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1. Introduction. Let Z denote a closed linear subspace of a Banach
space F and let xeF. An element z,eZ is a best approximation of x from
Z provided

b(w) = inf{|lz—2|: zeZ} = [w—2,|.

Let Bj(x) = {20eZ:|lx—2,|| = b(x)}.

It is well known and easy to prove that B,(x) is bounded, closed
and convex. It can be empty. Indeed let  be the continuous functions
on [0,1] with

lell = sup{la()]: 0 <t < 1}+ [ |o(2)|dt;

2o(t) =1, and Z = {zeE:2(0) = 0};

then By (z,) = Q.

A subspace Z in E is a Haar subspace provided B, (x) # O for each ze E;
and a subspace Z in F is a Cebyev subspace provided B, () is one pointed
for each ze¢FE. A simple argument shows that each finite-dimensional
subspace F' of a Banach space EF is a Haar subspace. It is also easy
to show that in a strictly convex space a Haar subspace is Cebygev.

In order to state the problems considered in this paper we need the
following notations. In general, we will use {-} to denote sets, [ ] to denote
closed linear spans of the indicated sets, and (-) to denote sequences.
For a sequence (z;) in E let

L, =[x;:i<n] and L" = [z;:%>n].

If X' denotes the family of finite subsets of the set of positive integers,
w, directed by inclusion and if ¢eZX, we similarly define
L, =[x;:ie0] and L° = [x;:iew\o].

We also let B,(x), B"(x), B,(x), and B’(x) denote B;, (), Bin(x),
B, _(») and BYs(z) respectively. We say that a sequence (x,) in E is
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fundamental provided [z,:new] = E. Finally £ (X, Y) denotes the set
of all continuous linear operators from X to Y.

In this paper we are concerned with the following general problems:

Under what conditions on a fundamental sequence (x,) in F does
there exist a sequence (u,) [a net (w,)], u,eZ?(¥,L,) [u,eZ(H,L,)], such
that u,(x)eB, (z) for each n [u,(x)eB,(x) for each ¢eX2]? Similarly for
L" and L°. What about uniqueness? ‘

We will examine these questions by means of the notions of mono-
tone sequences (§ 2) and orthogonal sequences (§ 5). This latter notion
is closely related to the notion of an (unconditional) Schauder basis, which
we now define. A system (z;, f;), (#;) < E, (f;) = E* is biorthogonal pro-
vided f;(x;) = 6. If (=, f;) is a biorthogonal system with (»;) fundamental
in E, then (z;, f;) is a Schauder basis for E provided, for each ze¢E,

(1) x = Zfi(?”)a"i-

We say that (x;) is a basis with coefficient functionals (f;).

A sequence (x;) is basic in F if (;) is a basis for [#;: 1€ w]. Moreover,
a basis (x;) is unconditional provided the convergence of (1) is unconditional
for each zeF.

The following internal characterization of basic sequences in E will
be referred to throughout this paper as the Grinblyum K-condition:

A sequence (z,) is basic in ¥ [an unconditional basic sequence in ]
provided there is a K such that for every p < ¢ [¢ & o', ¢’ ¢X] and arbitrary
scalars a, ... a, [(@;)c]

| Sne <& Soa] [ 3as |

Associated with a basis [unconditional basis] (z,, f,) are the operators
S, and R, [S, and R,] given by

]
< KH Z ;7
tea’

8u(@) = D fiw)w; . and  R,(2) = 2— 8, (),

[8:(@) = D fi@)a, and  RB.(2) = 2—8,()].
In § 3 we examine the fundamental work of Nikol’skii[9] (see also [16])
Our proofs are new and simpler.
In § 4, following the expository paper [15] we give some characteri-
zations of bases In terms of best approximation.
Finally, in § 6, we consider the notions discussed in the first five
sections in the space C[0, 1].
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Except for the material discussed in the introduction and the results
of § 6 the paper is self-contained.

The author is indebted to Professor I. Singer for many long con-
versations concerning the material in this paper and to Professor R. C. Ja-
mes for the pleasant collaboration on the paper [13].

2. Monotone sequences. Following [15] we say that a sequence (x;)
in a Banach space F is (2.1)

n n+1
(a) monotone provided |3 a;x,)| <|| Y a;x] for all n and all choices
=1 =1
of scalars ay,...,a,.,;

(b) strictly monotone provided strict inequality holds in (a) whenever
Ay 7 05

r1=n-

(c) co-monotone provided || i’ a;x|| <|| f a,2;|| whenever g’wimi
i=n ) 1 t=1 ’
converges; and,

(d) strictly co-monotone provided strict inequality holds in (¢) when-
ever a,_, # 0.

