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1. Preliminaries and main result. Let K be an algebraic number field and
L a finite extension of it. We shall denote by () the ring of integers of K, Ey
the group of units (i.e,, invertible elements of (), €, the ideal class group of
K, written additively, and hg its order.

It is well known that hy is finite and that hg is in a certain sense a
measure indicating how far (g is remote from being a unique factorization
domain. Ok is a unique factorization domain iff hy =1 and @ is a half-
factorial domain iff hy < 2 (see [3]).

Two integers a, Be O \{0} are called associated (x ~ p) if afp~ '€ Ex. An
integer ae Ok \(Ex L {0}) is called irreducible if the only integers dividing a
are units or integers associated with a. If L/K is normal, denote its Galois
group by G and the relative norm for L/K of aeL by NaeK.

DEerFINITION 1. The extension L/K has property (N*) if the following
holds:

For any a, fe Op with Na~NB in K, a and B are either both
irreducible or both not.

If L/K is normal and h; = 1, it is easy to check that (N*) holds. If L/K
is not normal, property (N*) does not hold. We will characterize all finite
normal extensions of algebraic number fields with property (N*). It will be
shown that for an extension L/K property (N*) depends only on the G-
module structure of the ideal class group %.. For ne N set C, = Z/nZ, the
cyclic group of order n.

The main result is given by

THEOREM 1. A normal extension L/K with Galois group G has property
(N*) iff one of the following conditions holds:

(@ €L~C,®C;;

(b) G acts trivially on €.;

(c) hy is odd and there exists an algebraic number field L, with

KSLSL and [Ly: K]=2
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such that the Galois group G, of L/L, acts trivially on €, and any 6€ G\G,
acts on €, via ca= —a.

From Theorem 1 we immediately obtain

CoroLLArY 1. If L/K is normal and ([L: K], 6) =1, then L/K has
property (N*) iff G acts trivially on 4,.

If K = Q and L is a quadratic number field, (a) in Theorem 1 implies (b),
(b) reduces to

k
é.~ @ C, with keN,
i=1
and (c) reduces to “h; is odd”, so we obtain the result mentioned in [2], pp.
17-18.

Bumby and Dade [2] and Bumby [1] considered a similar problem
asking when L/K has property (N), which means: if « and § are integers of L
with the same relative norms, then either both are irreducible or both are
not. All quadratic number fields with property (N) are characterized in [2],
whereas in [1] necessary conditions are given under which property (N)
holds for general L/K. Of course, property (N*) implies (N).

In the next section we will show how property (N*) depends on the G-
module structure of €.

2. Translation into a problem of G-modules. Let G be a multiplicative
group and A a G-module. A non-empty finite family (a;),.; in A4 is called a
block if

;a,- =0.

A block is called irreducible if none of its proper subfamilies is a block.

DEerFINITION 2. Let G be a multiplicative group and 4 a G-module. We
say that (G, A) has property (N*) if for every irreducible block (a;);; in A and
every family (g;);.; in G the following holds: if (g; a;);.; is a block, then it is
irreducible.

The usefulness of Definition 2 will become clear by the next proposition.

ProrosrTiON 1. If L/K is normal with Galois group G, then it has property
(N*) iff (G, €1) has property (N*).

The main idea leading to the translation of factorization problems into
%, is the following: For ae O, let

be the unique factorization of the principal ideal a- (@, into prime ideals.
Denote the ideal class containing p; by [p;]. Then « is an irreducible integer
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iff the block
([pl], [Pz]s AR [pr])

is irreducible. |
Proof of Proposition 1. Assume that (G, ;) has property (N*). Let
ae ¢, be irreducible and
a O =[]

iel *

be the factorization into prime ideals; then ([p;]);; is an irreducible block
in €. If Be O, with Na ~ NP, then the prime ideal decomposition of - (O is
of the form

B- L =]]p" with g,€G.

iel

Property (N*) of (G, %) ensures that the block (o; [p;])i; is 1rreduc1ble thus
B is irreducible as well.

Now assume that L/K has property (N*). Let (a;);.; be an irreducible
block in €, and o,€ G be such that (g; a;),, is a block. For each ie I choose
a prime ideal p;eq;. The ideal []p; is a principal ideal generated by an

iel
irreducible element ae (. The ideal ] p;’ is also a principal ideal generated
iel
by some Be ¢, with Na ~ NB. So B is irreducible, and therefore the block
(0;a;);er 1s also irreducible, which proves (N*) for (G, ).

