.e. they are

$$\lambda_1 = \frac{-1+s}{2}$$
 and $\lambda_2 = \frac{-1-s}{2}$ where $s = 4d-3$.

We shall prove now

LEMMA. s is a rational.

Proof. Because vectors (1, 1, -1, -1, 1, 1, -1, -1, ...) and (1, -1, -1, 1, 1, -1, -1, 1, ...) are linearly independent eigenvectors of C we can assume that λ_1 and λ_2 have respectively the eigenvectors P = (1, p, -1, p, ...) and Q = (1, q, -1, -q, ...). Since P and Q are orthogonal it follows that

$$pq = -1.$$

We also have integers k, l, x and y such that

$$\frac{-1+s}{2} = k+lp$$

and

$$\frac{-1+s}{2}p=x+yp.$$

Let us suppose now that s is irrational. Then there are unique rationals a and b such that

$$(7) p = a + bs.$$

Because $\phi(a+bs) = a-bs$ is an automorphism of Q(s) such that $\phi(\lambda_1)$

 $=\lambda_2$ and because coefficients of A are rational it follows that

$$q = a - bs.$$

Multiplying (6) by q and using (8) we get

$$\frac{s-1}{2} = -y + x(a-bs) = xa - y - xbs.$$

Substituting (7) into (6) we have

$$\frac{-1+s}{2} = k + la + lbs$$

and thus we can conclude that

$$(9) x = l$$

and hence also that

$$(10) y = k + 2la.$$

From (5) and (7) we have that $k + la = -\frac{1}{2}$. Therefore because y and k are integers (10) implies

$$(11) 2la is odd.$$

Let v be the vertex of G corresponding to the first component of P, and let γ_1 , γ_2 , γ_3 and γ_4 be numbers of neighbors of v such that corresponding components of P are respectively 1, -1, p and -p. Then

$$\frac{-1+s}{2} = (\gamma_1 - \gamma_2) + (\gamma_3 - \gamma_4) p = k + lp.$$

Thus l is even iff γ_3 and γ_4 have the same parity. Because $d = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ and by (3) d is odd we can conclude that k and l have opposite parities. The same argument shows that x and y have opposite parities. Moreover, also (10) and (11) imply that y and k have opposite parities. But this contradicts (9) and thus proves the Lemma.

We can now prove the Theorem. Since s is rational both λ_i 's are integers. Hence the equation $x^2 + x - (d-1) = 0$ has an integer solution α . But (3) implies that the equation $x^2 + x - (d-1) = -2$ has an integer solution β . Letting k be $\beta - \alpha$ we get that

$$2\alpha k + k^2 + k = -2.$$

Thus $k = \pm 1$, or $k = \pm 2$. Therefore $\alpha = 1$ or -2 and in both cases d = 3. This proves our Theorem.

It is easy to verify that the Möbious ladder M_4 is the unique solution.

REFERENCES

- [1] E. Bannai and T. Itô, On finite Moore graphs, Journal of the Faculty of Science, Tokyo 20 (1973), p. 191-208.
- [2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge 1974.
- [3] W. Brown, On the nonexistence of a type of regular graphs of girth 5, Canadian Journal of Mathematics 19 (1967), p. 644-648.
- [4] P. Erdös, S. Fajtlowicz and A. J. Hoffman, Maximum degree in graphs of diameter 2, Networks, 10 (1980), p. 87-90.
- [5] A. J. Hoffman, Eigenvalues of Graphs, Studies in Graph Theory, Part II, MAA Studies in Mathematics, 1975, p. 225-245.
- [6] and R. R. Singleton, On Moore graphs with diameter 2 and 3, International Business Machines Corporation. Journal of Research and Development 4 (1960), p. 497-504.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HOUSTON HOUSTON, TEXAS, U.S.A.

Reçu par la Rédaction le 02. 05. 1984