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Almost Hermitian structures on the frame bundle
of an almost Hermitian manifold

by R. CAsTrRO and A. TARRIO (Santiago de Compostela)

Abstract. Let (M, g,J) be an almost Hermitian manifold and consider on its [rame bundle
(M) the almost Hermitian structure (g®, J¥). In this paper we study the type of almost Hermitian
structure §§{M) acquires when we consider a particular one on M and we prove that there exists
some type of almost Hermitian structure that (F(M), g%, J%) cannot possess.

Introduction. Let M be an m-dimensional differentiable manifold of class
C= and §(M) its frame bundle. Mok [5], [6], and Cordero & de Ledn [2], [3],
develop the general theory of lifts to §(M) of tensor fields on M. In particular,
in [5] Mok introduces a Riemannian metric g° on the frame bundle of
a Riemannian manifold (M, g), metric which is very similar to that defined by
Sasaki [7] for the tangent bundle, and that we shall call the Sasaki-Mok metric
induced on {F(M).

In this paper we suppose (M,g,J) an almost Hermitian manifold, we
consider on ®%(M) the almost Hermitian structure (g2J%) and study, in
a similar way as was done for T(M), [1], the type of almost Hermitian
structure (M) acquires when we consider a particular one on M. Moreover,
we prove that there exists some type of almost Hermitian structure that
(§(M), g°, J¥) cannot possess.

1. In this section, we summarize all the basic definitions and results that
are needed later.

In the following all the manifolds, maps, connections in question are
supposed to be differentiable of class C*.

Let M be an m-dimensional differentiable manifold, (M) its frame bundle
and m §(M)— M the projection map.

For the coordinate system (U, x) in M, we put §(U) ==~'(U) and the
vector X, of the frame p,e§(U) can be uniquely expressed in the form
X, = X1(8/0x"),, so that {§U),(x, X!)} is a coordinate system in F(M).

Let ¥ be a linear connection and X a vector field on M with local
components I'}; and X", respectively. Then there is exactly one vector field XH
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on §(M), called the horizontal lift of X, and exactly one vector field X on
&(M) for each a=1, 2, ...,m called the a'-vertical lift of X, [3].

If X = x‘g‘% in U, then in §(U),

0 0 0

H__ yi_~ _ vyirh vk (@) — YI .

XU = X' =X Xy X9 =X'gm

If f is a differentiable function on M, f°=fon denotes its canonical
vertical lift to §(M), and f# = 0 its horizontal lift.

If F is a tensor field on M of type (1, 1) with components F4 in U, then

0 d
m@dxj-f' 5?; F?m

FH = Ff%,;@dx’+Xﬁ(F§,, Fi— It FY) RdX]

in (V).

If one takes into account the different definitions of lifts, the following
formulae are easily obtained:

XH(M) = (X)), X9 =0,
FH(X®) = (F(X)®, FA(X¥) = (F(X)".

The brackets of vertical and horizontal lifts are expressed by the following
formulae:

[X®,YP]=0, [XHY®]=(P,Y)®, [X"Y"]=[X,Y]"—yR(X,Y),

Where R(X, Y) = [VX’ Vy]"‘ V[x,y].

Let now (M, g) be a Riemannian space, V an arbitrary and not necessarily
metric connection on M. The diagonal lift g° of g to ¥(M) with respect to
connection ¥ is a Riemannian metric on §(M) determined by the identities, [3],

X5 Y = {gX, 7)Y, (X", Y¥) =0, gP(X®,YP)=5{g(X, 1)}

for any vector fields X, ¥ on M and o,f=1,2...,m.

In the sequel, ¥ shall represent the Levi-Civita connection on the
Riemannian manifold (M, g) and will denote by ¥ the Levi-Civita connection of
(&F(M), g”). This connection is determined by

V@ YP =0, g°(Fye Y7, Z®) =0,
G° VY, Z%) = —33°(yR(Z, Y), X®),
g°(Vxu YO, ZP)= 5% {g(v, Y, 2)}¥,

g°(7 Y@, Z¥)= —44°(yR(Z, X), Y®),
g° (Vxn YH,Z®) = —4gP(y R(X, Y), Z@),
g° (Vxu Y2, ZH) = {g(Vy ¥, Z)}"
for all vector fields X,Y, Z on M, and o,f=12...,m
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Furthermore, if (M,g,J) is an m-dimensional (m = 2n) almost Hermitian
manifold and we consider the horizontal lift of J, J¥, the Sasaki-Mok metric g°
is a Hermitian metric with respect to J” and we may conclude that (§(M), g°,
J®) is an almost Hermitian manifold.

