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Introduction

Free boundaries arise in modelling of various nonlinear. evolutionary processes
as a result of mathematical idealization. Macroscopically observed, the layers
separating regions of strongly different physical properties (phases) admit
a well-justified approximation by some hypersurfaces (perhaps moving in
a way that is a priori unknown), as usual referred to as [ree (or moving)
boundaries.

The presence of such components contributes to structural nonlinearity of
the corresponding models. In many real processes, the way an appropriate free
boundary moves heavily affects the whole evolution. Then, it would be of
a practical value to find out how to apply external variables so that to provide
a desired process development. But, against the needs, free boundaries as a rule
are carriers of discontinuous nonlinearities, hence they contribute to an
irregular evolution of the complete system (cf. [R1], [L1], [P3]).

Therefore, an analysis of such systems requires the use of their weak
formulations. This, in turn, leads to an implicit treatment of the free boundaries
whose recovery becomes first possible a posteriori since they are interpreted as
some level sets of the resulting weak solutions (cf. [E1], [P1], [P3]). Their
regularity is hardly known; what one expects in physically realistic situations
are the dendritic or cellular growth and formation of singular spatial patterns
(cf. [L1]). Any control of such developments turns out to be a nontrivial task,
far from being elementary and straightforward.

This category of eflects is characteristic of phase transitions in solid-liquid
systems like freezing of liquids or melting of solids. Growth of crystals, their
purification (recrystallization), solidification of metallic alloys, fabrication of
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semiconductors, electrochemical processing are all examples of such pro-
cesses, Control is of technological importance in all of them.

The process activation may be performed either by means of conditions
imposed on the fixed boundary (or its part) or by means of a distributed
source terms in the governing equations, considered as the external control
variables. The corresponding control problems may be formulated so that to
minimize an objective functional over a given class of admissible controls or
to stabilize the process dynamics within a given closed-loop feedback struc-
ture. The former refers to simple technological and economical criteria, the
latter reflect an attempt to stabilize the process development in a certain
neighbourhood of a desired trajectory (cf. [H1], [P3]).

In this paper, a class of standard optimal control problems for general
two-phase Stefan-like processes transformed to variational inequalities (weak
formulations) is considered. We develop a theoretical analysis of the pro-
blems under consideration. The processes of Stefan type are treated as
mathematical models of simple phase transitions of the solid-liquid type (cl.
[E1], [R1]).

In particular, we have in mind the situations that arise in artificial
freezing of deep geologic formations (cf. [N2], [N3]).

By exploiting a family of regularization procedures, we derive a const-
ructive characterization of the suitable optimal solutions in the form of
explicit necessary optimality conditions which give rise to practically efficient
computational schemes (cf. [P3]).

Although an extensive literature is devoted to various aspects of optimal
control in nonlinear parabolic systems (cf. the monographs [Al], [B1], [B4],
[L2], [L3], in particular), almost all results exposed there apply to regular
structures and smooth developments, exclusively. Discontinuous nonlineari-
tles that are attributes of systems including free boundaries like those
governed by two-phase Stefan-like problems are nonadmissible, as a rule. To
our knowledge, the only monographic sources in this respect are [B1], [P3],
[S1]).

A comprehensive numerical analysis of the relating approximation
aspects was developed in [P3]. The present paper is based on the author’s
lectures ‘at the Banach Center during the Spring semester "87.

. Formulation of the control problems

Let Q be an open bounded domain in RY, N > 2, with boundary I assumed
regular enough. For 0< T < oo, we shall denote Q=Qx(0,T),
X =TIx(0,T).

To be more specific, we shall consider the following boundary control
problem:
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(1.1) (Minimize
J(8, u) = 5|9 —8,1 729+ 3t [|ullZ,

over the set of states $e*(Q) and admissible controls ue,
subject to the state equations (corresponding to the two-phase
Stefan problem, cf. [R1])

(1.2a) w—d49=1, weyp (9 inQ,

(1.2b) 3,9+p¥=u on X,

(1.2¢) 90y =9,, w(O)=wyep,(9,) in Q.
.

A

Here w' = dw/0t, 0, denotes the outward normal derivative on I
;=8 (x, 1), A =2A(x, t), 35 = 3, (x), wy = wg (x), p = p(x) = 0 are given func-
tions, a is a positive constant; y, is 2 monotone graph (multivalued, in general)
in RxR. The control space % is defined as either % =%° =I?(%) or
U =49"'=H'0, T, I} (I), alternatively, equipped with the standard norms

”“”qyo = ”u”chz), |ullq = ”“(O)||L2(r)+”u'"Ll(s)-
System (1.2) is often referred to as the enthalpy fixed-domain formulation
of two-phase Stefan problem (cf. [E1], [P1]), with the enthalpy graph y,.,

(1.3) Yo (r) = ¥o(r)+ Lsign™ (r), reR,

where () = [0(&)d&, o) = c(k(N >0, L> 0,
0

0 if r<0,
sign™ (1)=< [0,1] if r=0,
1 if »r>0.

In the sequel, we shall interpret the problems under consideration as
related to heat conduction processes with phase transitions. In this case, $ will
represent temperature, A distributed heat sources, L latent heat of phase
transition, ¢, k heat capacity and heat conductivity, respectively. Both thermal
parameters ¢ and k are assumed to be smooth up to finite jumps at § = 0 which
represents the critical point of phase transition. Further, & is assumed positively
bounded from below while ¢ is only nonnegative, possibly vanishing at some
values of § (both parameters are temperature-dependent).

Hence, the governing equation (1.2a) is of mixed parabolic-elliptic type.
In the boundary condition (1.2b), p represents the heat exchange through I
and u = u(x, 1) is the boundary control. Problem (1.2), (1.3) can be also
treated as a mathematical model of two-phase flows with saturation in porous
media (without gravity) and various processes in electrochemical technology
(cf. [E1], (H2]).
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In heat conduction processes, the cost functional (1.1) is chosen so that to
express an interest in approaching a given temperature profile 3,€ I? (Q) with
using boundary controls ue% that have possibly small norm; the coefficient
o is an arbitrary weight which expresses the energy cost of control. The choice
of a concrete control space is motivated by the specific application: controls
from %° represent an action of I’-boundary heat flux or environmental
tempefature, directly. In turn, taking the control space %' means that the
environment temperature is specified by heat power of external heat sources
(control variable u is then specified as the solution of an additional ordinary
differential equation). '

We now specify the notion of a solution to the problem (1.2), (1.3) by
introducing an appropriate variational inequality formulation in terms of the
freezing index

y(x, £):= iS(x, s)ds.
0

Formally expressed with respect to y, system (1.2) takes the form

(1.4a) Yo(Y)—4dy2/fy in Q,
(1.4b) a,y+py=g9g on X,
(1.4c) y(0)=0 in Q,
with

Solx, 0= Fx, h+wo(x), flx, 1) = JA(x, 5)ds, g(x, 0= j'u(x, s)ds.
0 0

System (1.4) admits the following variational inequality form (cf. [P1],
[P3)):

