VOL. LIV 1987 FASC. 2

CHARACTERIZATION OF IRREDUCIBLE ALGEBRAIC INTEGERS BY THEIR NORMS

BY

G. LETTL (GRAZ)

1. Preliminaries and main result. Let K be an algebraic number field and L a finite extension of it. We shall denote by \mathcal{O}_K the ring of integers of K, E_K the group of units (i.e., invertible elements of \mathcal{O}_K), \mathscr{C}_K the ideal class group of K, written additively, and h_K its order.

It is well known that h_K is finite and that h_K is in a certain sense a measure indicating how far \mathcal{O}_K is remote from being a unique factorization domain. \mathcal{O}_K is a unique factorization domain iff $h_K = 1$ and \mathcal{O}_K is a half-factorial domain iff $h_K \leq 2$ (see [3]).

Two integers α , $\beta \in \mathcal{O}_K \setminus \{0\}$ are called associated $(\alpha \sim \beta)$ if $\alpha \beta^{-1} \in E_K$. An integer $\alpha \in \mathcal{O}_K \setminus (E_K \cup \{0\})$ is called *irreducible* if the only integers dividing α are units or integers associated with α . If L/K is normal, denote its Galois group by G and the relative norm for L/K of $\alpha \in L$ by $N\alpha \in K$.

DEFINITION 1. The extension L/K has property (N*) if the following holds:

For any α , $\beta \in \mathcal{O}_L$ with $N\alpha \sim N\beta$ in K, α and β are either both irreducible or both not.

If L/K is normal and $h_L = 1$, it is easy to check that (N^*) holds. If L/K is not normal, property (N^*) does not hold. We will characterize all finite normal extensions of algebraic number fields with property (N^*) . It will be shown that for an extension L/K property (N^*) depends only on the G-module structure of the ideal class group \mathscr{C}_L . For $n \in N$ set $C_n = \mathbb{Z}/n\mathbb{Z}$, the cyclic group of order n.

The main result is given by

THEOREM 1. A normal extension L/K with Galois group G has property (N^*) iff one of the following conditions holds:

- (a) $\mathscr{C}_L \simeq C_2 \oplus C_2$;
- (b) G acts trivially on \mathscr{C}_L ;
- (c) h_L is odd and there exists an algebraic number field L_0 with

$$K \subseteq L_0 \subseteq L$$
 and $[L_0: K] = 2$

such that the Galois group G_0 of L/L_0 acts trivially on \mathscr{C}_L and any $\sigma \in G \setminus G_0$ acts on \mathscr{C}_L via $\sigma a = -a$.

From Theorem 1 we immediately obtain

COROLLARY 1. If L/K is normal and ([L: K], 6) = 1, then L/K has property (N*) iff G acts trivially on \mathscr{C}_L .

If K = Q and L is a quadratic number field, (a) in Theorem 1 implies (b), (b) reduces to

$$\mathscr{C}_L \simeq \bigoplus_{i=1}^k C_2 \quad \text{with } k \in \mathbb{N},$$

and (c) reduces to " h_L is odd", so we obtain the result mentioned in [2], pp. 17–18.

Bumby and Dade [2] and Bumby [1] considered a similar problem asking when L/K has property (N), which means: if α and β are integers of L with the same relative norms, then either both are irreducible or both are not. All quadratic number fields with property (N) are characterized in [2], whereas in [1] necessary conditions are given under which property (N) holds for general L/K. Of course, property (N*) implies (N).

In the next section we will show how property (N^*) depends on the G-module structure of \mathscr{C}_L .

2. Translation into a problem of G-modules. Let G be a multiplicative group and A a G-module. A non-empty finite family $(a_i)_{i \in I}$ in A is called a block if

$$\sum_{i\in I}a_i=0.$$

A block is called irreducible if none of its proper subfamilies is a block.

DEFINITION 2. Let G be a multiplicative group and A a G-module. We say that (G, A) has property (N^*) if for every irreducible block $(a_i)_{i \in I}$ in A and every family $(\sigma_i)_{i \in I}$ in G the following holds: if $(\sigma_i a_i)_{i \in I}$ is a block, then it is irreducible.

The usefulness of Definition 2 will become clear by the next proposition.

PROPOSITION 1. If L/K is normal with Galois group G, then it has property (N^*) iff (G, \mathcal{C}_L) has property (N^*) .

The main idea leading to the translation of factorization problems into \mathscr{C}_L is the following: For $\alpha \in \mathscr{O}_L$ let

$$\alpha \cdot \mathcal{O}_L = \prod_{i=1}^r \mathfrak{p}_i$$

be the unique factorization of the principal ideal $\alpha \cdot \mathcal{O}_L$ into prime ideals. Denote the ideal class containing \mathfrak{p}_i by $[\mathfrak{p}_i]$. Then α is an irreducible integer

iff the block

$$([\mathfrak{p}_1], [\mathfrak{p}_2], \ldots, [\mathfrak{p}_r])$$

is irreducible.

