AN ERGODIC THEOREM WITHOUT INVARIANT MEASURE

BY

R. SATO (OKAYAMA)

TO THE MEMORY OF JANUSZ WOŚ

The following is proved:

If τ is a conservative, non-singular automorphism of a probability space (X, \mathcal{F}, μ) , then to each real measurable function h such that

$$\sup_{n \ge 0} \left| \sum_{j=0}^{n} h(\tau^{j} x) \frac{d\mu \circ \tau^{j}}{d\mu}(x) \right| \sum_{j=0}^{n} \frac{d\mu \circ \tau^{j}}{d\mu}(x) \right| < \infty \quad \text{on } X$$

there corresponds a real function \tilde{h} , measurable with respect to the σ -field of all τ -invariant subsets of X, such that

$$\tilde{h}(x) = \lim_{\substack{m+n\to\infty\\m n \ge 0}} \sum_{j=-m}^{n} h(\tau^{j}x) \frac{d\mu \circ \tau^{j}}{d\mu}(x) / \sum_{j=-m}^{n} \frac{d\mu \circ \tau^{j}}{d\mu}(x) \quad \text{on } X.$$

A point transformation τ from X onto itself is called a non-singular automorphism of (X, \mathcal{F}, μ) if

- (i) τ is invertible;
- (ii) $A \in \mathfrak{F}$ implies $\tau^{-1}A$, $\tau A \in \mathfrak{F}$;
- (iii) $\mu A = 0$ implies $\mu(\tau^{-1}A) = \mu(\tau A) = 0$.

In this note τ will be assumed to be a non-singular automorphism of (X, \mathcal{F}, μ) . Thus to each integer j there corresponds the Radon-Nikodym derivative

$$w_j(x) = \frac{d\mu \circ \tau^j}{d\mu}(x).$$

Let us write, for any measurable function h on X,

$$T^{j}h(x) = h(\tau^{j}x)w_{j}(x).$$

Since $w_{i+j}(x) = w_i(x)w_j(\tau^i x)$ on X, it follows that

$$T^{i+j}h(x) = T^i[T^jh](x)$$
 on X .

Further, $||T^{j}h||_{1} = ||h||_{1}$ for all $h \in L_{1}(\mu)$. Therefore the operator $T = T^{1}$ may be regarded as a positive invertible isometry of $L_{1}(\mu)$. (It is known that if (X, \mathfrak{F}, μ) is a Lebesgue space, then any positive invertible isometry of $L_{1}(\mu)$ has this form.) τ is called *conservative* if $\tau^{-1}A \subset A$ and $A \in \mathfrak{F}$ imply $\mu(A \setminus \tau^{-1}A) = 0$.

 τ is conservative if and only if

$$\sum_{j=0}^{\infty} T^{j} 1(x) = \sum_{j=0}^{\infty} w_{j}(x) = \infty \quad \text{on } X$$

(see, e.g., Section 3.1 in [4]). $A \in \mathfrak{F}$ is called τ -invariant if

$$\tau^{-1}A = A \pmod{\mu}$$

(i.e., $\mu(A\Delta\tau^{-1}A) = 0$). Let \Im denote the family of all τ -invariant sets; \Im forms a sub- σ -field of \Re .

When τ preserves μ (i.e., $\mu(\tau^{-1}A) = \mu A$ for all $A \in \mathfrak{F}$), we have $w_j(x) = 1$ on X and $T^j h(x) = h(\tau^j x)$ for each integer j; if h is a real measurable function on X and $n^{-1} \sum_{j=0}^{n-1} h(\tau^j x)$ is bounded for a.e. $x \in X$, then, by Kesten's ergodic

theorem (see p. 211 in [3]), $n^{-1} \sum_{j=0}^{n-1} h(\tau^j x)$ is convergent for a.e. $x \in X$. Kesten proved this result by using some previous results of Tanny ([5], [6]); Woś ([7], [8]) gave a simple proof of this result (see also [1]).

In this note we will use the method of Wos to generalize Kesten's theorem to non-invariant measures.

THEOREM. Let τ be a conservative, non-singular automorphism of a probability space (X, \mathcal{F}, μ) and let h be a real measurable function. Write

$$\tilde{h}(x) = \lim_{n \to \infty} \sup_{j=0}^{n} h(\tau^{j}x) w_{j}(x) / \sum_{j=0}^{n} w_{j}(x).$$

Then h is measurable with respect to \Im , and

(1)
$$\tilde{h}(x) = \lim_{n \to \infty} \inf_{j=0}^{n} h(\tau^{-j}x) w_{-j}(x) / \sum_{j=0}^{n} w_{-j}(x)$$

for a.e. x in the set $\{\tilde{h} < \infty\}$.