(V1)) .(instant-in-time-form). Determine a function ye W= (0, T: V) such
that

(1.5a) (F(y(0), z; Fo ¥ So (0), g(t)

= (To (¥ ()=o), z— ' (t))+a(y(t), z—y' (1)
S ~(g@®), 2=y )+ WPo(2)—Po (¥ (1) > 0,
for all zeV, a.a. te[0, T,

(1.5b) Ly©0)=0 in Q,

with: V'=H'(Q), H=1(Q), |||y, || |l; the corresponding standard norms;
(*s*) (+,-)r standard scalar products in H and I[?(I'), respectively:

a(y, z) =(Vy, V2)+(py, 2)r,
Volz)=L{yo(z(x)dx, o(z) = max {0, z}.
2
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Besides, we introduce the following formulation integrated in time,
corresponding to (VL):

(VI). Determine ye H'(0, T; V) such that

T
(1.6a) JF (y(@), 2(2); $o, Yo, fo(0), g®)dt =0,

° for all zeI?(0, T; V),
1.6b) |y =0 in Q.

Clearly, any function y satisfying (V1) fulfils (VI), as well. Conversely, one
can show that if y is a solution of (VI) and ye W1*® (0, T; V), then it solves
(V1), too. In this sense, variational inequality formulations (VI,) and (VI} are
equivalent.

We are now ready to introduce the following

DEFINITION. By weak solution of the Stefan problem (1.2), (1.3} we mean
a function y (which represents the freezing index of the system) that satisfies
variational inequality (VI).

Since y' = § a.e. in Q, the [unction y’ (or y) can be treated as the state
variable of the system, corresponding to the control u. Hence, the control
problem under study can be given the formulation

(CP). Minimize J (', u) over y' e I? (Q) and ue %, subject to y = y (u) being
the solution of (VI) that corresponds to the control w.

2. Basic structural properties of variational inequality (VI)

2.1. Underlying hypotheses. Throughout the paper we shall assume that
the following hypotheses on the mathematical structure of the problems
considered are fulfilled:

(A1) ¢ admits representation g (r) = ¢ (r}+ §sign™ (r), where e C* (R) and
8 is a finite constant, 0 € g < o(r) €9 < + for reR.

Everywhere, two cases are to be distinguished: (i} parabolic if ¢ > 0, and
(i) degenerate (parabolic-elliptic) if g = 0.

(A2)° AeZ(Q);

(A2)' AeH'(0, T, H);

(A3) $,e VN L*(Q), woeH, wy=(y)°(9,), where (y,)° is the mini-
mum-norm section of the graph y,; L = 0 is the parameter which characterizes
discontinuous behaviour on the free boundary;

(Ad) pe*(I'), p= 0 ae. on I', the set {xeI'| p(x)> 0} has positive
Lebesgue measure in [';

(A5)° uew?;
(AS) ued’.
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By assumption (A1), the mapping §,: H — H is Lipschitz continuous with
Lipschitz constant §, and monotone (strictly monotone if ¢ > 0),

(2.1) (Fo(¥)—TFo @) y—z) =@ lly—zlf, for all y, zeH.

The functional ¥,: ¥ — R is bounded, convex and lower semicontinuous
(Ls.c.); the bilinear form a(-,-): VxV — R is symmetric, continuous and
V-elliptic.

2.2. Regularization. We introduce auxiliary regularized problems which
approximate (VI). The procedure comprises parabolic regularization of the
problem (in the degenerate case) and its smoothing. The former is based on
approximating y, by strictly monotone graphs y,, pe(0, 1], in the latter y, is
approximated by a family of smooth function y,, ¢€(0, 1].

2.2.1. Parabolic regularization. To tackle the parabolic and degenerate
cases simultaneously, we modify (1.4) by replacing y, with

(2.2) 7,(r) = 7,(r)+Lsign™ (r), reR, pel0,1],

where

.00 = [0u(9)ds, 0, = o)+
4]

Clearly, at u =0, y,=1y,. We also have
O0<o+tpu=¢,<0,(<0,=8+pn<+o, rekR.
Correspondingly, we substitute f, in (1.4) with

(23) .f;L (xa t) = f(x’ t)+“}y (X), W“ ('x) = WU (x)+1u"90 (X),
to come eventually to the variational inequality

(VL) nel0, 1]. Determine y, e W' (0, T; V) such that

(2.4a) E (v, 2, 7, Po. £, (0), g(0)) 2 0,
for all zeV, aa. te[0, T],
(2.4b) y,(0)=0 in Q.

Clearly, (VI)* at p=0 coincides with (VI1). Further, observe that
7, H—H is Lipschitz continuous with Lipschitz constant §,, and satisfies
(2.1) with g,. If g, > O, then (VL) is of parabolic type; if 2, = 0, the variational
inequality is degenerate.

It turns out useful in some situations to note that variational inequality
(VL)' can be formulated in an alternative way.
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Lemma 2.1, Variational inequality (2.4a) admits the equivalent form
(2.5  Fp(y.@). z; F* 1,00, g(0)
= a(y, (0, 2=y, ()=, ), 2=y ()~ (9 (0, 2~ ¥, (0)7
+F(z)—F(y, ) =20 for all zeV, aa. te[0, T],

where

Fl'(z) = B"(2)+ ¥, (2), B'(z)=[p"(z()dx, p“(n)=
L2}

Q oy v

7,.(s)ds.
Proof. The Gateaux differential DB" of functional B*: H — R admits the

characterization

(2.6) (DB*(y), z) = (§, (), z), [for all y,zeH,

hence, due to the monotonicity (strict monpotonicity if g, > 0) of 7,, B* is
convex (strictly convex) and

(v,(»), z—y) < B*(z)—B*(y), for all y, zeH.
This implies that (2.5) {ollows from (2.4a). To prove the converse, let us take
z=y,(O0+8(Z—y,(1), -5€(0,1), ZeV, in (2.5).

Then, by virtue of the convexity of ¥,, we arrive at the following variational
inequality

a(y, (0, 2=y, ()= (L0, 2=y, (D) —(g(t), 2=y, (O)r

+= (B (¥, (0 +8(Z—y,(8) — B* (. (1))

S

+ P, ()= WPo(y. () =0, for all ZeV.
Let us pass to the limit with § — 0 in the above inequality. Then, by virtue
of the representation (2.6) we get (2.4a). m

Remark 2.1. For any we[0, 1], the functional F*: ¥V — R is convex
(strictly convex if g, > 0), weakly ls.c. on ¥, and lower bounded,

F*(z) =48, 1z},  for all zeH.
Moreover,

T T
(2.7a) im { F#(z(¢))dt = [ F(z(0)dr, for all ze Z(0, T; V),
0

w00

if z, -z weakly in I2(0, T; V), then

T
(2.7b) liminf | F*(z, (1)) dt >

u=0 0

F(z(r))dr.