The derivative and coderivative of the Kéhler form F of (F(M),g®, J¥) and
the Nijenhuis tensor of the almost complex structure J¥ are given by the
following theorems.

THEOREM 1.1. The derivative of the Kdhler form of the almost Hermitian
manifold (§(M), g°, J¥) is given by:
() dF(X¥, Y4, 2 = (dF(X, Y, 2))",
(i) dF (X", Y",Z®) = }g°(YR(X, Y),(JZ)"9),
(iii) dF(X", Y, ZO) = 4697, F)(¥, Z)}",
(iv) d ﬁ'(x(a), Y™ Ze) =0
for any X, Y, Z vector fields on M and o, B, p=1,2,...,2n.

Proof. It is a straightforward computation just taking into account that
FR ¥ =g"X,J"Y).

THEORBM 1.2. The coderivative of the Kéhler form F of the almost Hermitian
manifold (§(M), g°,J) is given by:

SE(XH) = (BF(X)), SF(XW) = Y gPGR(E, JE),X®)
i=1

with respect to a J-basis {E,,...,E,,JE,,...,JE,} of (M, g,J), and for any vector
field X on M.

Proof. Let us remark that if we consider the J-basis of (M, g, /) mentioned
above, then {Eff,(JE)", E{ (JE)®; i=12,...,n,a =12,...,2n} is a J¥-basis
for (F(M),g°,J").

THEOREM 1.3. The Nijenhuis -tensor of J¥ is given by:

(i) N( X“), y(ﬁ)) =0,
(i) NXH, Y% = (NX, )} —y{R(JX,JY)-JR(X, Y)-JR(X,JY)
-RX, 1)},

(iil) N(XH, Y®) = {V;x(J) Y =JVx()) Y},
where N is the Nijenhuis tensor of the almost complex structure J; X, Y vector
fields on M and a,f = 1,2,...,2n.

2. In the sequel we shall consider the classification of Gray-Hervella [4]
of almost Hermitian manifolds.

According to this classification and the fact of @ (§(M), g% J%)—+(M,g,J)
being an almost Hermitian submersion with totally geodesic fibers, it is
possible to deduce what kind of almost Hermitian structure (M, g,J) possesses
when it is assumed that (§(M),g° J¥) has a given one [8].
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Moreover, in this paper we give the following improvements to these
results:

THeoREM 2.1. If (§(M),g° J®) is a G -manifold or a G,-manifold, then
(M, g,J) is a Hermitian manifold.

Proof If (F(M)g®J¥) is a G,-manifold, then

S {°(7z(") ¥, 2)—g° (P sz (U™)J" T, 2)} = 0
xX.r.z
for any X, Y, Z ex(i}’(M)), where S denotes the cyclic sum.
In particular, taking X = X@, ¥= Y@, Z = Z*", where X, Y, Z are vector
fields on M, we obtain

{07 (N X, N)=g(F,z()IX, V)}" =0

and the result follows.
An analogous method proves the case of G,-manifold.

CoroLLARY 2.1. If (F(M),g%J") is a W, @W,-manifold or
a W,®W,-manifold, then (M,g,J) is a Wy-manifold.

Proof. It follows taking into account Theorem 2.1, the Watson’s results
[8) and the inclusion relations among the almost Hermitian manifolds.

3. In order to study lifts of different almost Hermitian structures on
(M, g,J) to (§(M),g°,J¥) we shall consider in some cases that the curvature
tensor R of the connection ¥ on M satisfies the K,-curvature identity, also
known as Kahler identity, ie., R(X, Y, Z, W) = R(X, Y,JZ,JW) for any vector
fields X,Y, Z,W on M.

In the sequel we shall represent with the subindex 1 the class of almost
Hermitian structure that satisfies this identity.

Some relations among the almost Hermitian manifolds and those that
verify the K -curvature identity are given in the following theorem [9].

THEOREM 3.1. In the lattice of almost Hermitian structures, the following
relationships are true:

(i) K=K, =NK, = AK,,

(i) K< H,,

(i) K < @K,
(ng = nearly-Kdhler. AK = almost-Kdhler. QK = quasi-Kdhler. H = Hermi-
tian).

THEOREM 3.2. If (M, g,J) is a H -manifold, (§(M),g®, J") is a H-manifold.

