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Generic finiteness in solving optimal control problems

by D. Motreanu (lagi, Romania)

Abstract. One proves that the finiteness for the set of optimal controls is generic with
respect Lo parameters entering smoothly the different optimal control problems. The genericity is
obtained from an abstract resull concerning minimization problems which depend smoothly on
parameters. Our approach is based on the transversality theory.

1. Introduction. In [7], [8], J. C. Saut and R. Temam showed that the
property of a nonlinear elliptic boundary value problem to admit finitely
many solutions is generic with respect to one of the data. This is deduced
from -an abstract result ensuring that, generically relative to a parameter «, a
nonlinear equatton

(1.1) Alu, a) =0,

with the unknown u, has a finite set of solutions. The key hypothesis is the
transversality of 4 to the one-point submanifold }0).

The aim of the present paper is to apply the method of J. C. Saut and
R. Temam in optimal control problems.

We start with the abstract minimization problem
(1.2) inf J(u, 2),

ue M

where M i1s a compact smooth submanifold of a Banach space B, « is a

parameter belonging to a smooth Banach manifold E and J: BxE —» R is a
smooth function. Notice that if ueM solves (1.2), then

(1.3) Julu, D=0, M,

i.e., the partial derivative J,(u, o) vanishes on the vectors ol B which are
tangent to M at u. Thus problem (1.2) yields equation (1.3) which is only in a
formal manner of type (1.1). Nevertheless, this fact suggests to proceed along
the lines of [7], [8] for obtaining the generic finiteness with respect to x€E
for the number of solutions in (1.2). In contrast with [7], [8], we impose
the transversality of (J|yxgh: MxE ->T*M to the zero-section
'0,eT*M; ueM) of T* M.
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The abstract result concerning problem (1.2} is applied in the following
control problems: (a) minimization of a cost functional over initial states x
(1.e., control via inittal conditions) taking as parameter a control term u
= u(r) entering the state equation y' = f(t, y, u), ¥(0) = x; (b) minimization
of a cost functional over controls u = u(r) (i.e., optimal control problem)
choosing as parameter the control system f defining the state equation )’
= f(t, y, u). For the control problems (a) and (b) we obtain computable
criteria implying the generic finiteness of the set of optimal controls.

2. A generic result for minimization. Throughout this paper, if M 1s a
differentiable manifold, TM and T* M denote the tangent bundle and the
cotangent bundle of M, respectively. For a differentiable mapping F, the
notations F' and F” mean the first derivative and the second one of F,
respectively, the eventual subscripts indicating the variables with respect to
which one diflerentiates. The necessary prerequisites of transversality theory
can be found in [1] and [2].

THEOREM 2.1. Let M be a compact C™*' manifold, E a C"*' Banach
manifold and J: M xE — R a function satisfying the following conditions:

(1) E is a second countable, complete metric space and J is differentiable
of class C™*' with r > 1;

(i1) for every (u, o) in M x E with J,(u, a) = 0,€ T} M and every & in the
vertical space To (T M) = Tj* M, there exists (v, a) in T,M x T, E such that

Juuu, (-, 0)+Jp(u, a)(-, @) = &.

Then there exists a dense open subset G of E such that for every a in G the
minimization problem

(Py) inf J (u, a)
uec M

has a finite set of solutions. If ueM is a solution of (P,) with a €G, then
Juw (1, 0) is an isomorphism of T,M onto To (T M) = T* M. Furthermore, on
each component G, of G, the dependence on a€G, of the solutions to (P,)
is C differentiable in the following sense: there exists a finite set |¢;:
Go = M; 1 <i<k! of C" mappings such that if « €G, the set of solutions to
(P,) is contained in (¢@;(x); 1 < i< k). In particular, every problem (P,) with
a2 in Gy has at most k solutions.

Proof. Let n =dimM which is finite because the manifold M is
compact. Define the mapping F: M xE = T*M by

(2.1) Fu,a) =J,(u,2), (u,0)eM xE.

Condition (i) implies that F is C” differentiable. Let S denote the zero-section
of the cotangent bundle T* M, that is

(2.2) S=10,eT*M:; ueM).
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It 1s well known that S is a C" submanifold of T* M with
(2.3) dimS =n
and, for every point ueM., the following splitting decomposition holds

(2.4) To, (T* M) = T, S® T, (T* M),

In view of (2.4), condition (i1) expresses the transversality of the mapping F to
the submanifold S of T* M, so one can apply Abraham’s transversality
theorem [1], Theorem 19.1 and Theorem 18.2 (see also [2], p. 53). Hence

(2.5) G=la€E; F(-,2): M —>T*M is transversal to S!
is a dense open set in E. By (2.2), (2.3) and (2.5) it follows that, if x €G,
(2.6) weM; Jy(u,2) =0, = F(-,2)"(S)

is a C" submanifold of dimension 0 in M. Taking into account the compact-
ness of M we deduce that the set (2.6) is finite for every a €G. Since for each
solution u of (P,) the pair (u, 2) belongs to the set (2.6), G is the required
dense open subset of E.