O ey =3
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Remark 2.2. The integrated-in-time formulation corresponding to (VI )" is

(VI)*, ue[0, 1]. Determine y,e H' (0, T; ¥) such that

T
(2.84) [F (3,0, 2(0); 7,0 Pouful0), g @) dt = 0,
0 for all zeI2(0, T; V),

(2.8b) y,0=0 inQ
By virtue of Lemma 2.1, (2.8a) is equivalent to
(2.8¢) jT'F2(yﬂ(t), z(t); F* 1, (1), g(0)dt =0, for all ze?(0, T; V).
0
2.2.2. Smooth approximation. With the purpose to approximate the graph
v,» we define the following single-valued functions

(2.9) Yot} =P (r)+ Ly (r),  reR, e€(0, 1],

with

Tue () = [ Que(8)ds. 0. (r) = &) +8x, () + 1.
0

Here, y,(-) is a C*-approximation of the Heaviside graph sign™ (‘) (e.g.,
polynomial as in [P1]). Then, y,.€ C*(R) and y,, approximate graph y, in the
sense of uniform convergence on compact subsets of R\ {0}. Moreover,

Dy, (r) = Dy,(r), for re(—oc0, 0]u[e, +0),
_ C _ - -
stD’ynE(r)QEa Q#SDV,,E(")$Q#,

C
2

2.10) LENCES

for all reR,

where C # C(u, &) is a constant. By virtue of (A3), the approximations we
have already introduced induce the following compatible smooth approxima-
tions to f,,

(2.11a) Jue(y 0= Jx, 04 wu(x)y Wi (X) = (9 (x).
Indeed, for any p >0
(2.11b) We— W, ae inQ ase—0,

because ||w,.|l;=@ < C with a constant C independent of u, ¢.
The corresponding smooth approximation of system (1.4) take the form

{yue(y;u:)— A.Vms = f,us in Q9
(14b),  (1.4c),

(2.12)
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which gives rise to the following approximating variational inequality

(VLYs, nef0, 1], e€(0, 1]. Determine y,,e W'=(0, T; V) such that
M

(2.13a) Fi(2u(8), 25 Fues Por fue (1), g (1)) = 0,
for all zeV, a.a. te[0, T],
(2.13b) Y0 =0 in Q,

where

¥.2) = L{y,(z(x))dx, () = [ x.(s)ds;
Q Q

,€ C*(R) and uniformly approximate y,:
(2.13¢) Wo(r)—r, (1) < 3¢, for all reR.

Correspondingly, for any & >0, the functionals ¥,: V= R are bounded,
convex, ls.c. and Gateaux differentiable; besides, convergences analogous to
(2.7) are true as e - 0.

Remark 2.3. (2.13a) can be equivalently formulated in the form (2.5), with
F*, f, substituted with F} and f,, respectively, where

FED) = BE@+V.(2),  BE) = [Brz()dx, B0 = [ Fuls)ds.
2 8]

The functional F¥: V — R preserves properties of F*. Furthermore,
convergences analogous of (2.7) take place, both as ¢ -0 (for any fixed
uel0,1]) and as u, ¢ = 0 simultaneously.

Remark 2.4. (VI)} at ¢ = 0 is to be identified with (VI)*. In the sequel, we
shall skip indices whenever equal to zero.

2.3. Existence of solutions to variational inequality (VI). Because we are
primarily interested in studying control problem (CP) formulated for (VI) as
a process model, we shall consider (VI} with various classes of admissible
controls and with degeneration of the governing equations from parabolic to
parabolic-elliptic, taken into account.

The proof of existence of solutions to (VI) is accomplished along the
following lines. First we consider the problem in the parabolic case g, > 0 and
with controls ue%' more regular in time (see Theorem 2.1). By a priori
estimates established in this case, because %! is densely embedded in #%°, the
existence of solutions that correspond to ue%? is deduced (see Theorem 2.2).
At the same time, by the established estimates we can pass in (VI)* to the limit
as 1 — 0, and hence to conclude the existence of solutions to (VI) in the
degenerate case with @ =0, too (see Theorems 2.3 and 2.4).
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2.3.1. Parabolic case

THEOREM 2.1 (g, > 0, ue%'). Let (A1), (A2)°, (A3), (A4) be satisfied. Then
there exists at least one solution y,e W= (0, T; V)N H?*(0, T; H) of (VL)
uel0, 17, such that y, (0) = 3, in 2 and the following a priori bounds are true:

(2.14a) I Y lerso. ) + 052 Vil Lo, i < Cos
(2.14b) I Vil e=.r:mn+ 8 2 1 Vil € Cin i 2> 0,
as well as, provided (A2)' is satisfied,

(2.14¢) I yiull oo, movy + 172 1 il ey < Ca, if @ =0,
with positive constants C, dependent on the following data:

Co = Co("’”‘l)(g)a H\%HH, ”“”%0),
(2.15) Cy = C (IMll2@» 1ollvs lully);
C2 = CZ(IMHH'(O.'J‘:H)a ”90”1/, ”“”um)-

Proof (a sketch; see [P1], [P3] for details). A Galerkin approximation to
the regularized variational inequality (VI)%, e€(0, 1], is to be constructed. Let
{v;,...,v,} be a system of linearly independent elements in V¥, such that
(), V)=V where V, =span{v,,..., v,}. Elements v,, v, are to be
selected so as to provide 0, $,espan{v,, v,}. Let us introduce the following

approximating semidiscrete Galerkin problems:

Determine y,, = yyeme W (0, T; V,,) (m = 2), such that

(Vpu: ( y:n (t)) _fut: (t)v Zm) +a ( Y (t)’ Zrn) - (g (t)s Zm)F = 0’

(2.16)
for all z,eV,, aa. te[0, T],

Ja0) =0 in Q.

System (2.16) of nonlinear ordinary differential equations has a solution y,,
on the interval {0, T that satisfies bounds (2.14) uniformly with respect to m, ¢.
This enables us to pass in (2.16) to the limit as m — o (at ¢ fixed) and to show
that the resulting limit function y,, fulfils (VI)}. Next, due to the analogous
uniform bounds for y,,, we pass to the limit as ¢ -+ 0 in (VI ), and conclude
that the appropriate limit y, is a solution to (VI ). Estimates (2.14) on y,, imply
analogous bounds on y,. =

TreoREM 2.2 (g, > 0, ue %°). Let (A1), (A2)°, (A3), (A4) be satisfied. Then
there exists ut least one solution y,eH'(0, T, Vyn W0, T: H) of (VI
pne[0, 1], which satisfies the bound (2.14a). This solution may be constructed as
a lmit of solutions y,, to problems (VI)*" which correspond to u,eu*:
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(2.17a) if u,—u strongly in %° as n— oo, then
(2.17b) Van— Y, weakly in H'(0, T, V),

weakly-* in W= (0, T; H),
(2.17c) Vin = Yy Strongly in I (Q),

where y, is a solution of (V) corresponding to ueO,

Proof. Since %' is dense in #°, for any ue#° there exists a sequence
{u,} = %" which satisfies (2.17a). Let {y,,} be the sequence of solutions to
(VI)*" with u,. By (2.14a) and due to the boundedness of {u,} in #°, {y,,} is
uniformly bounded in H' (0, T; V)~ W* (0, T; H). For a subsequence, this
implies (2.17b).

