On some applications of the Clunie method

by Zbigniew Jerzy Jakubowski (Łódź)

1. The main purpose of the paper is to obtain on the basis of the Clunie method [2] the estimations of the coefficients of functions of some class of Carathéodory functions. The results obtained will also be applied to some families of functions generated by Carathéodory functions.

Let \mathfrak{P} [1] denote the family of regular functions defined in the circle $K = \{z : |z| < 1\}$ of the form

(1.1)
$$p(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$$

whose real part is positive in this circle. Denote by \mathfrak{P}_M , $M > \frac{1}{2}$, the class of functions of form (1.1) which satisfy in the region K the condition |p(z) - M| < M. Obviously $\mathfrak{P}_M \subset \mathfrak{P}$ and $\mathfrak{P}_\infty \equiv \mathfrak{P}$.

The class \mathfrak{P}_M has been introduced by Goel [3]. He has also proved that for every function the following sharp estimation holds:

(1.2)
$$|p_n| \leq 2 - M^{-1}, \quad n = 1, 2, ...$$

Equality holds if and only if p(z) is of the form

$$p(z) = (1 + \varepsilon z^n)[1 - \varepsilon (1 - M^{-1})z^n]^{-1}, \quad |\varepsilon| = 1.$$

In the case of the family \mathfrak{P} we hence obtain the well-known result of Carathéodory [1]: $|p_n| \leq 2$, n = 1, 2, ...

Let m, M be two fixed numbers satisfying the condition $(m, M) \in D$, $D = D_1 \cup D_2$, where

$$D_1 = \{(m, M) : \frac{1}{2} < m < 1, 1-m < M \leqslant m\},$$
 $D_2 = \{(m, M) : 1 \leqslant m, m-1 < M \leqslant m\}.$

Denote by $\mathfrak{P}_{m,M}$ the family of all functions of form (1.1) satisfying the condition

$$|p(z)-m| < M, \quad z \in K.$$

Obviously $\mathfrak{P}_{m,M} \subset \mathfrak{P}$ and $\mathfrak{P}_{M,M} \equiv \mathfrak{P}_{M}$. Assume

(1.4)
$$a = (M^2 - m^2 + m)M^{-1}, \quad b = (m-1)M^{-1}.$$

We shall prove the following

THEOREM 1. If p(z) is an arbitrary function of the family $\mathfrak{P}_{m,M}$, $(m,M) \in D$, then

$$(1.5) |p_n| \leq a+b = [M^2 - (m-1)^2]M^{-1}, n = 1, 2, \dots$$

and equality holds in (1.5) if and only if

$$(1.6) p(z) = (1 + a\varepsilon z^n)(1 - b\varepsilon z^n)^{-1}, |\varepsilon| = 1.$$

Moreover, we have

(1.7)
$$\sum_{k=1}^{\infty} |p_k|^2 \leqslant (a+b)^2 (1-b^2)^{-1} = M^2 - (m-1)^2.$$

Proof. Denote by Q the family of all regular functions of the form

$$q(z) = \sum_{k=1}^{\infty} q_k z^k$$

defined in the circle K which satisfy in this circle the condition

$$(1.9) |q(z)| < 1.$$

Then $|q_k| \leq 1$, $k = 1, 2, ...; q(z) = \varepsilon z^k$, $|\varepsilon| = 1$ if $|q_n| = 1$. By condition (1.3) it can easily be proved that for every function p(z) of the family $\mathfrak{P}_{m,M}$, $(m, M) \in D$ there exists a function q(z) of the class Q such that

$$(1.10) p(z) = [1 + aq(z)][1 - bq(z)]^{-1}$$

and conversely for every function $q \in Q$ the function (1.10) belongs to $\mathfrak{P}_{m,M}$. From formulas (1.10), (1.8), (1.1) we obtain the equality

(1.11)
$$\sum_{k=1}^{\infty} p_k z^k = \left[a + b + b \sum_{k=1}^{\infty} p_k z^k \right] \left(\sum_{k=1}^{\infty} q_k z^k \right), \quad z \in K.$$

Thus equating the coefficients at the corresponding powers of z, we have the relationships

$$(1.12) p_1 = (a+b)q_1,$$

$$(1.13) p_n = (a+b)q_n + b\sum_{k=1}^{n-1} p_k q_{n-k}, n = 2, 3, ...$$

Since $|q_1| \le 1$, by (1.12) inequality (1.5) is true for n = 1. Equality holds if and only if $q(z) = \varepsilon z$, i.e. if p(z) is of form (1.6) for n = 1. Let $n \ge 2$: then we obtain from (1.11)

$$\sum_{k=1}^{n} p_k z^k + \sum_{k=n+1}^{\infty} s_k z^k = \left[a + b + b \sum_{k=1}^{n-1} p_k z^k \right] \left(\sum_{k=1}^{\infty} q_k z^k \right);$$

thus by (1.8), (1.9) we obtain in the circle K the inequality

$$\left| \sum_{k=1}^{n} p_k z^k + \sum_{k=n+1}^{\infty} s_k z^k \right|^2 < \left| a + b + b \sum_{k=1}^{n-1} p_k z^k \right|^2.$$

