ANNALES
POLONICI MATHEMATICI
LIV.1 (1991)

Poincaré’s Recurrence Theorem for set-valued
dynamical systems

by JEAN-PIEERRE AUBIN, HELENE FRANKOWSKA (Paris)
and ANDRZEJ LAsoTA (Katowice)

Abstract. The existence theorem of an'invariant measure and Poincaré’s Recurrence Theorem
are extended to set-valued dynamical systems with closed graph on a compact metric space.

Introduction. Let X be a compact metric space and let F: X ~X be
a closed set-valued map.

The purpose of this note is to extend to the set-valued case Poincaré’s
Recurrence Theorem: Let X be a compact metric space, let P(X) denote the set
of probability measures on X, and let F: X ~ X be a closed(*) set-valued map and
u€P(X) an invariant measure for F. For any Borel subset B, let

B,:=(\ U F™(B)
N20n2N
be the subset of points x.such that for all N, there exists n > N such that
F'(x)nB # 3. Then the measure of BN B, is equal to the measure of B.

The statement of this theorem is clear as soon as we have defined what is
an invariant measure for a set-valued map F.

We denote by o/ the o-algebra of Borel subsets of X. We recall that if
F = f is single-valued, an invariant probability measure e 2(X) is defined by:

VAest, p(A)=p(f"1(4),

When F is set-valued, we cannot extend this definition as it is because
A—pu(F~'(A)) is no longer a measure. However, we shall introduce the
following definition: We say that ue 2(X) is an invariant measure for a closed
set-valued map F: X~ X if and only if

(1) VAest, ()< pu(F1A)).

where F™1(A): = {xe X|F(x)n A # O}. Indeed, we see that for single-valued
maps f, this definition coincides with the classical one by applying it to both

(*) This means that its graph is closed.
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A and its complement. Let X be a compact metric space and let F: X ~ X be
a closed set-valued map with nonempty values. Then there exists an invariant
probability measure.

As in the single-valued case, this theorem follows from the existence of an
invariant measure for F, which can be regarded as a fixed point of the
set-valued map #F: 2(X)~ P(X) defined by

veF (u) < VAesd, v(4)<u(F1(A)).

This set-valued map can actually be extended to a set-valued analogue of
a continuous linear operator from %*(X) (the space of Radon measures) to
itself, called a ¢losed convex process. A closed convex process & is a set-valued
map the graph of which is a closed convex cone, i.e., a closed map satisfying

(i) Vi>0, Fp) =7,

(ii) Vi, ey Flu)+F(uy) c Fuy+u,).

This provides a global way to “linearize” a set-valued map, symmettic in
some sense to the local linearization by using “graphical derivatives” at points
(x, y) of the graph,; which are also closed convex processes (see [1, Chapter 7]
and [2] for instance).

1. Linear extension of a set-valued map. Let X and Y be two compact
metric spaces and #(X) and %#(Y) their Borel g-algebras. We recall that the
dual ¥*(X) of the space of continuous functions is isomorphic to the space of
Radon measures on X and that a continuous single-valued f: X+—Y can be
extended to a continuous linear operator & from ¥*(X) to ¥*(Y) by the
formula

Vue%*(X), VBeR(Y), F(u)(B):=u(f'(B).
This fact can be extended to set-valued maps F: X ~Y. We denote by
P(X) <« €*(X) the (weakly compact convex) set of probability measures on X.

DerFINITION 1.1. Let F: X ~ Y be a set-valued map. Denote by & the linear
extension of F, the set-valued map from 2(X) to #(Y) defined in the following
way: ve 2(Y) belongs to % (u) if and only if

VBe#(Y), v(B)< u(F~'(B).
We extend it to a set-valued map from #*(X) to ¥*(Y) by setting

(%) if x4 is nonpositive,
F(n): =< {0} if u=0,
p(X)F (w/u(X)) if p is positive.
ProprosITION 1.2. Consider compact metric spaces X, Y and a closed

set-valued map F: X ~Y with nonempty values. Then & is a closed convex
“rocess with nonempty values.
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Furthermore, for any uc?(X), v belongs to % (u) if and only if
for every open subset O <= Y, v(0)< pu(F~'(0)).