Proof of Proposition 1. Assume that (G, \mathcal{C}_L) has property (N^*) . Let $\alpha \in \mathcal{O}_L$ be irreducible and

$$\alpha \cdot \mathcal{O}_L = \prod_{i \in I} \mathfrak{p}_i$$

be the factorization into prime ideals; then $([p_i])_{i \in I}$ is an irreducible block in \mathscr{C}_L . If $\beta \in \mathscr{O}_L$ with $N\alpha \sim N\beta$, then the prime ideal decomposition of $\beta \cdot \mathscr{O}_L$ is of the form

$$\beta \cdot \ell_L = \prod_{i \in I} \mathfrak{p}_i^{\sigma_i}$$
 with $\sigma_i \in G$.

Property (N^*) of (G, \mathscr{C}_L) ensures that the block $(\sigma_i[\mathfrak{p}_i])_{i \in I}$ is irreducible, thus β is irreducible as well.

Now assume that L/K has property (N^*) . Let $(a_i)_{i\in I}$ be an irreducible block in \mathscr{C}_L and $\sigma_i \in G$ be such that $(\sigma_i \, a_i)_{i\in I}$ is a block. For each $i\in I$ choose a prime ideal $\mathfrak{p}_i \in a_i$. The ideal $\prod_{i\in I} \mathfrak{p}_i$ is a principal ideal generated by an

irreducible element $\alpha \in \mathcal{C}_L$. The ideal $\prod_{i \in I} \mathfrak{p}_i^{\sigma_i}$ is also a principal ideal generated by some $\beta \in \mathcal{C}_L$ with $N\alpha \sim N\beta$. So β is irreducible, and therefore the block $(\sigma_i \, a_i)_{i \in I}$ is also irreducible, which proves (N^*) for (G, \mathcal{C}_L) .

One can generalize Proposition 1 by taking L the quotient field of an arbitrary Dedekind ring, but note that for the second part of the proof we need each ideal class of L to contain at least one prime ideal. Proposition 1 shows the way to prove Theorem 1. We will characterize all pairs (G, A) of multiplicative groups G and G-modules A having property (N^*) , and then transfer into algebraic number theory. For technical reasons we need another characterization of property (N^*) (see [1]):

PROPOSITION 2. Let G be a group and A a G-module. Then (G, A) has property (N^*) iff the following holds:

For each pair of mappings $c: G \rightarrow A$ and $d: G \rightarrow A$ with

$$\{\sigma \in G | c(\sigma) \neq 0 \text{ or } d(\sigma) \neq 0\}$$
 finite

and

(*)
$$c \neq 0$$
, $d \neq 0$, $\sum_{\sigma \in G} c(\sigma) = \sum_{\sigma \in G} d(\sigma) = \sum_{\sigma \in G} \sigma(c(\sigma) + d(\sigma)) = 0$,

the block $(\sigma c(\sigma), \varrho d(\varrho))$ $(\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)$ is reducible.

Proof of Proposition 2. Assume that (G, A) has property (N^*) and let c, d be mappings satisfying (*). The block $(c(\sigma), d(\varrho))$ $(\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)$ is a reducible block in A with the proper subblock $(c(\sigma))$ $(\sigma \in G, c(\sigma) \neq 0)$. Thus (*) implies that $(\sigma c(\sigma), \varrho d(\varrho))$ $(\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)$ is a block, which is reducible, since (N^*) holds.

Now assume that (G, A) does not have property (N^*) . Then there exist an irreducible block $(a_i)_{i \in I}$ and a family $(\sigma_i)_{i \in I}$ so that $(\sigma_i a_i)_{i \in I}$ is a reducible block. Let $I = I_1 \odot I_2$ be a nontrivial partition such that $(\sigma_i a_i)_{i \in I_1}$ and $(\sigma_i a_i)_{i \in I_2}$ are blocks. Define the mappings $c, d: G \to A$ by

$$c(\sigma) = \sum_{\substack{i \in I_1 \\ \sigma_i = \sigma^{-1}}} \sigma_i a_i \quad \text{and} \quad d(\sigma) = \sum_{\substack{i \in I_2 \\ \sigma_i = \sigma^{-1}}} \sigma_i a_i \quad \text{for all } \sigma \in G,$$

where empty sums are equal to $0 \in A$. Then c, d satisfy (*), but $(\sigma c(\sigma), \varrho d(\varrho))$ $(\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)$ is irreducible, which completes the proof of Proposition 2.