To conclude (2.17c), it is enough to show that { y,,} is a Cauchy sequence
in I2 (Q). To this end, let us consider problems (VL)*" and (VI }*", correspond-
ing to u, and u,,, respectively. Take z = y;,(f) in the inequality (2.4a) with u,,
and z = y,,,(¢) in the same inequality with u,. By combining both inequalities
integrated over time interval [0, (] with 0 <t < T, due to the strict mono-
tonicity of 7, we get

(218) 3, [ 1 Yyen ()= Yoo (N AT+ 30 (Y ()= Yo (), Y ()= Yy (1))
0

< § ] (11, (8) = 11y (5)) S, Yo (1) = Y (0)) .
00

Hence, by the uniform boundedness of y;,|; in I*(X), we see that { y,,} is
a Cauchy sequence in I?(Q), indeed. To complete the prool, we still need to
show that the limit y, fulfils (VI)* with u. For this, let us take the upper limit as
n — o0 in (2.8¢) including u,. By virtue of (2.17) and due to the weak Ls.c. of F¥,
y, actually satisfies (VI)* including u. Clearly, the bounds (2.142) on y,, imply
the analogous inequalities for y,. m

2.3.2. Degenerate case. For proving the existence of solutions also in the
degenerate case, we shall make use of the parabolically regularized ap-
proximations (VI)¥, (0, 1], of variational inequality (VI). We shall consider
the problems both with controls w from %! and #°.

THEOREM 2.3 (3 = 0, ue ). Let (A1), (A2)°, (A3), (A4) hold. Then there
exists at least one solution ye H' (0, T, V) to (VI), such that the bound

(2.19a) | Ylaio.r < Co

is satisfied with the same constant C, as in (2.15). This solution may be
constructed by taking the limit of solutions y, to (VI} as u— Q:

(2.20a) y, —y weakly in H'(0, T; V),
(2.20b) Y=y strongly in I2(Q),
(2.20¢) uy, = 0 strongly in L*(0, T, H).
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Moreover, if (A2)" is satisfied, then ye W= (0, T, V) and, in addition to (2.19a),
(2.19b) [ ylwt @, < Ca,
with the same constant C, as in (2.15).

Proof. By the estimate (2.14a) on {y,}, convergences (2.20a,c) follow for
a subsequence. To show (2.20b), let us consider problems (VI)* and (VD with g,
Ae(0, 1]. Take z = y} in (2.8a), and z = y, in the same inequality correspond-
ing to A. By combining both inequalities, due to the monotonicity of ,, we get

T

[ (e (Ve () =80)— A (2 (&)= 9¢), yu (D) —ya(6)) dt

4}

+3a(y, (T)=yu(T), y,(T)=y,(T) < 0.

Hence, in particular,
221 (Y, =) —A(Va—90), Vu— Vi) <0 for all u, 1e(0, 17.

Due to the Crandall -Pazy lemma [C1], the boundedness of { y,} in 2(Q)
together with (2.21) imply that || y, | 12 is nondecreasing in y, and y, converge
to y' strongly in I*(Q) as u—0.

In order to prove that y satisfies (VI), take the upper limit as y — 0 in
inequality (2.8¢). On account of (2.20a,c) and by virtue of the property (2.7), true
for functional F*, we conclude that y fulfils inequality (2.8c} with F*, f,
substituted by F and f,, respectively. Hence, because y(0) = 0 in , y actually is
a solution of (VI). Estimate (2.19a) follows directly from the analogous
estimates on y,.

To complete the prool, observe that if (A2)' holds, then due to bounds
(2.14¢) on {y,}, y satisfies (2.19b). w

THEOREM 2.4 (g =0, ue#®). Let (A1), (A2)° (A3), (A4) hold. Then there
exists at least one solution ye H' (0, T: V) of (V1) for which the bound (2.19a)
holds and convergences (2.20a-c) are true.

The proof of this theorem proceeds in the same way as that of Theorem
2.3.

Remark 2.5. In the degenerate case (¢ = 0), a solution y of (VI) with u e #°
can also be constructed as the limit of solutions y, to (VI)" (g = 0) correspond-
ing to u,e¥*:

(2.22a) if u,— u strongly in %° as n— oo,
(2.22b) then y, —y weakly in H'(0, T; V),

where y is a solution of (VI) corresponding to ue#® (see the proof of
Theorem 2.2).
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2.4. Uniqueness of solutions to (VI) and their stability, We recall here
results on the continuous dependence of solutions to (VI) upon perturbations
of data, first established in [Pl, P3]. These results will directly imply the
uniqueness of solutions to (VI) in all the situations which have been considered
in Theorems 2.1-24.

THEOREM 2.5 (parabolic case, ¢ > 0). Let y, y, be solutions of (VI) which cor-
respond to the data @(*), 4, p, u, Ly wg and 9, ("), A, Dye» Uy» Liys Woy, respectively.
Then there exists a positive constant C independent of the data, such that

(2.23)  |16ylli=o.rivy T 16Y | L2(g)
Ya
<C {HI 60 (s) dS“L’(Q)"‘ ”5A'I|L1(Q)+ I v 5P||L2(x)
0

+ 1| 6ull L2zy + 16L] 4 11 6wo | 4},
where 0y = y—y,, 0A=A—A,, do(r) = o(r)—o, (1), etc.

In the degenerate case, the stability result is restricted to perturbations of
A, p, 4, wg.

THEOREM 2.6 (degenerate case, 0 = 0). Let y, y, be solutions of (VI)
corresponding to ¢(*), A, p, u, L, wy and ¢(*), A,, Py, U, L, wy, as the
corresponding data, respectively. Then there exists a positive constant C indepen-
dent of the data, such that ’

(224) oyl Loo,ry < C {”5'”|L2(Q)+ | ¥ 6Pl 2zy+ 10Ul Lagsy + 16w ll g} -

Proof of Theorems 2.5, 2.6 (an outline). At first we assume that ue %, ie. y,
y, satisfy (VI). Take z = y,(t) in inequality (1.5a) and z=y'(z) in the
appropriate inequality corresponding to the perturbed data, add both in-
equalities by sides and next integrate over [0, t] for t €(0, T7]. By integrating by
parts the appropriate terms and applying Young’s and ‘Gronwall’s inequalities,
due to the monotonicity of y,{:) and V-ellipticity of a(:,-), we immediately
conclude the stability estimates (2.23) and (2.24).