It is clear that the above conditions on a sequence (z,) in E are
rather strong. Indeed,

(2.2) PrROPOSITION. If (x;) is a sequence in E, x, #* 0 for each n and
[z,: ne ] = E, satisfying any of (2.1), (a)-(d), then (x,) ts a Schauder
basis for E.

Proof. We show that in all cases (z;) satisfies Grinblyum’s K-con-
dition.

Of course, this is immediate if (z,) satisfies (a) or (b). If (x,) satisfies
(e) or (d), then

q
| 3 e
t=p+1

q
<[ 3
i=p

q
<. < HZaiwi
i=1

Thus

»
?

| X o
i=1

proving (2.2).

Obviously, we could consider basic sequences and delete the hypo-
thesis that (x,) is fundamental. We choose not to do this, however, and
so for the remainder of this work we assume that (x,) is a basis for E.

(2.3). Example. (i) The unit vector basis (e,) of (¢,) is both mono-
tone and co-monotone, but strict in neither case.

(ii) The unit vector basis of 1! is both strictly monotone and strictly
co-monotone.

q q
= H E a;¥; — Z a;x;
) i=p+1

1= 1=

q
7

<2 ” }, a;z;
o

|
l
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Of course, it is easy to construct bases that satisfy none of the con-
ditions of (2.1).

(2.4) Example. Let (¢,) denote the unit vector basis of (¢,) and
consider the following basis: %, = e, #, = —3e,+ 46, 23 = —46,—
—3%e,+3e; and x, = ¢,, n > 4. With respect to the usual norm on (¢,),
(z,) is neither monotone nor co-monotone. Indeed, |z,]| = 1, ||z, + =, = 3
and so (x,) is not monotone; and, ||z,+ z,+ x5 = 3, |@;+ 25| =1 and
so (z,) 18 not co-monotone.

In [18] an example is given in I! showing the above. However, there
is an error in this example. It is easy to check that the sequence given
in [18] is not a basis for I*.

A natural question arises:

Can a basis be (strictly) monotone without being (strictly) co-mono-
tone? Conversely?

18

It
—

(2.5) Example. Consider the space (bv,) = {x = (2;) e(c): D |o;— 24|

1

< + oo} with norm given by

(@)l = Z @ — @311+ _Z ;] 27",

It is easy to check that the unit vector basis (e,) is strictly monotone
with respect to this norm. But |e,+ 6] = 2+272+272 and ||e;+ €,+ €|
=14+2"242"24+27% and so (e,) is not co-monotone.

(2.6) Example. Consider (¢,) but with norm given by

1 n n -
(el = sup - [Z i+ 3 lae— il | + sup )
" i=1 i=1 m=n

One can show by an argument similar to that given in § 3, Theorem
(3.3), that the unit vector basis is strictly co-monotone with respect to
this norm. However, |l¢,|| = 3 and |le;+ €] =2-+27' and so (e¢,) is not
strictly monotone.

We now prove the fundamental theorem (cf. [18]).

(2.7) THEOREM. Let E be a Banach space with a basis (x;, f;).

Then

(a) (x;) 18 monotone if and only if R,(x)eB"(x) for all n and all xeE;

(b) (=;) s strictly monotone if and only if {R,(x)} = B"(x) for all
n and all xel; .

(e) (#;) s co-monotone if and only 8,(x)eB, (x) for all n and all x<E;

and
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(d) (x;) ts strictly co-momotone if and only if {8,(x)} = B,(x) for
all n and all zek.

Proof. We prove (a) and (b); the others are similar.
(a) Let

x =2fi(w)mieE and vy = Z b;x;e L".
i=1 t=n+1
If (z;) is monotone, then
le— R, (z)| = I8, (@)l < I8, (z)+ [fn+1(m)_'bn+1]mn+1“ <. e—yll,.
i.e. _
R, (x)eB" ().
Conversely, if RB,(x)eB"(x) for all » and x, then, since L"! > L*,
18,1 @) = ll&o— By (2)]| < llo— By (@)} = [I8, ()]

and it follows that (z;) is monotone.

(b) If (x;) is strictly monotone, then by what was just proved
R, (z)eB"(z) for all n and « . Suppose there is an » and « and y,¢B" ()
with y,# R, (x). Since

R, (v)—Yy, = 2 file—yo)w; # 0,

t=n+1

there is an N > n-+1 such that

N
D fim—y)l # 0.

Let
¢ =80+ D file—yo)a.
i=n+1
Then

[18n (@) =18, () < I8N (2 < - < Mol = e —Yoll = llz— By (@)l = IS, ().

This contradiction shows that {E,(x)} = B"(z) for all » and .