Assuming in (1.14) $z = re^{it}$, 0 < r < 1, $0 \le t \le 2\pi$ and then integrating side-wise in the interval $(0, 2\pi)$, we get

$$\sum_{k=1}^{n} |p_k|^2 r^{2k} + \sum_{k=n+1}^{\infty} |s_k|^2 r^{2k} < (a+b)^2 + b^2 \sum_{k=1}^{n-1} |p_k|^2 r^{2k},$$

whence

$$(1.15) \sum_{k=1}^{n} |p_k|^2 r^{2k} < (a+b)^2 + b^2 \sum_{k=1}^{n-1} |p_k|^2 r^{2k}.$$

Passing in (1.15) to the limit as $r \to 1$, we find the inequality

$$\sum_{k=1}^n |p_k|^2 \leqslant (a+b)^2 + b^2 \sum_{k=1}^{n-1} |p_k|^2,$$

equivalent to the following

$$|p_n|^2 \leqslant (a+b)^2 + (b^2-1) \sum_{k=1}^{n-1} |p_k|^2.$$

Since $(m, M) \in D$, a+b>0 and $b^2<1$ (comp. (1.4)) and thus estimation (1.5) is true also for $n \ge 2$.

On the other hand, equality holds only if $p_1 = \ldots = p_{n-1} = 0$ (see (1.16)), which, because of (1.13), proves that $|q_n| = 1$, $q(z) = \varepsilon z^n$. Thus we obtain from (1.10) a function of form (1.6). It can easily be proved that this function belongs to the class $\mathfrak{P}_{m,M}$ for a and b defined by formulas (1.4). Inequality (1.7) is obtained by applying condition (1.9) immediately to identity (1.11). Then assuming $z = re^{it}$, 0 < r < 1, $0 \le t \le 2\pi$ and integrating respectively, we get the inequality

$$\sum_{k=1}^{\infty}|p_k|^2r^{2k}<(a+b)^2+b^2\sum_{k=1}^{\infty}|p_k|^2r^{2k};$$

hence, because of the arbitrariness of r, we have

$$(1-b^2)\sum_{k=1}^{\infty}|p_k|^2\leqslant (a+b)^2,$$

which ends the proof.

If m = M, we find from (1.4) a = 1, $b = 1 - M^{-1}$, and thus from estimation (1.5) we immediately get (1.2). On the other hand, inequality (1.7) implies

COROLLARY 1. If $p \in \mathfrak{P}_M$, $M > \frac{1}{2}$, then $\sum_{k=1}^{\infty} |p_k|^2 \leqslant 2M - 1$.

2. Let $R_{m,M}$, $(m,M) \in D$ denote the family of regular functions

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

defined in the circle K which satisfy in this circle the condition

$$|f'(z)-m| < M.$$

The family $R_{m,M}$ is a subclass of the family R of all functions of form (2.1) whose first derivative have positive real part in the circle K. It is also known that every function of the family R is univalent [5]. The class $R_M \equiv R_{M,M}$ [4] is also known. It is obvious that if $f \in R_{m,M}$, then the function p(z) = f'(z) belongs to the class $\mathfrak{P}_{m,M}$ and conversely.

Thus $ka_k = p_{k-1}$, k = 2, 3, ... Consequently we get from Theorem 1 COROLLARY 2. If f(z) is an arbitrary function of the family $R_{m,M}$, then

$$|a_n| \leq (a+b)n^{-1}, \quad n=2,3,\ldots,$$

and

$$\sum_{k=1}^{\infty} [k+1]^2 |a_{k+1}|^2 \leqslant (a+b)^2 (1-b^2)^{-1}$$

with a and b defined by formulas (1.4). Equality holds in estimation (2.2) if and only if

(2.3)
$$f(z) = z + an^{-1}\varepsilon z^n, \quad |\varepsilon| = 1, \ b = 0,$$

(2.4)
$$f(z) = z + \sum_{k=1}^{\infty} \frac{(a+b)b^{k-1}\varepsilon^k}{k(n-1)+1} z^{k(n-1)+1}, \quad |\varepsilon| = 1, \ b \neq 0.$$

COROLLARY 3. If $f \in R_M$, then the sharp estimations $|a_n| \leq (2-M^{-1})n^{-1}$, $n=2,3,\ldots,$ and $\sum_{k=1}^{\infty} (k+1)^2 |a_{k+1}|^2 \leq 2M-1$.