If ueM is a solution to (P,) with « €G, by (2.1), (2.4) and (2.5) we derive
that J,, (u, @) = F,(u, a) is an isomorphism of T, M onto the vertical space
To (T} M) =T*M.

Because the transversality reduces to a submersion condition (see [2], p.
52), the last assertion of Theorem is a straightforward consequence of the
implicit function theorem combined with the first part of Theorem and the
connectedness of G.

3. A generic property of control problems via initial conditions. In this
section we apply Theorem 2.1 to control problems via initial conditions, iL.e.,
optimal control problems in which the admissible controls are initial states.
This type of problems is considered, e.g., in Lions [6], p. 213.

Let us fix a compact interval I = [0, T] of R =(—oc, o¢) and an open
subset U of R". Suppose f: I xU xR™—>R" and ¢g: I xU xR"™ —> R are
functions verifying the hypothesis
(H,) (i) for every tel, the mappings f(t,-,-) and g(t,, ) are C""!

differentiable with r > 1;

(i) for each i =0, 1, ..., r+1, the i-th derivatives f,, and g{},, of f
and g with respect to the last two variables (x, w) in U x R™ are
locally bounded on 7 xU x R™;

(iii) for every (x, w) in U xR™ and each i =0, I, ..., r+1, the map-
pings t = f¥,,(t, x,w) and 1 =g, (r, x, w) are measurable
on [.

Remark. In the terminology of Grasse [3], [4], the mappings f and g
satisfying condition (H,) are called quasi-C**'.
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Corresponding to a compact C"*' submanifold M of R", r > 1, with
M < U, consider now the control problem via initial conditions
(P,) minimize [g(r, y(t), a(r))dt

i
over initial states x € M subject to

3.0 y =1y, a@) ae tel, y(0)=x,

where the parameter a belongs to a second countable, closed C"*! submani-
fold E of L7 (I)=L*(I; R™. Here L7%(I) denotes the Banach space of
equivalence classes of essentially bounded measurable mappings of I into R™
with the essential-supremum norm.

Under hypothesis (H,), for every (x, ) in U x L7, (I), the Cauchy prob-
lem (3.1) admits a unique absolutely continuous solution t = y(t) = y(t, x, a).

Assume further that the mapping f satisfies the condition
(H;) For every x €E the trajectory y(-, x, a) of (3.1) starting from a point

x of M is defined on the entire interval I.

Remark. Condition (H,) holds if, for example, the mapping f defines a
control vector field on the manifold M in the sense of Grasse [3], [4], ie.
f, x,wyeT, M for all (t, x, wel xM xR™ If U = R" another condition
implying (H,) is the global boundedness of f.

Hypothesis (H,) yields the existence of a neighbourhood V of M x E in
U x L™ (I) such that the domain of the trajectory y(-, x, «) is I provided
(x,a)eV.

For the solution y(-, x, ) of the Cauchy problem (3.1) with (x, a) in V
and for an arbitrary aeL" (I) consider the linear variational control system
of f along the response r — y(t, x, a),

(32 @ =fi(t, y@, x, 0, a@)z(O)+fu(t, ¥, x, ), a(t))a(t), tel.

Denote by X (t, x, a) the fundamental matrix of (3.2) such that X (0, x, a) is
the identity matrix.

Then the partial derivatives y' (¢, x, a) and y.(f, x, 2) of y = y(t, x, @)
are given by

(3.3) Velt, x, ) = X (¢, x, o)
and

(G4 v, x, 0@ =X, x,0) [ X(s, x, )7 fils, y(s, x, a), a(s)a(s)ds

0
for all tel, (x,x)eV and ael™ (I) (see Grasse [4], Corollary 2.13, or Lee
and Markus [5], p. 379-380).