Conversely, if {R,(x)} = B"(x) for all » and x, then, again by the
above, (z;) is monotone. If (x;) is not strictly monotone, then there is
an integer N and scalars a,,...,ay,, # 0, such that

N N+1
| X ase] =] 3 @iz
in i

N
It « = ) a;x;, then Ry(x) = 0 and so, by hypothesis, BY (z) = {0}.
=1
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In particular, inf {||x—y||: y e LV} = ||z||. But ||z is attained for y —ax_.,Zy.,
eL” and so y = 0, i.e. ay,, = 0.

The interpretation of examples (2.3)-(2.6) in terms of theorem (2.7)
is immediate.

It is well known that if («;) is a basis for a Banach space E and (f;)
its sequence of coefficients functionals, then (f;) is a basis for [f;: tew].
In view of (2.7) the following duality theorem is interesting:

(2.8) THEOREM. If (z,,f,) i¢s a basis for a Banach space E and (x,)
18 monotone, then (f,) 18 monotone. The converse is false.

Proof. If (z,) is monotone, then clearly |S,(z)| < |2/ for every
xelF and for every n. Thus for ||| <1 and scalars a,, ..., a,,, Wwe have

n+1 n+1 n
HZ a:fs >l2 aifi(sn(“")” =’Zaifi(w)l-
i=1 i=1 i=1
Since this is true for each z in the unit ball of E, it follows that

n n+1
“g;“ifi <H§ a:f;

To see that the converse is false consider the following basis for

(€)=

n
Tn = Z(_l)nﬂei Jo = atenyrs
=1

where ¢, denotes the ' unit vector in (¢,) and li, respectively (this basis
was constructed by B. R. Gelbaum for a different purpose).

Now 1 = ||z,|| > 3 = ||#,+ 4z, and so (z,) is not monotone. However,
(f,) is a monotone basic sequence in I!. To see this observe that for scalars
a and b,

lafill = 2lal < lal+|a+bl+ |b] = |laf,+ bfol.

That (f,) is monotone follows by induction.
The above example shows that the assertion of proposition 2.3,
Part I, of [15] is not valid in general.

3. K-, T- and KT-norms. In this section we present the fundamental
work of V. N. Nikol’skii. The proofs, however, are new and because of
(2.7) simpler than Nikol’skii’s original proofs (see [9] and [16]).

(3.1) Definition. Let £ be a Banach space with a basis (x,). The
norm on F is said to be

(i) a T-norm (CebySev morm) with respect to (x,) if and only if
B,(x) = {S,(x)} for all n and all zeFE;
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(ii) a K-norm (Canonical norm) with respect to (x,) if and only if
B*(x) = {R, (x)} for all » and all z¢F; and

(iii) a KT-norm with respect to (x,) if it is simultaneously a T-norm
and a K-norm.

Nikol’skii [8], [9] has shown that in any Banach space with a basis
one can introduce K-, T- and KT-norms equivalent to the original norm
of E. To show that B, and B™ had the desired form, Nikol’skil used the
rather laborious arguments referred to above. In view of (2.7) we will
need only show that the norms introduced below are strictly monotone,
strictly co-monotone or both.

The Nikolskit norms. If (x;, f;) is a basis for a Banach space E with
norm ||-|| we introduce the following norms in E:

ol = sup ] Zfz(w

|} + L Ifs (@) w1277,
ol = sup -~ anz(wmnﬂl Yf,(w I

o+ 2 fi@ e}
i=n+1

(3.2) THEOREM. The norms ||*|g, ||'llr and ||-||gr are all equivalent
to |-l |
Proof. It is clear that all three expressions are indeed norms. Let

K be the number guaranteed by Grinblyum’s K-condition. First observe
that

lolgr = sup {HZ fil@)e;
n 1

1fa (@) @]l = llo— (Sy_1) (@) + B, ()] < 2(K +1) ||

since ||S,_,(z)|| < K ||z|| and ||R,(x)|| < (K4 1)|| for all » and .
Thus

follp = sup - Z|1f1(mu+nR (w)n} 3(K +1) ol

Letting n = 1 we see that ||z||; > ||z|| and so || ||y is equivalent to ||-].
Now

X i@l _

SR < BE A+ 2)ol

lzllx = sup {|IS, (@)} +
n i=1
and by definition |#|| < ||lo||x. Hence ||:||x is equivalent to. -1l
From the above if follows that |z||gzr < 3K(K+1)(K-+ 2)|lx| and,
by definition, |z| < ||z||gzr. Hence |-llgr is equivalent to ||-||.