Proof. Since

$$\tilde{h} = \lim_{n \to \infty} \sup_{j=0}^{n} T^{j} h / \sum_{j=0}^{n} T^{j} 1,$$

we have

$$T\tilde{h}(x) = w_{1}(x)\tilde{h}(\tau x) = w_{1}(x)\limsup_{n \to \infty} \frac{w_{1}(x)\sum_{j=0}^{n} T^{j}h(\tau x)}{w_{1}(x)\sum_{j=0}^{n} T^{j}1(\tau x)}$$

$$= w_{1}(x)\limsup_{n \to \infty} \frac{\sum_{j=1}^{n+1} T^{j}h(x)}{\sum_{j=1}^{n+1} T^{j}1(x)} = w_{1}(x)\tilde{h}(x),$$

where the last equality is due to the fact that

$$\sum_{j=0}^{\infty} T^{j} 1(x) = \infty \quad \text{on } X.$$

Thus $\tilde{h}(x) = \tilde{h}(\tau x)$ on X, and \tilde{h} is measurable with respect to \mathfrak{I} . To prove (1), let $X_N = \{\tilde{h} < N\}$. Since

$$X_N \in \mathfrak{I}$$
 and $\bigcup_{N=1}^{\infty} X_N = \{ \tilde{h} < \infty \},$

it suffices to concentrate our attention on the set X_N . Then, considering h-N instead of h, it may be assumed that

$$\{\tilde{h}<0\}=X.$$

Under this assumption we get

$$H(x) = \sup_{n \ge 0} \sum_{j=0}^{n} T^{j} h(x) < \infty \quad \text{on } X.$$

Therefore

(2)
$$H^+(x) < \infty$$
 and $h(x) = -H^-(x) + H^+(x) - T[H^+](x)$,

because

$$H(x) = h(x) + \sup_{n \ge 1} \left[\sum_{j=1}^{n} T^{j} h(x) \right]^{+} = h(x) + \sup_{n \ge 1} \left[T \left(\sum_{j=0}^{n-1} T^{j} h \right) (x) \right]^{+}$$
$$= h(x) + w_{1}(x) \sup_{n \ge 0} \left[\sum_{j=0}^{n} T^{j} h(\tau x) \right]^{+} = h(x) + T \left[H^{+} \right] (x) < \infty.$$

We now prove that

(3)
$$\liminf_{n \to \infty} T^{-n} [H^+] / \sum_{j=0}^n T^{-j} 1 = 0 = \liminf_{n \to \infty} T^n [H^+] / \sum_{j=0}^n T^j 1$$

on X. To see this, let

$$f_N(x) = \inf_{j \ge N} T^{-j} [H^+](x)$$
 for $N \ge 0$.

Then

$$0 \leqslant f_N \leqslant f_{N+1} = T^{-1} f_N < \infty \quad \text{on } X.$$

It follows that $0 \le Tf_N \le f_N < \infty$ on X. This implies $Tf_N = f_N$, since T is a conservative contraction operator on $L_1(\mu)$ (see, e.g., p. 16 in [2]). Consequently, $0 \le f_N = f_{N+1} \le H^+ < \infty$ on X, and the first equality of (3) follows. The second equality follows similarly.

By (2), (3) and the Neveu-Chacon identification theorem of the ratio ergodic limit (see, e.g., Section 3.3 in [4]) we obtain

$$\tilde{h} = -E\{H^-|\mathfrak{I}\} = \liminf_{n \to \infty} \sum_{j=0}^n T^{-j}h / \sum_{j=0}^n T^{-j}1,$$

completing the proof.

COROLLARY. Let τ and h be as in the Theorem. Then the limit

$$\lim_{\substack{m+n\to\infty\\m \ n\geq 0}} \sum_{j=-m}^{n} h(\tau^{j}x) w_{j}(x) / \sum_{j=-m}^{n} w_{j}(x)$$

exists for a.e. x in the set

$$\{x: \sup_{n \ge 0} \left| \sum_{j=0}^{n} h(\tau^{j}x) w_{j}(x) / \sum_{j=0}^{n} w_{j}(x) \right| < \infty \}.$$

REFERENCES

- [1] J. Aaronson, An ergodic theorem with large normalising constants, Israel J. Math. 38 (1981), pp. 182–188.
- [2] S. R. Foguel, The Ergodic Theory of Markov Processes, Van Nostrand Reinhold, New York 1969.
- [3] H. Kesten, Sums of stationary sequences cannot grow slower than linearly, Proc. Amer. Math. Soc. 49 (1975), pp. 205-211.
- [4] U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin 1985.
- [5] D. Tanny, A zero-one law for stationary sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), pp. 139-148.
- [6] Limit theorems for branching processes in a random environment, Ann. Probab. 5 (1977), pp. 100–116.
- [7] J. Woś, Analogues of the Denjoy-Young-Saks and Denjoy-Khintchine theorems in ergodic theory, Bull. Polish Acad. Sci. Math. 32 (1984), pp. 23-29.
- [8] The filling scheme and the ergodic theorems of Kesten and Tanny, Colloq. Math. 52 (1987), pp. 263-276.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE OKAYAMA UNIVERSITY OKAYAMA, 700 JAPAN

Reçu par la Rédaction le 11.8.1988