To complete the proof, let us note that on account of the convergences
(2.17) and (2.22), estimates (2.23) and (2.24) remain also valid for ue #°. Hence,
the assertions of Theorems 2.5, 2.6 apply to solutions y, y, of (VI). =

CoROLLARY 2.1. In the parabolic case (g > 0):

(i) the mapping {A,u, wy, L} = {y, y'} is Lipschitz continuous from
Q) x%°x HxR into (0, T: V) x 2(0);

(ii) in Theorems 2.1 and 2.2, solutions y are uniquely defined, i.e.,if y and y,,
are two solutions that correspond to the same data, then y =y, ae. in Q.

In the degenerate case (g = 0):

(ili) the mapping {4, u, we} — y is Lipschitz continuous from I? (Q) x %° x H
into L*(0, T; VY,

(iv) in Theorems 2.3 and 2.4, the solutions y are unique.

20 Banuch Center t. 24
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2.5. Estimates on the regularization error. In [P1], [P3] we have estab-
lished estimates on the error due to regularization. Here we recall these results

because of their usefulness in the further exposition.
The error resulting from the parabolic regularization is estimated by the

following

TrneorEM 2.7. Let y and y, be the solutions of (VD)° and (VI)*, ue(0, 1],
respectively. Then

(2.29) | y_'y‘l“L"“(O,T;V) +§;1¢/2 Y = Yulleagy < Co u'’?,
with a constant C, defined as in (2.15).
The error due to smoothing is characterized by

THEOREM 2.8. Let y, and y,, be the solutions of (VI)* and (VI);, ne[0, 1],
£€(0, 1], respectively. Suppose also that

(A6) mes {xeQ| 0 < §,(x) <&} <Cye,
with a constant Cg independent of e. Then

(226) ” y;; —yut:”L“’(O.T;V) +Q_1ll ” y;l. —y;.u-:"Lz(Q) \<~ CE”Z 3

where C is a positive constant independent of u, €. More precisely, if @ > 0 then
C = Cg~""* with a constant C which depends only upon Cy, L, &, 18|, T and
mesQ; if g =0, then C = C, is defined as in (2.15).

Estimates (2.25), (2.26) immediately follow upon adding by sides the
corresponding variational inequalities with appropriately chosen test functions,
by arguments similar to those used in Theorems 2.5 and 2.6. In particular,
the bound (2.19a) on the solutions of (VI)* and (VI)¥, as well as the estimate
(2.13c) and assumption (A6) are essentially used. For the detailed proofs, we
refer to [P3].

3. Structural properties of control problem (CP)

3.1. State observation mapping. Let 5: % — I? (Q) denote the state obser-
vation mapping defined by =(u) =), where y is the solution of (VI)
corresponding to the control u. Then, control problem (CP) admits the
equivalent formulation in the control space %:

(CP). inf,cq {I(w) = J(E (u), u)}.

Observation mapping = has the [ollowing properties.

THEOREM 3.1. Assume that (A1), (A2)°, (A3), (Ad) and, alternatively, (AS)°
or (A5)! hold, Then:
(I) in the degenerate case (¢ = 0):
(i) & is continuous from 4 (weak) into IZ(0, T; V) (weak);



OPTIMAL CONTROL OF DYNAMICAL PROCESSES 307

(I) in the parabolic case (g > 0): (i) holds, moreover,
(i) £ is compact from 4° into I>(Q);
(i) £ is Lipschitz continuous from %° into I?(Q).

Proof. (I) Consider a sequence {u,} = %, such that u, - u weakly in %.
Let { y,} be the sequence of solutions to (VI) which correspond to controls u,,.
Since the sequence {u,} is bounded in %, by virtue of (2.192) (see Theorem 2.4)
{y,} is uniformly bounded in HY(0, T; V). Therefore, for a subsequence,

(3.1) y, =y weakly in H*(0, T; V).

To show that y is the solution of (VI) corresponding to u, we pass to the limit as
n— oo in (VI) including u,. Observe that, in view of (3.1), y(0) =0 in Q;
besides, as n — o0,

T

— [ (u, (8), y, @)y dt +([ u,(s)ds, y, (T))r

0

(3.2)

(fu,(s)ds, y, () dt =

O Commmy =y
O ey ~
O Ty = O‘—a‘-]

T
= [(Ju(s)ds, y' (@) d
0
Let us take the upper limit as n — oo in (2.8¢} at u =0, with u, as the
appropriate control. By (3.2) and due to the weak ls.c. of F, we can conclude
that y satisfies (2.8c) with u, to be substituted with u. Thus, y is the solution of
(VI) that corresponds to control u. Therefore, (i) has been proved.
(II) In the parabolic case, assertion (ii) follows arguments similar to those
used in the proof of Theorem 2.2 (see, (2.18)). Indeed, we have

(33) Q— ” y:l_y:n”%}(gj_'-%a(yn(T)—ym(T), yn(T) _ym(T))

y(u (t) =ty (2), P ()= Y (D)t

0

+([ (4, (5) =ty (8)) s, Y (T) =y (T))y, for all m, meN.

O

Hence, due to (3.1), { y} is a Cauchy sequence in I*(Q). Thus, y, — ) strongly
in I (Q). At last, assertion (iii) is a direct consequence of the stability result in
Theorem 2.5. The proof is complete. =

3.2. Existence of optimal solutions. As an immediate conclusion from the
continuity of £ we have

THEOREM 3.2. Control problem (CP) has a nonempty set of optimal solu-
tions.
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Proof. Let {u,} = % be a minimizing sequence for the functional I, ie.

(3.4) lim I'(,) = lim J(Z(u,), u,) = I'=infI(w).

n=roo n—+aw ue¥
Hence, by the radial unboundedness of I, the sequence {u,} is uniformly
bounded in %. Thus, for a subsequence, u, —» & weakly in % as n — co. Due to
Theorem 3.1, (i), by the weak ls.c. of the norms in J, we immediately get

J(E@), 4) < liminf J (Z(u,), u,) =T,

n—aw

and hence conclude that # is an optimal control for (CP). =

3.3. Role of control spaces #° and %'. When comparing properties of
solutions to the problems with control spaces %° and %', one can recognize
a regularizing role of controls being elements of %' against those from 4°.

THEOREM 3.3. Consider the family of control problems

(CP),, v= 0. Inf{l (4= 1Ew)—%llixg + llulldo+v 14|70}, over ued!
if v>0, and over ue¥® if v =0:

Assume that (Al), (A2)° (A3), (Ad) hold and problem (V1) is parabolic
(@ > 0). Then there exists a sequence {i,} = ¥ of optimal solutions to (CP),,
such that as v—0, '

(3.5) i, — 10 strongly in U°,
(3.6) Z(,) = E (1) weakly in I2(0, T; V), strongly in I2(Q),
(3.7) I, - fo,

-~ -~

where ue¥® is an optimal control for (CP)y; I, =1,(4,), T, = I, (.
Proof. Let us observe that, for every v >0,
(3.8) I,=inf I, (u) > inf I,(u) = 1.

v
wsk ! ue4s9

We' now show that for every o > 0 there is v(o) such that

(3.9) I, <46, forv<v(o).