Colloquium Mathematicum XXII.1 7
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(3.3) THEOREM. The basis (x,) ts

(a) strictly monotone with respect to |-|x;

(b) strictly co-monotone with respect to ||-|r; and,

(c) both strictly monotone and strictly co-monotone with respect to |- ||gp-

Proof. The proof of (a) is trivial and (¢) will follow once we prove (b)-
To prove (b) observe that the supremum in the definition of ||- ||, is actually

a maximum. Thus for (a;) such that Z a;z; converges and .a,_, #0 there
i=1
are integers n, and m, such that

\S @ | = ||aw||+“ Z‘ 0.,

H

i=n—1 i=n—1 t=mg+1
and
(s o]
| D asa, = Znaw I+| 2 a3
i=n t=ng+1
Thus,

(o]
| X a
n-1

T no leaw

i=n-—1 —’no+

>—A|Iaw1II+H Zaw

aw,

with “greater than” holding since a,_, # 0.

Singer [17] has recently introduced the following 7- and KT-norms
for a Banach space E with basis (z;, f;) (let us remark that the KT-norm
was given earlier by Vaniéek [18] and by the author in his dissertation):

21z = sup|| 37, (@)a2~"
and o
@z = sup \L PRACES (@)@ 27".

We omit the proofs, which are similar to (3.2) and (3.3), that these
norms have the asserted properties. These norms are simpler for some appli-
cations than the norms of Nikol’skil.

Let us also mention that if ||-|| is a K-, T- or KT-norm with respect
to a basis (z,, f,) and if one introduces the norm of Day [1],

ol =[llallz+ Y Ifu(a)az2—2]",

i=1
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then one obtains a strictly convex K-, T- or KT-norm. This fact was
observed by Istritescu [6].
For a sequence (y,) in a Banach space ¥ let P, = [y;: ¢ < n] and

let P = UP

n=

For peP, p= 2“% let

m
Z' ay, i m<mn,
i=1

P ftm=n
and
Rm(p) =P— Sm(p)
We return to the work of Nikol’skil.
(3.4) Definition. The norm ||-|| of F is a
(i) weak T-norm relative to (y,) provided that for each “polynomial”
n

m
peP,p = ) a,y; and each m < m, the polynomial Y a;y; is a best ap-
i=1 i=1

proximation to p from [y;: i < m];
n
(ii) weak K-norm relative to (y,) provided that for each peP, p = >’ a,y;
i=1

n
and each m < n the “complementary polynomial” >’ a;y; is a best ap-
z—m+1

proximation to p from [y,: m+1 <7< n]; and,

(iii) weak KT-norm relative to (y,) if it is simultaneously a weak K-norm
and a weak T-norm relative to (y,).

It is clear that if (x,) is a basis for E, then a K-, T- or KT-norm with
respect to (x,) is a weak K-, weak T-, or weak KT-norm relative to (x,).
Example (2.3), (i), shows that the converse is false.

(3.5) THEOREM. Let (y,) be a non-zero sequence. in a Banach space
E with norm ||-||. Then

(a) For the norm to be a weak T-norm relative to (y,) it is necessary and
sufficient that

(a1) sup sup{|[&, (p)ll: p <P, llpll <1} = 1;
(b) For the norm to be a weak K-norm relative to (y,) it is necessary
and sufficient that
(by) sup sup {[|S, (p)ll: p P, lIpl <1} = 1;
and,

(¢) For the norm to be a weak KT-norm relative to (y,) it is necessary
and sufficient that

(e1) Max[(a,), (b:)] = 1.



100 J. R. RETHERFORD

Proof. The proof of (c) follows trivially from (a) and (b). Since the
proofs of (a) and (b) are similar, we prove (a). Suppose

= 2 a;y;eP

=1

= Zm‘bi?/ifP

i=1

If |[p—yll#£0, let p' =|lp—y| ' (p—y). From (a,) it follows that

lp"—8n(@)ll <1 and so |[(p—y)—8u(@— ) < lp—7l. Since 8,(y) = »,

we have |p—8,(@)|<|p—y| and S, (p) is a best approximation to

p from [y;:i<m]. If |p—y| =0, then y = p = §,,(p) and the result
is trivial.

and (a,;) holds. Let

Conversely, if S,,(p) is a best approximation to p = Za .y; for m < m,

then for |p|| <1 we have ||[B,(p)ll = lp—8,.(») < lpll < 1 since we are
working only with finite sums, we can clearly find p P and n such that
IR, (p)ll is near 1 as we please. Thus (a,) holds.

There is an analog of (2.7) for weak T- and weak K- norms. We
state the theorem for weak T-norms. The result for weak K-norms is
then obvious.