Similarly, one obtains the partial derivatives X (¢, x, a) and X,(t, x, a)
of X(t, x, a)

(3:5)  Xi(t, x, (W () = X () [ X ()7 ' feels, y(8), a())(X (5)(+), X (s)(h))ds
0



Solving optimal control problems 139

and

(36 Xo(t, x,2)(a@)()
=X(0) [ X()™ [ fax(s, y(9), a@))(X () (), yals, x, 2) (@) +
0

+faw (s, y(s), 2()(X (9)(0), a(s))] ds

for all tel, (x, )€, heR" aelL?(I), where y,(s, x, 2)(a) is written in (3.4),
while y(t) and X (t) denote for simplicity y{¢, x, «) and X (¢, x, a) respectively.
In addition to (H,) and (H,) the following hypothesis will be imposed.

(H;) For every (x,a) in M x L% (I) such that the vector
T

(3.7) [ X(t, x, )*grad.g(t, y(t, x, @), a(t)}dr
4]

is orthogonal in R" to T, M and for every {eTX* M, there exist
heT.M and aeT,E such that

38 ¢= _T{[g;’x(t. y(©), a@OIX (), X () +ya(t, x, a)(a)+
i + gt YO, aONX (1) (), a(D)+
+g5(r, y(©), 2 O)X(r, x, ) (B () +
+ X, (1, x, ) (@) ()] dt,

where y(t) and X (r) mean y(, x, «) and X (t, x, ) respectively, and
Vot x, a)(a), Xo(t, x,a)(h)(-), X.(t, x,®)(a)(') are determined ex-
plicitly in (3.4)3.6).

In (3.7), X (¢, x, a)* denotes the transpose of X (¢, x, ) and grad, ¢ is the
gradient of g with respect to the second variable.

THEOREM 3.1. Let M be a compact C'*" submanifold of R", let U be an
open subset of R" containing M and let E be a second countable closed C"*!
submanifold of L7 (I) with r > 1 and 1 = [0, T]. Suppose that the mappings
S: IxUxR™—>R" and g: I xU xR™ = R satisfy conditions (H,), (H,) and
(Hj3). Then there exists an open dense set G of E such that, for every a in G,
problem (P,) has a finite set of solutions. If xeM is a solution to (P,) with
a €G, then the map

T
h = [[g5(t, y(t, x, a), a(@)(X (£, x, a)(-), X (¢, x, a)(h))+
0
+5(r, y(t, x, @), 2 () X (1, x, ) (h)(+)] dt

is an isomorphism of T.M onto Ty (T} M) = T¥ M. Furthermore, for each
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component Go of G there exist finitely many C° mappings ¢;: Go =M,
1 <i<k, such that if a€G, every solution to (P, is an element of
lp;(@): 1 <i <kl In particular, for any component G, of G there is a finite
number k such that, if a €G,, (P,) has at most k solutions.
Proof. Let J: M xE — R denote the function
T

(3.9) J(x,a) = [g(t, y(t, x, a), a(t))dt  for (x, ) eM xE.
(4]

We introduce the mappings F: C(I, UyxL,(I)»R and Y: M xE
—-C(, U) as lollows

T
Fc,x) = {g(r, c(t), a(t))dt  for (c, d)eC{I, U)x L% (I)
0

and
Y(x,a) =y(-, x,a) for (x,a)eM xE.

In view of (H;), Y takes values in C(I, U), and by (H,), both F and Y are
C™*' mappings (see Grasse [3], Theorem 3.3.5 and Theorem 3.3.11). Noting
from (3.9) that J is the composite map

(3.10) J = Fo(Y, pry),

where pr,: M xE — E is the projection onto the second factor, it follows that
J is C"*! dillerentiable, so condition (i) in Theorem 2.1 is verified.
From (3.10) and (3.3) one finds the partial derivative J, of J

Jo(x, a)(h) = F'(Y(x, a), 2)(Y;(x, @) (h), O)
T

= [g.(t. y(t, x, 2), a(0) X (1, x, x) (h)dr

0
for (x,x)eM xE and heT M.

Therefore J, vanishes at a point (x, «) in M xE if and only if the vector
defined in (3.7) is orthogonal to T, M < R". A similar argument shows the
equivalence between (3.8) and the surjectivity of the mapping

(h, e TMxTE-=J(x,0)(r, h+J5u(x, 0)(, ) eTFM.
Consequently hypothesis (H,) is just condition (ii) in Theorem 2.1 for the

functional J of (3.9). To complete the proof it suffices to apply Theorem 2.1.