For any pair u,, u, e%° due to the Lipschitz continuity and boundedness of
Z (cf. (2.23), (2.144a)),

(3.10) IIO(ML)—IO W)l £ C ”“1—“2”%% C = Clluy [l o, Huzll,,,,o).

By the density of %' in %°, (3.10) implies the existence of we %' such that
|Io(W)—Io(ao)| < Cllw—iipllyo < ia,

where 4, is any optimal control for problem (CP),; hence

I, < I,w)y < Iy () + 30+ v | W) 2.
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Thus, after adjusting v = v(o) so that v(o)||w'[|20 < 4o, we get (3.9) and
therefore

(3.11) limsupf, < f,.

v=+0

(3.11) together with (3.8) imply (3.7). By (3.11), for v < v(o),

12,0150+ 1317 < o,
thus, for a subsequence,
(3.12a) i, — 4 weakly in °,
(3.12b) vii, = 0 strongly in %°.

To show that i is an optimal control for (CP),, observe that by Theorem
3.1 (), (i),
Z(a,) —» E() weakly in I2(0, T, V), strongly in I?(Q).

Hence, liminf 1, (x,) > Iy (). At the same time, by virtue of (3.11)
v—+0
I,(#) < liminfI, @) < 1,
v=0

implying that @ actually is optimal for (CP),. Thus, assertion (3.5) with the
weak convergence as well as (3.6) have been shown. To complete the proof, we
still have to show the strong convergence in (3.5). To this end, let us note that
there is 7 > 0 such that for a subsequence {i,},

(3.13) I, lao~n as v —0.
Due to Theorem 3.1 (i), by virtue of (3.12) and (3.13), we have
(3.14) liminf I, (4,) = |E(@)— 9, £z + -

v' =0

(3.14) together with (3.11) y'ield the inequality 7 < |4 40. At the same time, by
the weak ls.c. of the norm, '
3o < liminf |4, 130 = 7.
v—+0

Hence,

lim [[id, [lqo = | 4o

v =0
This implies (3.5) for the subsequence {i,.}. It still remains to show that (3.5)
holds for the entire sequence {u,} which satisfies (3.12a). To this purpose, it is
enough to show that lim,_ ||4,|l40 = [ti]l4v. Suppose the converse, i.e., for
a subsequence {il,},
(3.15) lim ||y |30 = 7 # [#)3e.

v'=0
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By repeating the arguments we have used for {i,}, we can conclude that
f = ||iil|30, though. This contradicts (3.15), hence the proof is complete. w

4. Characterization of optimal solutions

For numerical reasons, it is of interest to develop efficient gradient-type
algorithms for solving the control problems under consideration. In this
connection, differentiability of the state observation mapping and cost func-
tional become of primary importance.

The control problems we study exhibit structural nonsmoothness due to
the lack of a sufficient regularity of the solution to variational inequality (VT).
In order to ensure differentiability of the state observation mapping, with
a direct characterization of the differential, we apply the regularization
procedures to (VI) as exposed in Sectioi: ».2. Consequently, after constructing
discretizations to the regularized control problem, gradient-type minimization
techniques can be applied for solving th: problem numerically.

An alternative approach consists i:: « direct discretization of the control
problems, and afterwards in employing iechnigues of nonsmooth optimization
that recently have been intensively devcioped in literature.

Here we shall use the regularizaticn approach to constructing optimal
controls and to performing a theoretical analysis of the proposed numerical
methods (cf. [P3]), at the same timc.

4.1. Regularized control problem. For pu, £€[0, 1], let Z: % — I?(Q) be
defined by 5f () = y,,.. where y,, is the unique solution of (VI)%. Recall that the
regularized variational inequality (VI); comprehends both g, > 0 and &> 0.
Then, the regularized counterpart of control problem (CP) assumes the form

(CP), pel0, 11, ec(0, 17 infoeq {I¥ () = J (54 (w), u)}. .

As up to now, for any of the parameters p, ¢ that vanish, we skip index “0”
in all related notations.

By the same arguments as in the proof of Theorem 3.1 it follows that,
provided g, > 0,

4.1) =% is continuous from % (weak) into IZ(0, T, V) (weak),
compact from %° into I?(Q),
Lipschitz continuous from %° into IZ(Q),
with Lipschitz constant independent of &.

Clearly, problem (CP); has nonempty set of optimal solutions.
The regularized state observation mapping =¥ is differentiable in the
following sense.

THEOREM 4.1. Assume that §,, ¢ > 0. Then E¥ is Gateaux differentiable in
#°. Its Gateaux differential DEF is characterized by

(4.2} DEuyv =&, for all u, ve¥®,
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where &, is the unique solution of the problem
t

(4.3a) (D)’us(y;m () &, (), z)+a(§u,; ), z) = (Ju(s)ds, z)p,
0 f
Jor all zeV, aa te[0, T],

(4.3b) £,.0=0 inQ,

with y,, = % (u), and Dy,,(-) being the Gateaux differential of y,. H—H.
Proof. For A >0, denote
yllus = Et: (u+iv), ‘:/l,uz = (ylpe—y,ue)/'l’ Hape = ('))ﬂe(y’).pe)_'yye(y:w))/’]"

Observe that ¢;,, satisfies the system
1

(4.4a) (M2 (0); 2)+ @ (&2 (1), 2) = {J 0 (5) ds, 2)p
0
for all zeV, aa. te[0, T],
(445} ¢, (=0 in Q.
The main point now consists in establishing estimates on £;,,, that permit
to pass in (4.4) to the limit as A — 0. For this, let us set z = &, (t) in (4.4a) and
integrate it over [0, t], with t€(0, T']. Upon integrating the right-hand side of

the resulting inequality by parts and then applying Young’s and Gronwall’s
inequalities, by strict monotonicity of y,,, we get

(4.5a) 1€ el Loogo, 737y 8u'* 1 E el 2@y < C' vllae < C,

with constant C independent of A, g, & Moreover, due to (2.10),
C. . C

(4.5b) 17 20ell 2200y € — 1€0ell 2@y € =175

& &g,

with constant C independent of 2, u, & By (4.5), as 41— 0,

4.6 Eape — e weakly-* in L° (0, T; V), weakly in H'(0, T; H),
' Mage = e Weakly in I2(Q).

Hence, after passing in (4.4) to the limit as A — 0, we can see that equality
(4.3a) is satisfied, with #,, substituting Dy, (y,.) £,.. Besides, due to (4.4b), (4.3b)
holds, too. Let us observe that relation (4.2) follows directly by definition of the
Gateaux differential. Hence, in order to complete the proof, it only remains to
show that

(4.7) e = DYe ( Viae) Cpe-

By the mean-value theorem,

(4.8) Nage = DVue (Vie) Erpo+ 32D 9, (Vo) (Ere)
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where J,, = (1 —f) yue+ By 1ue» With some fe[0, 1]. At the same time, by virtue
of (2.10) and (4.5) we have
ClAl ClA|

(49) ”ADZ '))pe(_y;’us) (élzuc)anl(Q) S 8_2 ”éll’.un”!zf-(Q) < ﬁ’
u

where C is a positive constant independent of A, u, &. Hence, as 1 -0,
(4.10) AD? 9,0 (7o) (E3ue)> =0 strongly in L' (Q).