(3.6) THEOREM. For a norm to be a weak T-norm relative to (y,) it
18 necessary and sufficient that

< 3 o
t=m—1

n
H Z a;Y;
i=m

Jor arbitrary scalars a,,_,,..., @,, @,_, 0 and arbitrary m, n.

Moreover, if the above inequality is strict for a,,_, # 0, then for p = Zalyz

eP, best approximation to [y;: 1 < m] is unique for all m < n.

The proof is quite similar to that of (2.7).
In a discussion with I. Singer the following questions arose:

(1) Is the condition

| Z az,
t=m—1

Bufficient in order that the norm be a 7-norm?
(2) Is the condition

(all @1y ..., @, with a, _, # 0)

a; x;

(all @y +vvy Gpyy With |a, [+ @, ] 7 0)

t=m-—1

sufflclent for the norm to be KT-norm?
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It is somewhat surprising that the answer to both (1) and (2) is no.
We postpone the example until § 5.

4. Characterization of bases in terms of best approximation. In this
section we assume that (x,) is a sequence in a Banach space E with
[#,: new] = E and z, = 0 for all n. '

Again, we let L, = [2;: 1 <n] and u,(x) = inf{||lz—2||: z¢L,}.

Our first theorem is due to Nikol’skii:

(4.1) THEOREM. The following statements about (x,) are equivalent:

(i) (=,) is a basis for E;

(ii) one can introduce a weak K-norm relative to (x,) equivalent to

the original morm;

(iii) one can introduce a weak T-norm relative to (x,) equivalent to the
original norm; and,

(iv) one can introduce a weak KT-norm relative to (xz,) equivalent to
the original norm.

Proof. That (i) implies the other three properties has been observed
in the stronger form (3.2) and (3.3). That (iv) implies (i) is trivial.
One has to show that (ii) implies (i) and (iii) implies (i). Since the proofs
of those latter two implications are similar, we prove that (ii) implies (i).

q
Suppose p < ¢, D a,x; # 0; then by (3.5)(b)
i=1

|81 3] e 3

<1,
i.e.

D g
| 3 aia < || 3 aim
i=1 i1

q
If ) a;x; = 0, then, since the norm is a weak K-norm,

i=1
Y4 a q q
1
” Z a,x;|| = H E a,r; — E a;x; < “ E a;x;
i=1 i=1 i=p+1 i=1

Thus Grinblyum’s K-condition is satisfied with K = 1.

(4.2). THEOREM. The following statements about (x,) are equivalent:
(i) (z,) is a basis for E;

(ii) there is a constant C > 1 such that

= 0.

for all peP.
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Moreover, if (i) and (ii) hold, then |x— 8, (@) < Cu, (x) for all xeE.

Proof. If (x,) is a basis, then by (2.7) and (3.3) we may renorm
E so that with respect to this new norm, [||-]||, B, (x) = {8, (x)} for all
x el and for all n. Let C be such that ||z|| < |||z]|| < C|z||. Then

le— 8, (@)l < Hle— 8, (@)||| = inf{||le—2|||: zeL,} < Op,(w).
Thus (i) implies (the strong form of) (ii).
q
Conversely, if (ii) holds and p = ) a;x;¢P, then for n < g,
i=1

18, @)l < 12— 8, @)1+ lIpll < Cp (0) + llpll < (C+1)]pl 5

i.e., Grinblyum’s K-condition holds with K = C+1.
Let us recall the following simple fact:.
(4.3) PROPOSITION. If (w,) %8 a fundamenial sequence in E, then

P (%) = 0.

Proof. Clearly, u,(®)> piny (%) >0 and so (u,(x)) converges for
each zeE. Since (z,) is fundamental in E, there is a Ym,, € Ly, such that

Lm ||#— Y, | = 0. Since 0 < py,, () < 10— Y, l; it follows that lim u, (z) = 0.
7—>00 n—o0

Let us place for the remainder of this section an additional assumption
on (x,,); namely, there exists a sequence (f,) = E* such that f,(®,) = 6,n-
Now

n—

8ue) = D fil@)a;.

(4.4) THEOREM. The sequence (x;) 8 a basis for E if and only if

Lim||S,||p.(2) =0  for every xzekE.

Proof. If (z,) is a basis for F, then there is a K such that sup||S,|

=K< +oo. Thus 0<||S,||lp,(x) < Ku,(x) and the latter tends to

0 by (4.3).
For the converse, let z,eB,(r). Then |z,—8, (@) = IS, (z,—2)|

< |8yl pn (2). Thus,
llo— 8y (@) < ll&— 2,lI 4 180l 1 (#) < [I185 1| +1] e (@)
and the latter expression tends to zero by (4.3) and the hypothesis.