Remark. Hypotheses (H;}(H,) take simpler forms for particular cases
of control problem (P,). For example, let us consider the same cost func-
tional defined by a function g: I xU x R™ —= R satisfying (H,), but replace
(3.1) by a linear process in R"

3.1y y = A(t)y+B(a, ae tel=[0,T], y(0)=xeM,
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depending on the parameter a € E < L% (I), where A and B denote bounded
measurable matrix functions. In this case hypothesis (H,) is verified and, by
(3.2), X(t, x, ) with X (0, x, a) =id_, is the fundamental matrix of (3.1).
Hypothesis (H;) reduces to the following

(H3)’ For every (x, «) in M x E such that the vector (3.7) is orthogonal in
R" to T, M and for every £ € TX M there exist he T M and ae T, E
such that

T
€= f[grlt, y(t, x, @), x@)(X (¢, x, ) ("),
0

T
X(t, x, 0)(h+ [ X (s, x, ®)" ! B(s)a(s)ds))+
0

+gie(t, y(t, x, 2), a(D)(X (1, x, @) (), a(t))] dt.

4. A generic property of optimal control problems. For some integer
r = 1, denote by E = B""'(R x R" x R™, R") the separable Banach space of all
C™*! mappings from R x R" x R™ into R" whose derivatives up to order r+1
are bounded, with the norm

I/ =sup {[(f (). /(P ... fE*V ()| p=(t, x., weERxR"xR™), f€E.

Corresponding to the compact interval I = [0, T] in R and to the fixed
data x,€R", f €E and the control ue L7 (I) = L™ (I, R™), let us consider the
initial value problem

(4.1) v =f(t,y,ut)) ae tel, y(0)=x,.

By the global boundedness of f €E, the integral curve r = y(t) = y(t, u, f) of
(4.1) is defined everywhere on [.
Consider the linear variational control system of (4.1) along the response

t = y(t, u,f),
(4.2) () = fi(t, y(t, u, f), u@)z(O)+£ (8, y(r, u, f), u(@®)v(t)

for any vel” (I), and denote by X(t, u,f) the fundamental matrix of (4.2)
such that X (0, u, f) = idR,,

The linear differential system (4.2) is useful for studying the different-
iability properties of the mapping Y: L% (I) x E = C(I, R") defined by

@3) Y, [f)t)=y(, u f) for all (uf)eLm(J)xE and tel.

LemMA 4.1. The mapping Y of (4.3) is C'*! differentiable. If u, v,
qel? (1), f, heE and tel, the following formulae hold:

Y. (u, N)(@)(0) = yu((0) = X () [ X () fuls, y(5), ul)v(s)ds,
0
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Yi(u, YR (1) = yr (D (W) = X (1) [ X (5)" " h(s, y(s), u(s))ds,

0

Yoi(u, f}(q, v){t) = yu (D (g, v)

=X@ X7 [ fixls, y(), u(®)(vi ()@, vi(s) @)+
0

o (52 (), u(9)(yu () (@), v(9))+ S (5, ¥ (5), u(s))(yu(s)(v), g(s)+
+ o (5. ¥(5), u(3))(g(s), v(s))] ds,
ur (u, N (e, W) (D)

=y (0@, b =X [ X ()7 [faxls, y(5), u(9) (i () @), yr () (h)+
0

(s, ¥ (), w(9) (¥ () (), v(s)+hi(s, y(s), u(s))y.(s)(v)+
+h, (s, y(s), u(s))v(s)] ds,

where we denoted
YO =y, u, (), yvi)=yuls,u, f), V() =yr(s,u,f),
Yuu(S) = Vi (s, u, [)y  yup(8) = yus(s,u, f)  and X (s) = X(s, u, f).

Proof. Since the Banach space E = B""'(R x R" xR™, R") is separable,
by choosing a sequence |E,!;», of vector subspaces of E such that

E=\JE, EcE,, and dmE =i for every iz=]l,
i1
it is sufficient to prove the C™*! differentiability of the restriction of Y to
L7, (I) x E; (denoted again by Y) for every i > 1. The mapping Q: I xR" x E; x
x R™ = R" x E; given by Q(1, x, f, w) = (f(t, x, w), 0), (, x, f, w)el x R" xE; x
x R™ is differentiable of class C"*' (cf. Abraham-Robbin [1], Theorem 10.3).
Then we can apply Theorem 3.3.11 in Grasse [3] (see also [4], Theorem 2.9,
and [5], p. 379-380) to the control system Q on the finite dimensional space
R" xE; to deduce that the solution x(-, f, u)eC(I, R" xE,;) of the Cauchy
problem x = Q(r, x, u(1)), x(0) =(xo,f), depends C"*' differentiably on
(f, wyeE; x L7 (I). Because x(t, f, u) = (y(t, f, u), f), it follows from (4.3) that
Y is a C"*! mapping. The formulae for the partial derivatives of the mapping
Y are direct consequences of (4.2), (4.3) and the variation of parameters
formula. For example, the derivative Y, (u, f)(v) is obtained from the fact that
t =y, (t, u, f)(v) is the unique solution of (4.2) vanishing at t = 0 (see Grasse
[4], Corollary 2.13). This completes the proof.
We are concerned with the optimal control problem
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r
(Py) minimize [g (¢, y(r, u, f), u(t))dt
o
over all controls ueM subject to (4.1), where M denotes a compact C"*!
submanifold of the Banach space L7 (I), g: I xR"xR™ =R is a function
which satislies condition (H,) of Section 3 (with U = R"yand t = y(¢t, u, ) 1s
the unique absolutely continuous solution of (4.1) starting from the fixed
point x,€R". Here f €E is viewed as a parameter.
The following hypothesis will be made.