The closed convex process & is a (set-valued linear) extension of F in the sense
that for Dirac measures, 6,€ % (0,) if and only if yeF(x).

If G: Y~Z is a closed set-valued map with nonempty values -from Y to
a compact metric space Z, then the extension 3 of the product H:= GoF
contains the product of the extensions: $oF < H#

Proof. Consider a measure pe#(X). The image #(u) is not empty.
Indeed, by the Measurable Selection Theorem, F, being upper semicontinuous
with closed images, is measurable, so that there exists at least one measurable
selection f of F. Define v, by the formula v .(4):= u(f~'(4)), which is
a probability measure. Since f~!(4d)cF~'(4), we infer that
#(f~*(A) < u(F~'(A)) so that v, belongs to & (k).

We now prove that % (u) can be defined as the set of measures ve 2(X)
satisfying

for every open subset @ = Y, v(0) < u(F~!(0)).

We first extend this formula to compact subsets K < Y. Since the graph of
F, and thus of F~! is closed and X is compact, F~! is also upper
semicontinuous. We then know that for any neighborhood @, > F~1(K), there
exists an open neighborhood .#, = K satisfying F~*(#,) = 0,. Choose open
subsets @, such that u(0,) ~ u(F~'(K)). Hence the inequalities

W(K) < v(A,) < p(F~H (M) < u(0,)

imply by going to the limit that v(K) < u(F~'(K)).
Take now any measurable subset Be #(Y). There exists a sequence of
compact subsets K, c B such that v(K,) » v(B). Then the inequalities

v(K,) < u(F(K,) < w(F~(B))

imply that v(B) < u(F~'(B)).

Assume that ye F(x). Then &, € (8,) since, for any open subset 0 — Y,
8,(0) < 8,(F~'(0)). This is obvious when y¢ 0. If not, the left-hand side is
equal to 1, and so is the right-hand side, because xeF~(y) = F~1(0).
Conversely, if y ¢ F(x), there exists an open subset @3 y such that F(x)n 0 =@,
ie, x¢ F7'(0). Then §,(0) =1 and §,((F~'(0))) =0, so that §,¢ F(3,).

The formula ¥o% < # is obvious as well as the convexity of the
graph of #.

It remains to prove that Graph(#) is closed when the spaces of Radon
measures are supplied with the weak-» topology.

_ For that purpose, consider a sequence of measures (u,, v,) € Graph(%)
converging to (u, v) in the weak-* topologies of the duals €*(X) and €*(Y)
respectively.
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It is sufficient to prove that the graph of the restriction of # to 2(X) is
weakly closed. Indeed, when the measures p, and v, € % (u,) are positive and
converge weakly to u and v, some subsequences of the probability measures
A= p/p(X) and V,:=v,/p,(X)e F(j1,) converge weakly to probability
measures 2 and ve % () respectively, because the sets of probability measures
are weakly compact and the graph of the restriction of # to 2(X) is assumed
to be weakly closed. Since the measures p,(X) converge to u(X), we deduce
that u= u(X)i and v = pu(X)v. Then v=0 when =0 and otherwise,

v = pX)¥e p(X) F (/p(X)).

Hence we consider a sequence (u,, v,)€?(X)x2(Y) in the graph of
& converging to (u, v). In order to prove that ve & (p), it is enough to check
that for any open subset @ c X, the inequality

v(0) < p(F~1(0)

holds true thanks to the first part of the proposition.
Fix an open subset @ —« X. Since X is metric, @ is the union of an
mcreasmg sequence of open subsets ¢, = @, p > 1, such that for every p > 1,

(9 c 0. Fix p and observe that F~ 1((9,,) is compact, as the image of a compact
sct by the upper semicontinuous set-valued map F~!.
The inequalities

Vnz1, v,(0,) < u(F~1(0,) < i (F~1(0})

imply, thanks to a version of Alexandrov’s Theorem recalled just after the end
of the proof, that

v0,) < hm mfv o(0,) < hrn supp,,( 1(Cf),,)) u(F~ o, ) < p(F~1(0)).