Theorems 4.2 and 4.4 are stated in [15].
We conclude § 4 with a theorem of Foguel [2]. Let

2l = sup|| 3 fi(@)a|| = sup|I8, (@)
n i=1 n
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Of course, this may be infinite for some 2 ¢ £. An equivalent formulation
of the Grinblyum K-condition is that (x;,f;) is a basis if and only if
[l|z|]l]] < +oc for each xeZ. Foguel’s theorem weakens this reguirement
in the following way:

(4.5) THEOREM. The biorthogonal sequence (x;,f;) is a basis for E if
and only if for each x ¢ F there is a z,eB, (x) such that (]]12,]]|)n=, 78 bounded.

The proof of (4.5) is an application of the Baire category theorem.
We first prove a lemma.

(4.6) LEMMA. Let 8 <= K be such that each xS is the limit of a sequence
(¥,) and (|||y,]l|) s bounded. If (x,, f,) is not a basis for E, then 8 is a first
category set.

Proof. Let B, = {xeB: |||z]|| = +oo}. Then
By =B\ U () {0eB: |8, @)l <K}.

If (x,,f,) is not a basis for FH, then (using the Banach-Steinhaus
theorem) FE, is dense and second category in K.
Let

|18, (@)]]]
1+ (18, (@)1~

V(%) =

Then 0<0,(z)<v(2)<...<1l. If o(2) =lim »,(x) and zeE,,

n—>00

then v(2) = 1. Since F, is dense in F, v(z) = 1 at every point of continuity
of v. It follows that if # is a point of continuity of v and limy, = #, then

n—0o0

limo(y,) = v(x) =1 and so (|||y,|||) is unbounded. Clearly, 8 is a subset
n—-00

of the set of points of discontinuity of v», which is a first category set.
Proof of (4.5). If (x;, f;) is a basis, then by Grinblyum’s K-condition
there is a K such thﬁbt Hz||| < K|lz||. If 2,eB,(x), then |||z,||| < K|,]
< K{|l@ll+ llo— 2,111 < 2K lo]].
Conversely, suppose zeE and z,eB,(x) with (|||2,|||) bounded. By
(4.3), lim ||z—z,|| = 0 and so zeS. Thus § = E and, by (4.6), (2, f;) is

n—>oo

a basis for F.

5. Orthogonal sequences; NK-, NT- and NK7-norms. Following
[14] we say that

(5.1) a sequence (x;) in a Banach space E is
(a) orthogonal provided || 3 a,;|| <||Y a;2]| for arbitrary a, 8, a < 8,
iea 1€

Be 2 and arbitrary scalars (a,);;
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(b) strictly orthogonal provided the inequality of (a) is strict whenever

2 la;| # 0;
ief\a

(¢) co-orthogonal provided | Y ez <|| 3 a;#) for arbitrary
tew\ p teo\\a
a, B, ac B, feX and arbitrary scalars (a;) for which ) a;x; converges;
iew
(d) strictly co-orthogonal provided the inequality of (c¢) is strict when-

ever D |a;] # 0.
tef\a

There is a theory for orthogonal sequences analogous to that deve-
lopped in § 2, 3 and 4. Because of the similarity of proofs we will only
state results.

(5.2) Remarks. (i) A sequence (z,), ©, # 0, [z,: new] = E, satisfying
any of (5.1), (a)-(d), is an unconditional basis for E.

(ii) The unit vector basis of ¢, satisfies (a) and (c) but not (b) and (d).
The unit vector basis of I* satisfies (b) and (d).

In §2 examples were given showing that the notions of strictly
monotone and strictly co-monotone are completely different.

This is not quite the case with orthogonal sequences.

(5.3) PROPOSITION. (i) The mnotions of orthogonal and co-orthogonal
sequences are equivalent.

(ii) A (strictly) orthogonal sequence is co-orthogonal.

(iii) A strictly co-orthogonal sequence s strictly orthogonal.

Proof. (i) It is clear that a co-orthogonal sequence is orthogonal;
the converse follows by passing to the limit.

(ii) and (iii) are immediate.

That the converse of (iii) is not valid is much more difficult. The
example given below was first given in [13].