COROLLARY 4. If $f \in R$, then the sharp estimation $|a_n| \leq 2n^{-1}$, $n = 2, 3, \ldots$, holds.

The extremal functions are here of forms (2.3) and (2.4) for a = 1, $b = 1 - M^{-1}$ and a = b = 1 respectively.

3. In 1932 Rogosinski [8] introduced the family T of functions of form (2.1), called typically-real functions (f(z)) is real in K if and only if z is real). It is known that $a_k = \operatorname{re} a_k$, $k = 2, 3, \ldots$, and $f \in T$ if and only if the function $p(z) = (1-z^2)z^{-1} f(z)$ is a function of the family \mathfrak{P} with real coefficients [8].

Let $T_{m,M}$, $(m, M) \in D$, be a subclass of the family T of functions satisfying the condition

$$|(1-z^2)z^{-1}f(z)-m| < M \quad \text{for } z \in K.$$

Clearly $T_{M,M} \equiv T_M$ [4] and if $f \in T_{m,M}$, then $p(z) = (1-z^2)z^{-1}f(z)$ is a function of the class $\mathfrak{P}_{m,M}$. Thus by Theorem 1 we have

COROLLARY 5. If $f \in T_{m,M}$, then

$$-(a+b) \leqslant a_2 \leqslant a+b$$
, $1-(a+b) \leqslant a_3 \leqslant a+b+1$, $|a_{n+1}-a_{n-1}| \leqslant a+b$, $n=3,4,\ldots$,

the equality sign being realized by the function

$$f(z) = z(1-z^2)^{-1}(1+a\varepsilon z^n)(1-b\varepsilon z^n)^{-1}, \quad \varepsilon = \pm 1.$$

Moreover,

$$\sum_{k=1}^{\infty} |a_{k+1} - a_{k-1}|^2 \leqslant (a+b)^2 (1-b^2)^{-1}.$$

COROLLARY 6. If $f \in T_M$, then the sharp estimations

$$-2+M^{-1} \leqslant a_2 \leqslant 2-M^{-1},$$
 $-1+M \leqslant a_3 \leqslant 3-M^{-1},$ $|a_{n+1}-a_{n-1}| \leqslant 2-M^{-1}, \quad n=3,4 \ldots,$

hold, and

$$\sum_{k=1}^{\infty} |a_{k+1} - a_{k-1}|^2 \leqslant 2M - 1.$$

COROLLARY 7 [8]. If $f \in T$, then the sharp estimations

$$-2k \leqslant a_{2k} \leqslant 2k$$
, $1-2k \leqslant a_{2k+1} \leqslant 2k+1$, $k=1,2,\ldots$

hold.

4. Let C [7] denote the family of functions of form (2.1) which are real on the real axis and which map the circle K onto a convex region in the direction of the imaginary axis. It is known that $f \in C$ if and only if zf'(z) is a typically real function [7]; thus the function $p(z) = (1-z^2)f'(z)$ is a function of the family \mathfrak{P} with real coefficients.

Let $C_{m,M}$, $(m, M) \in D$ the family of functions $f \in C$ which satisfy the condition

$$|(1-z^2)f'(z)-m| < M \quad \text{for } z \in K.$$

Obviously $C_{M,M} \equiv C_M$ [4] and if $f \in C_{m,M}$, then the function $p(z) = (1-z^2)f'(z)$ belongs to the class $\mathfrak{P}_{m,M}$.

COROLLARY 8. If $f \in C_{m,M}$, then the sharp estimations

$$-rac{1}{2}(a+b)\leqslant a_2\leqslant rac{1}{2}(a+b), \ -rac{1}{3}(a+b-1)\leqslant a_3\leqslant rac{1}{3}(a+b+1), \ |a_{n+1}(n+1)-(n-1)a_{n-1}|\leqslant a+b, \qquad n=3,4,\ldots,$$

hold. Moreover,

$$\sum_{k=1}^{\infty} |(k+1)a_{k+1} - (k-1)a_{k-1}|^2 \leqslant (a+b)^2(1-b^2)^{-1}.$$

COROLLARY 9. If $f \in C$, then the sharp estimations

$$-1\leqslant a_{2k}\leqslant 1\,, \qquad -1+rac{2}{2k+1}\leqslant a_{2k+1}\leqslant 1\,, \qquad k=1,\,2\,,\,\ldots$$

hold [7].