One can generalize Proposition 1 by taking L the quotient field of an
arbitrary Dedekind ring, but note that for the second part of the proof we
need each ideal class of L to contain at least one prime ideal. Proposition 1
shows. the way to prove Theorem 1. We will characterize all pairs (G, A) of
multiplicative groups G and G-modules A having property (N*), and then
transfer into algebraic number theory. For technical reasons we need another
characterization of property (N*) (see [1]):

ProposITION 2. Let G be a group-and A a G-module. Then (G, A) has
property (N*) iff the following holds:
For each pair of mappings c: G—+ A and d: G — A with

{oeG] c(0) # 0 or d(o) # 0} finite
gnd

) ¢#0, d#0, Y c(a)—}:d(a) § o(c(0)+d(e) = 0,
_ z .

G oeG creG
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the block (oc(a), 0d(9)) (0, 0€G, c(o) #0, d(¢) # 0) is reducible.

Proof of Proposition 2. Assume that (G, 4) has property (N*) and
let ¢, d be mappings satisfying (). The block (c(s), d(9)) (6, 0€G, c(0) # 0,
d(g) # 0) is a reducible block in 4 with the proper subblock (c(0)) (¢ €G,
c(o) # 0). Thus (x) implies that (ac(c), ed(0)) (6, ¢€G, c(0) # 0, d(0) # 0) is
a block, which is reducible, since (N*) holds.

Now assume that (G, A) does not have property (N*). Then there exist
an irreducible block (g;);.; and a family (o;);.; so that (o;a;);., is a reducible
block. Let I =1, 01, be a nontrivial partition such that (o; )., and

(0 @)icr, are blocks. Define the mappings c,d: G — A4 by

co)= Y o;a4 and d(o)= ) o;a for all 0€G,
iely iely
a,-=a_1 ai=a—1

where empty sums are equal to Oe A. Then c, d satisfy (), but (oc(c), od (g))
(6, 0€G, c(6) # 0, d(g) # 0) is irreducible, which completes the proof of
Proposition 2.

“For a G-module A set

Go = {(0€G| oa =a for all ac A}.

Gy is a normal subgroup of G and A is a faithful (G/G,)-module. It is easy to
check that (G, A) has property (N*) iff (G/G,, A) has property (N*). There-
fore, we can confine ourselves to faithful G-modules 4, and hence assume G
to be contained in End (4), the ring of endomorphisms of 4. Denote by 1€ G
the identity, by — I the automorphism mapping each ae A onto —a, and by
0 the endomorphism mapping each ac A onto 0.

THEOREM 2. Let G be a group and A a faithful G-module. Then (G A) has
property (N*) exactly in the following cases:

(@) A=C,®C, and G < Aut(A) = S; (S; denotes the symmetric group
on 3 elements);

(b) G ={1};

(c) G={1, —1}, and A contains no element of order 2.

By Proposition 1 and the above remarks, Theorem 1 is obtained from
Theorem 2 if one factorizes the Galois group G of an extension L/K by its
normal subgroup G, consisting of all automorphisms acting trivially on %,
which gives €, the structure of a faithful (G/G,)-module.
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3. Proof of Theorem 2. The proof is made up of several lemmas.
LeEMMA 1. Let G = {1, — 1! and A be a faithful G-module. Then (G, A)
has property (N¥*) iff A contains no element of order 2.

Proof. Let G = {1, —1} and A4 be a faithful G-module. We use Prop-
osition 2 to check property (N*) for (G, A). Two mappings c,d: G— A
satisfying (*) of Proposition 2 can only have the form

o |c(o)|d(o)

1 x y

—1|—-x| -y

with x, ye A\{0} and
Y a(c(0)+dfo)) = 2(x+y) = 0.

oeG

So (G, A) has property (N*) iff, for all x, ye 4\{0}, 2(x+y) = 0 implies that
(x, x, y, y) 1s a reducible block in A.

Suppose A4 has no element of order 2. Then 2(x+y) = 0 implies y = —x
and (x, x, —x, —x) is reducible, showing that (G, A) has property (N*).

Suppose there exists ze A with order 2. Since 4 is a faithful {1, —1}-
module, the exponent of A is greater than 2. So there exists xe 4\{0, z}
of order greater than 2. Put y = z—x; then 2(x+y) = 2z = 0, but the block
(x, x, z—x, z—x) is irreducible. Thus (G, A) does not have property (N*) and
Lemma 1 is proved.

LemMa 2 (see [1], Proposition 2). Let A be a faithful G-module and
suppose (G, A) has property (N*). Then for g€ G either g>—1= 0 or p*+0+1
= 0.

Proof. Assume ¢geG with g% # 1. Consider xe A with p?x # x and
define ¢, d: G— A by

o |c(o)| d(o)

1 x| —x—px

0 0 x+ox

—X 0 (All elements of G not listed in the table are mapped onto 0.)

¢ and d satisfy (+). of Proposition 2 and (G, A) -has property (N*), so the
block

(x, —o*x, —x—gx, 0x+ 0% x)
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must be reducible. As x, gx, o2 x, ox+ x, 9*> x~x aré not 0, necessarily o2 x
+ox+x =0. This gives

A = ker(1—¢?) uker(1+¢+0?);
but A cannot be the union of two proper subgroups, so
A =ker (1+0+0?),

and Lemma 2 is proved.