(5.4) Example. Let ¥ have the same members as (c,) but with
norm given by

(@1, @2y - = sup @y |02+ Y|a, (277,
i
where the sup is for all n > 2 and all permutations (p,) of o\ {1, n}. If |z|
denotes the usual supremum norm of (¢,), then it is easy to see that

and so ¥ is isomorphic to (c¢,). ,

1. The unit vector basis (e¢;) of F is strictly orthogonal. To see this,
let e, acf. The norm of > a;e; is attained for a particular value of

t€a
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n and a particular permutation (p;). A larger sum must be attained when
this same » and permutation (p;) are used for >’ a,e;, provided D' |a,]+# 0.

teB 1€\ a
2 y 1 = ' 1 _°°12_m d i t strictl
. 2_67" = dem = 2%— and so (e;) is not strictly
m=1 m ' m=2 ' m=2

co-orthogonal. By definition

Also,
v: L ém || = 8U E L 27" = E -m
— €p || = 8up —2
m=2 m m=2 m m=2 m
m#n
Since
1 2 1 1 2” 1 Z‘” 1
_2—n_l_ _2—m < 2—n+ _2—'m —_ _2—'m,
n n m m
m=2 m=2 m=2
m#n m#n

the result follows. Example (5.4) is the promised counter-example to (1)
and (2) of § 3.

We now give the definition analogous to (3.1).

(5.5) Definition. Let E be a Banach space with an unconditional
basis (2,). The norm on ¥ is said to be

(i) an NT-norm with respect to (x,) if and only if B,(x) = {8,(z)}
for all 0eX and xzeE;

(ii) an NK-norm with respect to (x,) if and only if B°(x) = {R,(z)}
for all oe2 and xeE, and

(iii) an NKT-norm with respect to (x,) if and only if it is simultaneously
an NT- and NK-norm.

The above notions were introduced by Singer [14].

The theorem analogous to (2.7) is valid.

(5.6) THEOREM. Let E be a Banach space with an unconditional basis
(z,). Then morm on E 1is

(i) an NT-norm with respect to (x,) if and only if (x,) is strictly co-
orthogonal;

(ii) an NK-norm with respect to (x,) if and only if (z,) is strictly
orthogonal; and

(ili) an NKT-norm with respect to (x,) if and only if (x,) is both strictly
orthogonal and strictly co-orthogonal.
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Thus by (5.3), (iii), and (5.6) we see that an N7T-norm is always an
NK-norm and example (5.4) shows that there are NK-norms which are

not NT. _
Let o be any collection of positive integers (not necessarily finite)

and for an unconditional basis (x,, f,) for E let S,(x) = ) fi(x)x;. We
now show that it is always possible to give EF an equivalent norm making
S,(x) the unique best approximation to x from [z;: 1ec]. This construction
was first given in [12].

If ||-|| is the original norm on Z let

ol = sup{ 3 f:@)f(@)l: f<B", Ifl <1} + 3 If@)zi2™

(5.7) THEOREM. Let K be a constant guaranteed by the unconditional
form of Grinblyum’s K-condition. Then for any xeE

]l < || < 6.K |

and so |-| is equivalent to |-|| on E.
Proof. It is not difficult to see that |-| is well-defined and is clearly
a norm on E. Also

loll = sup{|f(@)|: f<B*, |fll <1}
<sup{ ) [f(@f @)l f B, If] < 1} < o

For the reverse in equality let feE, |f] <1. Choose ¢, |¢ =1
such that

D 1f@f @)l =|f( Y efiw)a)
Then we have -
D f@f@ < | 3 efio)e,

Also [|f(z)w]| < 2K ||zl and so |z| < 6K|z|.
To see that |-| has the desired properties, let ceX and y = ' b,2;el,.

Then, for © = ) f;(x)»; e E,
i=1

< 4K ||2)f.

o—yl = sup| Y |(fi(a)—b) fla)|+ D Ifil@)f(@)l+

IA1<1 *feg =,
*) + Y llf@ =2+ D) Ifi@ a2~
i€c tew\ 0

and it is clear that inf {|lx— y||: y ¢ L,} is attained wheny = 8, (2) = ) f;(»)=;.

teo
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Also, if €0 is such that b; # f;(x), then the third term on the right
of (*) is not zero and if follows that, for y = Y bz, |[z—y| > [v— 8, (x)], i.e.
ieo

B,(z) = {S,(x)} for each z¢E and oelX.

For many applications the following version of (5.6) is useful. The
proof follows from (5.6) and (2.7).

(5.8) THEOREM. Let T denote the class of all permutations of w into w.
A norm, |||, on a Banach space E is an

(i) NT-norm relative to (x,) if and only if (x,,) is strictly co-monotone
for each teT; and ’

(ii) NK-norm relative to (x,) if and only if (x,y) is strictly monotone
for each veT.

We end this section with the observation that (4.2), (4.4) and (4.5)
are valid also for the directed set 2. In fact, let p be as in § 3 and let
to(p) = inf{|lp—yll: yeL,}. Then

(56.9) THEOREM. If (x,) is a fundamental sequence in E, xz, +# 0, then
(x,) s an unconditional basis for E if and only if there is a constant C > 1
such that

lp— Ss(P)l| < Cuy(p) for all peP and oel'.