5. In 1936 Robertson [6] proved that if $f \in C$, then $\operatorname{re}\left\{\frac{f(z)}{z}\right\} > \frac{1}{2}$. Then Goel [3] introduced the class \check{C}_M of all functions of form (2.1) which satisfy the condition $|[2f(z)z^{-1}-1]-M| < M, \ M \geqslant 1$, and obtained the sharp estimation $|a_n| \leqslant 1 - (2M)^{-1}, \ n=2,3,\ldots$ Let $\check{C}_{m,M}, (m,M) \in D$ denote the family of all functions of form (2.1) which satisfy in the circle K the condition

$$|[2f(z)z^{-1}-1]-m| < M.$$

If $f \in \check{C}_{m,M}$, then the function $2f(z)z^{-1}-1$ belongs to the family $\mathfrak{P}_{m,M}$; thus by Theorem 1 we obtain the following generalization of the result of Goel:

COROLLARY 10. If $f \in \check{C}_{m,M}$, then $|a_n| \leq \frac{1}{2}(a+b)$, $n=2,3,\ldots$, equality being realized by functions of the form

$$f(z) = \frac{1}{2}z[2 + (a-b)\varepsilon z^{n-1}][1 - b\varepsilon z^{n-1}]^{-1}, \quad |\varepsilon| = 1.$$

Moreover,

$$4\sum_{k=2}^{\infty}|a_k|^2\leqslant (a+b)^2(1-b^2)^{-1}.$$

COROLLARY 11. If $f \in \check{C}_{\infty}$, then $|a_n| \leq 1$, n = 2, 3, ..., where equality holds for functions of the form

$$f(z) = z(1-\varepsilon z^{n-1})^{-1}, \quad |\varepsilon| = 1.$$

6. Another class of functions which is closely connected with Carathéodory functions with positive real parts is the family U [7] of starlike

functions in the direction of the real axis. It is known that $f \in U$ if and only if the function

(6.1)

$$p(z) = rac{g_{eta}(ze^{-ia})f(z) - e^{-ia}z\cos a}{ize^{-ia}\sin a}, \quad g_{eta}(z) = 1 - 2\coseta \cdot z + z^2, \quad \sin a > 0,$$

belongs to \mathfrak{P} [7]. Janowski [4] considered the family $U_M \equiv U_{M,M}$, where $U_{m,M}$, $(m,M) \in D$ is a family of functions of form (2.1) which satisfy the condition

$$\left|\frac{g_{\beta}(ze^{-ia})f(z)-e^{-ia}z\cos a}{ize^{-ia}\sin a}-m\right|< M$$

in the circle K.

If $f \in U_{m,M}$, then function (6.1) belongs to the class $\mathfrak{P}_{m,M}$. Thus we have COROLLARY 12. If $f \in U_{m,M}$, then

$$|a_n - 2\cos\beta e^{-ia}a_{n-1} + e^{-2ia}a_{n-2}| \le (a+b)\sin a, \quad n = 2, 3, ...,$$

the extremal function being of the form

$$f(z) = [g_{eta}(ze^{-ia})]^{-1} igg[e^{-ia}z\coslpha + ize^{-ia}\sinlpha rac{1+aarepsilon z^{n-1}}{1-barepsilon z^{n-1}} igg], \quad |arepsilon| = 1.$$

COROLLARY 13. If $f \in U$, then

$$|a_n - 2\cos\beta e^{-ia}a_{n-1} + e^{-2ia}a_{n-2}| \le 2\sin\alpha, \quad n = 2, 3, \dots$$

References

- [1] K. C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstanten von positiv harmonischen Funktion, Rendiconti di Palermo 32 (1911), p. 193-217.
- [2] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), p. 215-216.
- [3] R. M. Goel, A class of close-to-convex functions, Czechoslovak Math. J. 18 (1968), p. 104-116.
- [4] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Bull. Acad. Sci., Sér. Sci. math. astr. et phys. 17 (1969), p. 633-637.
- [5] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ., Ser. 1. 2 (1934-1935), p. 129-155.
- [6] M. S. Robertson, On the theory of univalent functions, Ann. of Math. 37 (1936), p. 374-408.
- [7] Analytic functions star-like in the direction, Amer. J. Math. 58 (1936), p. 465-472.
- [8] W. W. Rogosiński, Über positive harmonische Entwicklungen und typisch-reele Potenzreihen, Math. Z. 35 (1932), p. 93-121.

MATHEMATICAL INSTITUTE, UNIVERSITY OF ŁÓDŹ

Reçu par la Rédaction le 9. 4. 1971