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1. Suppose that f(z) is a meromorphic function in the entire complex
plane €. For the sake of brevity we do not mention the explicit meanings
of the symbols m(r,f), m(r,1/f); n(r,f), n(r,1/f); N(r,f), N(r,1/f);
T(r, f), ete. occurring frequently in the Nevanlinna theory of meromorphie
functions (see Hayman [1]). If ¢ denotes any of the auxiliary functions,
we write (r) = ¢(r, f)+¢(r, 1/f). Our purpose in this paper is to inves-
tigate the estimations of the m(r) relative to n(r) and 7%, where p(r)
is a proximate order of f(z), o being the usual order of f(z) in terms of

T(r,f)

2. In this section we collect the necessary lemmas of which we make
use in our investigations.

LEMMA A. Let f(2) be a meromorphic funclion of order o (0 < p << 1).
Then
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(2.1) m(r)gf”(“’) dm+rf %dm+

T
,

4 S 1 (1 [ n@ ijf n () }
" T 1; 2m+1 { 7‘2mf p—2mtl dz +1 J 2T dzy +0(1).

0

The proof of Lemma A follows by putting p = 0 in a result obtained
earlier by one of us (Kamthan [3], Theorem C).
From lemma A we deduce
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LemMMA B. Let f(2) be a meromorphic function of order o (0 < o< 1)
and let 0 < a< 1. Then

r r
m (t) 1 N(@) r N (1)
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where the last term O(r~") is to be written as O(logr) when a = 0.
Proof of Lemma B. We have

(2.2) Fm() dt\f d_ () dw+fdt (@) g

1+a 1+4a @z
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Clearly

1, =fN(t)—dt

tl-[-a
0

Now, as the order o is less than 1, one has

T R (]

Again, changing the order of integration in the integrals in I;, we have
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Further, we have

- N (2 N
I, — — tlia) dt 4 (2m +2)ft2"‘+‘ “dtf zn(i), du
0
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dt,

and

The proof of the lemma follows on substituting the values of I,-I,in (2.2).
LeMyMA C. This is Lemma B for a = 0.

3. We now proceed to state and prove the results we promised in
section 1 of this paper.

THEOREM 1. Suppose f(z) is a meromorphic function of order ¢ (0 < o
1). Then

. m(r)
3.1 lim <A
(3.1) ) (0),
where
1 2
A(g) = + cot 2

o(l—pg) 1—¢ 2 °
Proof. If y > 0, then it is clear that

——N(@) . N(1)
lim ——— = o0, lim pree

Therefore, by a lemma on Pdlya-peaks (Hayman [1], p. 101), there exist
arbitrarily large values of r, say {r,}, 7, > o as n — oo, such that

39 NGO N ooy e
(3.2) e S pen 0<t<Ty),
(3.3) N{E) _ N(r)

getn S 1,.gl+n (t>75).
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Hence on making use of Lemma C, we obtain

f
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Since 7 is arbitrary, therefore, letting # — 0, one finds

(3.4) "0 @< AN (L +o().

Now, for t > t, let
m(t) > A(e)n(t)(L+o(1).
Then

f-—( dt > A(e) N (r)(L+o(1)),

for all large r, which contradicts (3.4), and so for arbitrarily large values

of r
m(r) < A(e)n(r)(1+o(1)),

and this completes the result.

Remark. The above result is not necessarily true for functions of

integral order. Take for instance f(z) = ¢. Then m(r) = 2r/=x for all
7> 0,n(r) =0 for all . Hence the left-hand expression in (3.1) is oo.

Finally we prove

THEOREM 2. Let f(2) be a meromorphic function of proximate order

o(r), order p (0 < g << 1). Let

. n(r)

r—00

— Ty

Iim(o—(’r)f)=a, 0< o< oo,
roc0 T
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Then m(r)

el(r)

lim < (2060 — ) A (g),

where A (o) means the quantity in Theorem 1. ‘
Proof. Following the lines of proof of Theorem 7 in [2], P 12, we
obtain for % > 1 the quantity
— n(r 200k — 6
fim 1) 20k 6
roco 170 elogk

Therefore, (2.1) gives

r o0

m(r)<B{ fmg(”)"dm—}—rf 2 dp +

7o r

o0

+iZ 1 [ 1 fm2m_1+g(:)dm+,’.2m+2 f m—2m—3+e(¢)dm+
™ e 2m+1 L™
= 7o ’

. o b+ oq),

for r > r,, where
200k? — 6

ologk +e, &e>0.
Hence ' — m(7r) 200k?— 6
im — < 4(g) ————

) (e) ologk ’

which, on putting logk = 1/p, yields the result.

Finally, the authors wish to thank Professor W. H. J. Fuchs, Cornell
University (U.S.A.) for his encouraging comments in this paper. The
authors are also thankful to the reviewer for a very helpful suggestion.
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