According to (4.8) and (4.10), by (4.6) we conclude that (4.7) holds. This
completes the proof. =

We remark that problem (4.3) has unique solution ¢,eL*(0, T; V)
N HY(0, T; H) that satisfies estimate (4.5a).

To study the convergence of regularized control problems, the estimates
introduced in Section 2.5 that characterize an influence of the regularization
applied to variational inequality (VI), are of importance. In particular, by virtue
of (2.26) (with g > 0), for any ue%® we have
(4.11) O IEW) — &, (1) Lo < Ce'’2,

where C is a constant independent of & and u.

4.2. Necessary conditions of optimality. Let us consider the regularized
control problem (CP)¥. We define the adjoint state as a solution of the problem
(AP).

(4.12a) (DVue( Ve ) Pre ()5 2)— (P (1), 2) = (¥ ()= 84 0), 2)
for all zeV, a.a. te[0, T],
(4.12b) Pu(T)=0 in Q,

where y,, = 5% ().
Problem (4.12) has unique solution p,,e (0, T; V)~ H' (0, T; H). Op-
timal solutions to (CP)! can be given the following characterization.

THEOREM 4.2. Assume that @, &€ > 0. Let €% be an arbitrary optimal
control for (CP): and ¥, = Z(i,) represent the corresponding optimal state.
Then there exists a function p,,eL* (0, T; V)~ H (0, T; H) which satisfies the
adjoint problem (AP)! corresponding to y,., together with the boundary con-
ditions

(4.13) Pucly = 0t  if U =%°,
(4.14) Pucly = 0l P (O)ly = il () if % = a0,
where

T
Puc(t) = [ B (s)ds.
H
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Proof. If & = %°, then the Gateaux differential of I’ is characterized by
(4.15) DIt (uwyv = (B (W) — Iy, DEL (1) v)12g)+ 4 (U, V)r2gy, for all u, ve®®,
But in view of (4.2), (4.3) and (4.12), we have
(4.16) (B4 (w)—9,, DEE(u)v),2(q)

(E ( 'gd’ éus)LZ(Q)

[(D‘V ue ( y/u: t)) pua t) fua (t)) (p,m (l), ;u: (t))] dt

I

i

]
0
g [(D'y#*:(y#e ([)) gue (1), pus (t))+a( uz( pp,g ] dt
T
!

(

By virtue of (4.15) and (4.16), the optimality condition DI¥(ii,,) = O directly
implies (4.13). Il % = %" then due to (4.16), upon integrating by parts we get

DI*(u)v = (B4 (1) — 94, DE*(u) V) 20y + 0 (W', )25+ (u(0), v (D)),
= (Bues V)2 + ot (W', V)pag +a (1 (0), v(0)),
= (—Puetou’, V)pam+(— P (0)+ou(0), v(0),
for all u, ve

U dS ppe(t)) dt = (pm:a D)Lz(f)'

O L— =

Hence, relations (4.14) follow what completes the proof =

4.3. Convergence of the regularized control problems. We are going to
show that the regularization procedure we have proposed is correct, i.e., the
regularized control problems in a certain sense approximate the original one.
To begin with, let us consider the parabolic case, with regularization reduced to
the smoothing procedure (¢ > 0 and u = 0).

THEOREM 4.3. Consider control problem (CP) in the parabolic case (§ > 0),
with % =%° or #'. Let (A1), (A2)°, (A3)~(A6) hold. Let {ii,} =% be any
sequence of optimal controls for problems (CP),. Then, for a subsequence, as
e—0,

417 u,—u strongly in %,
(4.18a) E (i)— Z@) weakly in I2(0, T; V) and
strongly in I2(Q) if % = %°,
(4.18b) weakly-* in (0, T; V) and
weakly in H' (Q) if U =U",
(419) [ I, I1@)—T with the rate O(e'®) of convergence,
where 1 is an optimal control for (CP); I, = I,@4,), [=I().
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Proof. We first show that {4} is bounded in #. Indeed, since

(4.20) L@)=J(&8,@,), 4)<J (2, @), 4),

by virtue of (4.11) we get

(4.21) timsup I, (4,) < J (£ (@), d) = TI.
£~ 0

Thus, ||i,|, < C with constant C independent of ¢, and, for a subsequence,
i, — 1 weakly in % as ¢ — 0. By virtue of (2.14a, b}, we conclude the suitable
bounds on j, = &, (i,). Hence, at % = %°,

(4.222) 9,—y weakly-* in Wh>(0, T; H),
weakly in H'(0, T; V);

whereas at % = U,

(4.22b) 5= weakly-* in W'=(0, T; V),
weakly in H?(0, T; H).

In order to prove that j' = Z (i), we pass to the limit as ¢ > 0 in (VI)
including #,. To this end, we reduce (VI), to the form (2.8c) with u = 0 and f;,
F substituted by fg,, F,, respectively. By arguments reminiscent of those used
for proving Theorem 3.1(i), on account of (4.22) and the properties (2.7) of F,
(see Remark 2.3), we can conclude that y actually satisfies (VI) corresponding to
#. In addition, observe that because of the obvious relation

12, () — Z @)l L) < 15, () —E (@) 2oy + 1 (8) — Z (@) L2y

by virtue of (4.11) and Theorem 3.1(ii), =, (i3,) — Z (i) strongly in I*(Q) as ¢ — 0.
By weak ls.c. of the norm,
(4.23) J(E@), 4) < liminfJ (E,(4,), 4,).

=0

A

At the same time, by (4.21) we get the inequality J (& (4), 4) < I. This implies
optimality of the control i for problem (CP). Assertion (4.18) has been proved.
In view of (4.21) and (4.23), [, - T as ¢ 0.
To conclude (4.17), observe that the strong convergence of {i,} in
% follows from (4.18) in the same way as in the proof of Theorem 3.3.
Finally, to prove (4.19), let us observe that by virtue of (4.11) and due to
the uniform bounds (2.14a) on Z,(if) and E(4),

(4.24) 1,0 < CIEW) -, ()] g < Ce',

with positive constant C independent of . Similarly,

(4.25) @)1 < Ce'2,

with C independent of ¢, because {4} is uniformly bounded in %. By (4.24),
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(4.25) and in view of the obvious inequalities [ < I(&,), I, < I, (i), we have
(4.26) 0<I()~T<\@)—Tl+)1,@—10 < csm
with C independent of & Eventually, according to (4.25) and (4.26),
I, =1 < |- 1) +I(@)—1 < Ce'r™.
The above inequality completes the proof. =

In the degenerate case (¢ = () there are two parameters of regularization:
u, € >0. Thus, it is then of interest to examine both iterative and joint
convergences of the solutions of the regularized control problems (CP)! with
respect to u and e

THEOREM 4.4. Consider control problems (CP)Y, u, e€(0, 1], in the degene-
rate case (g = 0), with U = %U° or U*. Assume that (Al), (A2)°, (A3)—(A6) hold.
Let {ii,} < % be a sequence of optimal controls fo; problems (CP):.