LEMMA 3. Let G be a group and A ~C, ® C, be a faithful G-module.
Then (G, A) has property (N¥*).

Proof. If G = {1}, the lemma is obvious, so assume that G # {1}. We
will use Proposition 2 again. If ¢, d: G — A satisfy (%), the block (o¢(0), od(0))
(0, 0€G, c(0) # 0, d(g) # 0) has at least 4 elements. Davenport’s constant for
C,®C, 1s 3, so this block is always reducible. (For the definition of
Davenport’s constant and its computation in some special cases see [4]
and [5])

LemMMA 4. Let A be afatthful G-module and (G, A) have property (N*). If
there exists QeG\,l‘ with o2 +o0+1=0, then,,

AzC, ®C,.

Proof. Let geG\ {1} with ¢ 240+ 1 =0, which implies ¢* = 1. Cons1der
xe A\ker(1—g) and define c, d: G— 4 by

o6 |c(a)| d(o)

1 x | —x+px \

e le*x 0

Q" |ex | x—ex (All elements of G not lis;ed in the table are mapped onto 0)

¢ and d satisfy (»), so by Proposition 2 the block
(x, x, x, —x+p0x, 0*> x—Xx)

must be reducible, which can only hold if 2x =0 or 3x = 0. If yeker(]—g),
then

A’+e+Dy=3y=0.

Combining these results, 'we se¢ ‘that the exponent of A is-2 -or 3.

Assume that the exponent of A is 3. Choose xe A \ker (1—p) and deﬁnc
C d G A by N T



IRREDUCIBLE INTEGERS AND THEIR NORMS 331

o lc(o)!|d(o)

1 | 2x]| O

0 x [ x

| 0 | 2x (All elements of G not listed in the table are mapped onto 0.

c and d satisfy (x), but the block (2x, gx, @x, 20> x) turns out to be
irreducible, contradicting property (N*). Therefore, the exponent of A
must be 2. We have ker(1—p) = {0}, because the order of every element of
ker(1—g) divides 3. If xeA\{0}, then x, gx, ¢*x = x+¢x are different
elements of 4 and A, = {0, x, gx, ¢>x} is a subgroup of A, invariant under
the action of g. If there exists ye A\A,, we define c,d: G— A by

o |c(o)| d(o)

1| x| x+gy

e | x | x+o*y

e]0 Y (All elements of G not listed in the table are mapped onto 0.

¢ and d satisfy (*), but the block
(x, ex, x+ey, ex+y, ¢*y)
is irreducible, which contradicts property (N*). Therefore,
A=A,=C,®C,.

Lemma 3 shows that property (N*) holds in this case, which completes the
proof of Lemma 4.

LEmMMaA 5. Let G # {1}, G # {1, — 1}, A be a faithful G-module and (G, A)
have property (N*). If 0>~ 1= 0 holds for all g€G, then A =C, ® C,.
Proof. Let geG, ¢ # + 1. If ker(I1—g) = {0}, then for all xe A we have
(1-9)(I+9)x=0 and (I+g)xeker(1—g)= {0}.

Then ¢ = — 1, contrary to our choice of g. Thus there exists yeker(1—yg)\{0}.
For xe A\ker(1—p) define two mappings c,d: G — A by

o |c(o)| d(o)

1 x| =x+y

e | —x x—y (All elements of G not listed in the table are mapped onto 0)
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¢ and d satisfy (*), so by Proposition 2 the block
(x, —@x, —x+y, ex—0y)

must be reducible. This can only occur if gx = —x+ y holds. It follows easily
that ker(1—g) = {0, y}, the order of y is 2, and gx = —x+y for all
xe A\ker(1—p). If there exists an xe A\ker(I1—g) with X # x, then

e(x+%) = —(x+X) # —(x+X)+y,

so x+ X must be contained in ker(1—g) and A has at most 5 elements. Since
ye A has order 2 and the only automorphisms of C, are 1 and —1, only 4
= C, ® C, remains possible. Lemma 3 assures that (N*) holds in this case,
and Lemma 4 is proved.

Proof of Theorem 2. Assume that 4 is a faithful G-module and that
(G, A) has property (N*). If G = {I!, then (G, A) has property (N*) for
arbitrary A, which gives part (b) of Theorem 2. If G = {1, — 1}, part (c) of
Theorem 2 results from Lemma 1. If G # {I} and G # {1, —1}, then
Lemmas 2, 4 and 5 imply part (a) of Theorem 2.

I would like to thank Professor F. Halter-Koch for many discussions
and advice during the preparation of the manuscript.
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