The proof is analogous to that of (4.2).

(5.10) THEOREM. If (x;, f;) is a biorthogonal sequence with (x;) funda-
mental in E, then (x,) 18 an unconditional basis for E if and only if im||S,||
() = 0 for each xeE. e

Finally, if (w;, f;) is as in (5.10) let |||x||| = sup||S,(=)||. Then

aeS
(5.11) THEOREM. The biorthogonal sequence (x;, f;) is an unconditional

basis for E if and only if for each x < E there is a z,eB,(x) such that (|||2,]|])se 5
18 bounded.

The proofs of (5.10) and (5.11) follow as in (4.4) and (4.5) with the
observation that the net X contains a co-final sequence, applying the
result of [11].

6. On bases in CJ0, 1]. In view of the preceding sections it is natural
to ask is there a Banach space E containing no strictly (co-)orthogonal
or strictly (co-)monotone basis?

Somewhat surprisingly the answer is yes, and the example is C[0, 1].

Of course, as is well known (see e.g. [7]) C[0, 1] has no unconditional
basis. Thus, by (5.2), C[0, 1] has no (strictly) orthogonal or (strictly)
co-orthogonal fundamental sequence.

To show that C[0,1] has no co-monotone fundamental sequence
requires much more work. This result has been given by Vanicéek [18].
To the author’s knowledge this work appears in print only in Czech.
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A detailed exposition of this result appears in the Master’s thesis of
J. R. Holub [5]. We sketch the proof here.

(6.1) THEOREM V. No fundametal sequence for C[0, 1) is co-monotone.

Sketch of proof. If (z;) were such a sequence then of course (z;)
would be a co-monotone basis for C[0, 1]. Since, without loss of generality,
we may assume |jx;| = 1 for each i, we see that there is a K > 0 such
that sup||f;| = K < +oo, where f;(x;) = é;;. Fix n > 2. Since each z; is

uniformly continuous, there is a 4’ > 0 such that
|2 (1) — @;(8,)| < min[[12K-»]7,127Y] for ¢ =1,2,...,n,

whenever |t,—1,] < &’. Let I be a closed interval of length é = ¢’/2 with
the property that

sup |z, (t)] = sup |@,(¢)|.
tel tefo,1)

Let ¢ denote the midpoint of I and define z2,, 2,, 2, by:

0 for te[0, c— 6/2] U [c, 1],
2,(t) =1 4/6(t—c+6/2) for te[e— 6/2,c— /4],
—4/é(t—ec) for te[c— /4, c],
2,(t—é6/2) for te[ec, c+ 6/2],
= 0 for all other ¢,
2y = 2+ 2,.

Clearly, 2;(t)eC[0,1], j =0,1,2,|lz]| =1 and for all ¢, el

18,2 (t) — 8,2 () < D 1) (b)) —2,(8)| < 112, § =0,1,2.

i=1

By a long, but rather straightforward argument the assumption of
co-monotonicity yields

1 2
(%) Sn‘sf(’)e(g’g) for all tel and j =0,1,2.

Since §, is a linear operator on C[0, 1], S,(2,) = 8,(21)+ S,(2,) and
this is clearly incompatible with ().

Of course, C[0,1] has numerous monotone basis (e.g. the usual
Schauder basis for C[0, 1] consisting of the indefinite integrals of the
Haar system), so we turn to the problem of the existence of a sirictly
monotone basis for C[0, 1].

But, Phelps [10] has shown the following:
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(6.2) THEOREM P. Let X be a compact Hausdorff space. If C(X) con-
tains a Cebydev subspace Y with codimY > 2, then X is totally disconnected.

Using (2.7) we obtain an immediate corollary.
(6.3) COROLLARY. The space C[0,1] has no strictly monotone basis.

Now we are left with one final question: Is there a Banach space
E with a basis but having no monotone basis?

This question has recently been settled by Gurarii [3], [4]. As a special
case of his results we state

(6.4) THEOREM G. The closed linear span [t"z] of the sequence {t”z}
in C[0,1] has a basis but admits no monotone basis.

Details of Gurarii’s results appeared in Russian in [3] and with
some indication of proof in the English translation [4]. Full details appeared
in the above-mentioned work of Holub. Holub also gives some mono-
tonicity criteria for fundamental sequences in C[0,1].

The following problem appears still to be open (see e.g. [15]):

(6.5) PROoBLEM. Does every infinite dimensional Banach space admit
a monotone basic sequence? (P 693).
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