It remains to observe that v(0) = sup,»,v(0,). =

We now prove the version of Alexandrov’s Theorem (see [4, Theorem
49.15]) we needed:

THEOREM 1.3 (Alexandrov). Let X be a compact metric space. Consider
a sequence of Radon probability measures p,eP(X) converging weakly to p.
Then, for any open subset O c X,

and for any closed subset K < X,
limsup u,(K) < u(K).

n—+co

Proof. Let @ < X be an open subset. Since a Radon measure u is regular,
we can associate with any € > 0 a compact subset K = @ such that u(0\K) < ¢.
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Let f€%(X) be a continuous function equal to 1 on the closed subset
K and to 0 on the complement of 0. We observe that yx < f < x, and thus

1(0) < p(K)+e < | fdu+e.
Therefore, the inequalities [ fdu, < u,(¢) imply that
#(0) < | fdp+e < liminf p,(0) +e.

We conclude by letting & converge to 0.

The proof of the second inequality for compact subsets K is analogous,
since for any ¢ > 0, there exists an open @ o K such that p(@\K) < e. Define
the continuous function f as above. The inequalities u,(K) < | fdy, imply that

lim sup u,(K) < [ fdp < 4(0) < p(K)+e. =

Remark. We deduce that for any open subset @ such that u(0) = u(0),
weak convergence of probability measures p, to u implies that p (@) converges
to p(0). The converse is also true. (See the proof of [4, Theorem 4.9.15] for
instance.)

2. Invariant measures. Taking X = Y, we are able to derive the existence
of invariant measures by showing that the extension & has fixed points on
P(X).

THEOREM 2.1. Let X be a compact metric space and let F: X ~ X be a closed
set-valued map with nonempty values. Then there exists an invariant probability
measure u, i.e., one satisfying

@) VAedX), pld)<p(F'(4).

Proof. Let # be the set-valued map from 2(X) to itself associating with
any pe?(X) the (nonempty) set of probability measures ve #(u). Then the
above proposition states that & is a map with closed graph and convex values
from the convex compact subset #(X) < €*(X) to itself, and thus upper
semicontinuous with convex compact values. Kakutani-Fan’s Fixed Point
Theorem [6](*) implies the existence of a fixed point ue 2 (X) of #, which is
a measure satisfying

3) VAeB(X), wA) <p(F'(A).
Therefore, u is invariant under F. »

Naturally, we can derive most of the properties of invariant measures
enjoyed by single-valued maps. Let us show for instance that Poincaré’s
Recurrence Theorem holds true for closed set-valued dynamical systems.

(*) Recall that the proof we provided, based on the Ky Fan inequality, showed that Ky Fan's
theorem remains true in locally convex Hausdorll topological vector spaces.



90 J.-P. Aubin, H. Frankowska and A. Lasota

THEOREM 2.2 (Poincaré’s Recurrence). Let X be a compact metric space,
F: X~ X a closed set-valued map and pe P(X) an invariant measure of F. For
any Borel subset Bc X, let

B.:= () U F™"(®B)
N20n2N

be the subset of points x such that for all N, there exists n > N such that
F'(x)"B # &. Then the measure of BN B, is equal to the measure of B.

Proof. The proof is a straightforward extension of the proof in the
single-valued case: We introduce the subsets

By:= | F"(B)

n=N

and we observe that B — B, that By « By_; ... < B, and By = F~(B,).
Since u is invariant, we deduce that

uB) < p(F'B) <...<p(F"B) <...
and thus,

#(Bo) < p(F~"(Bo)) = u(By) < n(Bo).

Since the sequence B, is not increasing and since u(B,) = u(B,), we infer that
u(B,) = u(B,). Therefore,

W(BNB,) = pu(BNBy) = u(B). =
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