(H If (u,f) is a point in M x E such that the following orthogonality
condition holds

T T
44) | Solsy y(8), u(s)* X (s)* ! { X (t)*grad, g(t, v(n, u(r))de +
0 3

+grad, g(s. v(s), u(s)), g(s)>ds =0 for all geT,M < L" (I)

and If {eT* M, then there exist ve T, M and heFE such that
,

4.5) <= J[gulee y (), u@) (O ), yu @) +y7 (O ) +
0

+g% (6 O, u@)(a (O (), () +

+ g%t y (@), )y () @) +y (O (), () (0)+
+ oo (. Y (O, uO)(C) (), v D)+

+g(t, y (@), uM) (VO G, )+ (O, R)]de.

In (4.4) and (4.5) we used the notations y(1) = v(t.u.f). X{()=X(r.u,/f)
and similar abreviations for y,, v, v, and y,, evaluated at (¢, u,f). The
partial derivatives appearing in (4.5) are described by explicit formulae in
Lemma 4.1. In (4.4) the superscript * means the transpose of a matrix and
(, > denotes the canonical scalar product in R™.

THEOREM 4.2. For every f€E = B"*'(R xR"x R"™, R) consider the con-
trol problem (Pg) with fixed data g: 1 xR"xR™ >R, M < L" (I) and x,€R"
as ahove. Assume that hypothesis (H) is verified. Then there exists an open
dense subset G of E such that, for every f €G, problem (P) has only a finite set
of solutions. Moveover, for each component G, of G there exists a finite set of
C" mappings @;: Go => M, 1 <i <k, such that if f €G, every solution to (Py) is
an element of (@;(f), 1 <i<kj. In particuiar, for any component Gy of G
there is a finite number k such that, if [ €Gqy. problem (P;) has at most k
solutions.
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Proof. We proceed as in the proof of Theorem 3.1, First, we introduce
the function J: M xE = R by

T

(4.6) Ju, f) = ‘[g(r, y(t, u, ), u(t))dt  for (u,f)eM xE.

1]

It follows that J is the composition

4.7 J =Fol(Y, pry),

where pr,: M xE — M is the projection onto the [irst factor, Y is the
restriction to M x E of the mapping Y of (4.3) and F: C(I, R") xL%(I) >R
is the C"*! mapping defined in the proof of Theorem 3.1 (with U = R").
Then Lemma 4.1 ensures the C"*!' differentiability of the function J, and

because E is a separable Banach space, it follows that condition (i) in
Theorem 2.1 is verified. By (4.7), Lemma 4.1 and the chain rule, one finds

Julu, ) ) = F'(Yu, f), u)(¥, (u, [)(©v), v)
= g[y."-(u y(1), u(t) X (1) ;[X(s)‘ Vs, y(s), u(s))v(s)ds+
+g(t, y(0), u@®)v(n)] dt
= 1 (fuls, y(s), u(s)* X (s)* ! E'X(t)* grad, g (t, y(1), u(t))de +

+grad, g(s, y(s), u(s), v(s) Dds
for all (u, f)eM xE and veT, M,

the final equality being obtained by interchanging the order of integration. It
turns out that the orthogonality condition (4.4) means the vanishing of
Jo(u, f)eT* M. Similarly, using (4.7) and Lemma 4.1, one sees that relation
(4.5) expresses the surjectivity of the mapping

(0, e LM xE = Jo,@u, ) (-, )+ T (w, /) (-, heTF M.

This shows, in the case of the functional J of (4.6), the equivalence between
hypothesis (H) and condition (i) in Theorem 2.1. It suffices to apply
Theorem 2.1 for ending the proof.

Remark From Theorem 2.1 it follows also that, if ueM is a solution
to (P;) with f€G, then the partial derivative Ji,(u, f) of the mapping J
(introduced in (4.6)) is an isomorphism of T, M onto T, (T;* M) = T* M.
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