Proof If M is a Hermitian manifold, then N = 0 and since M satisfies the

K,-curvature identity, the desired result is obtained as a consequence of
Theorem 1.3.
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TueoreM 33. If (M,g,J) is a non-flat Kahlerian manifold, then
(FM), g°,J") is a Hermitian manifold that is not a Wy-manifold.

Proof. Trivially, (§(M),g® J¥) is a Hermitian manifold. Moreover, it is
not a W,-manifold, because if it were we should have

4P (Ve (I XM, Y) = g° (X", X")6 F(Y*)

2(2n*+n—1)
for any vector fields X, Y on M, and using Theorem 1.2 we have

1
22n*+n-1)
Setting X = E, and bearing in mind that g”(yR(X, Y),Z¥)=0 for all
X,Y, Ze ¥(M), we obtain R(X,JX)=0 and thus, since M is Kdhlerian, it

follows that R = 0.
Let us recall now that the Ricci*-curvature tensor g* is defined by

—-3g°(R(X,JX), Y®) = 1112 E g°(PR(E,, JE), Y*®).

e*(X,Y)= } R(X,JY, JE,E),
=1

where {E,JE; i=1,2,...,n} is a local orthonormal J-basis for ¥(M).

THEOREM 34. If (M,g,J) is a semi-Kdhler manifold with ¢* =0, then
(FM),g°,J%) is a semi-Kdihler manifold.

The result follows from Theorem 1.1 and the fact that, for an almost
Hermitian manifold (M,g,J), ¢* =0 if and only if

S R(E,JE)=0.
=1
CoRrOLLARY 3.1, If (M,g,J) is a Kdhlerian manifold with ¢* =0, then
(F(M), g%, J") is a W,-manifold.

This follows from Theorems 3.2 and 3.4.

TreoreM 3.5. If (M,g,J) is a manifold belonging to one of the classes
WSW,, W,&W,, W,0W,&W, W,0W,0W, WSW,®W, then (F(M),g"J")
Is a W-manifold.

Proof Taking into account the inclusion relations among this type of
manifolds, it will be sufficient to prove the result for the classes W; @ W, and
W,ow,.

Since m: {F(M)—M is an almost Hermitian submersion, if M were
a W,®W, or W,@W,-manifold, §(M) could only be a W, @W,®W,,
w.ew,ew, W,®W,®W, or a W-manifold; but according to Theorem 2.1,
®(M) can be neither a W, ®W,® W, nor W,@W,®W,. Neither can §F(M) be
a W,®W,®W,, because if it were such a manifold, we should have
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(73 UH) ¥ 2)+g°( sz (J™) J* 1,2)
1 D
S — D 6F(2)—gP(X,2)6 F (Y
s & DIFD-g" X 2)5F (D)

—gP (R, JE D)6 F(JH2) + g (X, JHZ) 6 F (I T)}
and then, in particular, taking X = X*¥, ¥ = Y®, Z = Z we should obtain
g(Vx(J) Y+ VP x(J)JY, Z)=10,

that is, M would be a quasi-Kahler manifold.

Remark. It is understood that (M, g,J) belongs to the kinds of almost
Hermitian manifolds mentioned above and not to their proper subspaces.

THroReM 3.6. If (M,g,J) is a non-flat almost Hermitian manifold that
satisfies the K -curvature identity, then (§(M), g®, J¥) cannot be a quasi-Kdhler
manifold.

Proof. If (F(M),g° J¥) were a quasi-Kdhler manifold, then
(V3™ ¥.2)+g°(Vmz(J" JY, 2) = 0
for all X, ¥, ZeX(F(M).

In particular, taking X = X¥, ¥= Y@, Z = ZH, with X, Y, Ze (M) we
obtain

YR(X,JX)=0
and by polarization

YR(X,JY) = —yR(Y, JX).

Hence, since M satisfies the K,-curvature identity, it follows that
yR(X,JY) =0 and then R =0.
Finally, since we have obtained for (§(M), g°, J¥) analogous resuits to that

obtained for T(M) in [1], in a similar way to [1], we obtain the following
theorem.

THEOREM 3.7. The frame bundle §(M) of an almost Hermitian non-flat
manifold (M, g,J), with the Sasaki-Mok metric g° and the almost complex
structure J9, is an almost Hermitian manifold that does not belong to any of the
Jollowing classes: K, W, W,, W,, W,&W,, W,®&W,.
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