(I) Iterative convergence: ¢ —0, u—0.

(i) Assume pu > Q to be fixed. Then there exists a subsequence of {i,,}, such
that i, — i, strongly in U as -0, assertions (4.18) and (4.19) on the
convergences of the optimal states =% (d,,) — E* (4,) and the minimal values of the
cost functionals, [¥ — [, I* (4, J)— I* are true, w:th i, repr esentmg an optimal
control for problem (CP)*, I* = I* (4,).

(ii) Let {i,} be a sequence of opnmal controls for problems (CP):. Then
there exists a subsequence of {ii,}, such that as u—0,

4.27) i, —> i strongly in %,
(4.28) E*(d,) EJ( 1) weakly in I2(0, T; V),
(4.29) oo I,

where i is an optimal control for problem (CP); I = I(d).
(IT) Joint convergence: p, ¢ —~ 0. Assume that

(4.30) e< eyt where g, 6> 0.

Then, for a subsequence of {i,.}, as y, € =0, the assertions (4.27)-(4.29)
hold for i,., E%(i1,) and I%, respectively.

Proof. (I) Assertion (i) follows directly from Theorem 4.3. In the proof of
(ii) we make use of the following convergences established in Theorem 2.4:

(4.31a)  for any ue%, E*(u) — Z(u) weakly in I*(0, T, V) and
strongly in IXQ) as u—0,
where = (u) = y/, with y being the solution of (VI). Apart from (4.31a), we shall
take advantage of the following property:
(4.31b) if u, > u weakly in % as u— 0, then
E'(u,) - Z(u) weakly in I?(0, T; V).
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To prove (4.31b), observe that since {u,} is bounded in %, estimates (2.14a)
(see Theorem 2.2) imply uniform bounds on y, in H'(0, T; V), with y,
== Z"(u,). Thus, for a subsequence, v, =y weakly in H'(0, T, V) as u — 0, and
p(0) = 0 in Q. In order to prove that y' = Z (u). to'  the upper limit at 4 — 0 in
the inequality (2.8c) with u,. By arguments si :war to those u .d in the proof of
Theorem 3.1(i), due to the properties (2.7) of 1*, we can conclude that y satisfies
(VD) including u. This proves (4.31b).

By virtue of the convergences (4.31a,b), we can argue as in the proof of
Theorem 4.3, to show that:

(a) {11} is uniformly bounded in %, thus, for a subsequence, i, — i weakly
in %, and ="(ii,) - Z(4) weakly in (0, T; V) as u—0; ) o

(b) 4 is an optimal control for problem (CP) (i.e,, I () = 1), and I* — [ as
1= 0;

(c) ﬁu—-mf strongly in %.

The above conclusions yield (4.27)—(4.29).

(I1) To study the joint convergence as u, ¢ — 0, we first show the following
properties:

(4.3211) for any ued,
E8(u) — E(u) weakly in I2(0, T; V) as u, £ —0;

(432b) if u,, —u weakly in % as pu, ¢ — 0, then
¥ (u,) > E(u) weakly in I7(0, T; V).

Let y,. = Z%(u,). By the uniform bound (2.14a) on y,. (indcpendent of p, €,
because of the uniform boundedness of {u,} in %),

Ve =y weakly in H'(0, T; V) as g, ¢ = 0.

To prove that y' = Z(u), we pass to the limit as g, ¢ — 0 in (VI)¥ given the
form (2.8¢c), with F*, f, substituted with F¥ and f,,, respectively. We again follow
the arguments of Theorem 3.1(1), this time exploiting the properties (2.7) of
F? at u, e >0 (see Remark 2.3), as well as the convergence

fue—Jo strongly in I#(Q) as u, e >0

( consequence of (2.3) and (2.11b)), to conclude that y satisfies (V) including u.
This proves (4.32b). In a similar way, (4.32a) can be shown. We shall now prove
that for any ue4%,

(4.32c) E(w) > E@) strongly in I2(Q) as p, £ -0,

provided that £ and p are related to each other by (4.30). To this purpose, let us
use the inequality

(433)  1=Z2 (W) =E Wl < 1EF M) —E* Wl 20 + 12" () = E (W) .2(g)-
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By virtue of (4.11), with g to be substituted by u (since the problem has
been regularized parabolically), for every ue#

W12

(434) |20 = 2 W12 < €= - < Cof? 7,

with constant C independent of i, & and u. On account of (4.31a) and (4.34),
estimate (4.33) implies (4.32¢).

At last, with the properties (4.32a—c) of Z% shown, we can again apply the
same arguments as in the proof of Theorem 4.3, to conclude assertion (IT). =

Remark 4.1. How to construct necessary conditions of optimality for
control problem (CP) in a straightlforward way, remains an open question. This
is so due to the lack of any regularity of the [ree boundary, nonlocal in time.
Were it at least of zero Lebesgue measure in Q (what is unknown and rather
questionable, in general), a construction due to Tiba (cf, [T1]) would apply in
the case of the parabolic two-phase Stefan problem. No such constructions are
known for the problems with degeneration.

5. Comments on the related numerical realizations

The regularization techniques that form kernel of this paper can be applied in
the construction of discrete approximations to the problems under con-
sideration, including equally the free boundary problem (1.2) and related
problems of control.

Concerning discrete approximations to problem (1.2) in variational
inequality formulation, we refer to [P3]. Discrete approximations to the
related control problems were constructed in [P2], [P3]. The construction of
an algorithm for numerical solving control problems, as exposed in [P3], splits
mnto two stages:

(1) regularization of the variational inequality (VI), comprising parabolic
regularization and smoothing; the former is of primary importance for the
degenerate (paraholic-elliptic) problems, the latter provides differentiability of
the state observation mappings and, consequently, differentiability of the cost
functional;

(ii) discretization of the resulting regularized optimal control problems by
using finite elements in space and finite differences in time. ~

The regularization procedure we have applied turns out useful in
an analysis of the constructed discrete problems. On account of some
additional regularity of solutions to the regularized problems (VI){ and,
at the same time, due to error estimates for parabolic regularization and
smoothing effects we have established, an application of the regularizing
procedure makes it posible to evaluate a convergence rate of the discrete
approximations (cf., [P3]).
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Moreaver, as regularization delivers the differentiability of the cost

functional, it gives rise to optimality conditions in an explicit form. Thus, it
gives rise to a constructive method for solving the class of control problems of
our concern (cf, [P2], [P3])
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