For a G-module A set

$$G_0 = \{ \sigma \in G | \sigma a = a \text{ for all } a \in A \}.$$

 G_0 is a normal subgroup of G and A is a faithful (G/G_0) -module. It is easy to check that (G, A) has property (N^*) iff $(G/G_0, A)$ has property (N^*) . Therefore, we can confine ourselves to faithful G-modules A, and hence assume G to be contained in $\operatorname{End}(A)$, the ring of endomorphisms of A. Denote by $1 \in G$ the identity, by -1 the automorphism mapping each $a \in A$ onto -a, and by 0 the endomorphism mapping each $a \in A$ onto 0.

THEOREM 2. Let G be a group and A a faithful G-module. Then (G, A) has property (N^*) exactly in the following cases:

- (a) $A \cong C_2 \oplus C_2$ and $G \leq \operatorname{Aut}(A) \cong S_3$ (S_3 denotes the symmetric group on 3 elements);
 - (b) $G = \{1\};$
 - (c) $G = \{1, -1\}$, and A contains no element of order 2.

By Proposition 1 and the above remarks, Theorem 1 is obtained from Theorem 2 if one factorizes the Galois group G of an extension L/K by its normal subgroup G_0 consisting of all automorphisms acting trivially on \mathscr{C}_L , which gives \mathscr{C}_L the structure of a faithful (G/G_0) -module.

3. Proof of Theorem 2. The proof is made up of several lemmas.

LEMMA 1. Let $G = \{1, -1\}$ and A be a faithful G-module. Then (G, A) has property (N^*) iff A contains no element of order 2.

Proof. Let $G = \{1, -1\}$ and A be a faithful G-module. We use Proposition 2 to check property (N^*) for (G, A). Two mappings $c, d: G \rightarrow A$ satisfying (*) of Proposition 2 can only have the form

σ	c (σ)	d(σ)
1	x	у
-1	-x	- <i>y</i>

with $x, y \in A \setminus \{0\}$ and

$$\sum_{\sigma \in G} \sigma (c(\sigma) + d(\sigma)) = 2(x + y) = 0.$$

So (G, A) has property (N^*) iff, for all $x, y \in A \setminus \{0\}$, 2(x+y) = 0 implies that (x, x, y, y) is a reducible block in A.

Suppose A has no element of order 2. Then 2(x+y) = 0 implies y = -x and (x, x, -x, -x) is reducible, showing that (G, A) has property (N^*) .

Suppose there exists $z \in A$ with order 2. Since A is a faithful $\{1, -1\}$ -module, the exponent of A is greater than 2. So there exists $x \in A \setminus \{0, z\}$ of order greater than 2. Put y = z - x; then 2(x + y) = 2z = 0, but the block (x, x, z - x, z - x) is irreducible. Thus (G, A) does not have property (N^*) and Lemma 1 is proved.

LEMMA 2 (see [1], Proposition 2). Let A be a faithful G-module and suppose (G, A) has property (N^*) . Then for $\varrho \in G$ either $\varrho^2 - 1 = 0$ or $\varrho^2 + \varrho + 1 = 0$.

Proof. Assume $\varrho \in G$ with $\varrho^2 \neq 1$. Consider $x \in A$ with $\varrho^2 x \neq x$ and define $c, d: G \rightarrow A$ by

_σ	c (σ)	d (σ)
1	х	$-x-\varrho x$
Q	0	$x+\varrho x$
ϱ^2	-x	0

(All elements of G not listed in the table are mapped onto 0.)

c and d satisfy (*) of Proposition 2 and (G, A) has property (N^*) , so the block

$$(x, -\varrho^2 x, -x-\varrho x, \varrho x+\varrho^2 x)$$

must be reducible. As x, ϱx , $\varrho^2 x$, $\varrho x + x$, $\varrho^2 x - x$ are not 0, necessarily $\varrho^2 x + \varrho x + x = 0$. This gives

$$A = \ker(1 - \varrho^2) \cup \ker(1 + \varrho + \varrho^2),$$

but A cannot be the union of two proper subgroups, so

$$A = \ker (1 + \varrho + \varrho^2),$$

and Lemma 2 is proved.

LEMMA 3. Let G be a group and $A \simeq C_2 \oplus C_2$ be a faithful G-module. Then (G, A) has property (N^*) .

Proof. If $G = \{1\}$, the lemma is obvious, so assume that $G \neq \{1\}$. We will use Proposition 2 again. If $c, d: G \to A$ satisfy (*), the block $(\sigma c(\sigma), \varrho d(\varrho))$ $(\sigma, \varrho \in G, c(\sigma) \neq 0, d(\varrho) \neq 0)$ has at least 4 elements. Davenport's constant for $C_2 \oplus C_2$ is 3, so this block is always reducible. (For the definition of Davenport's constant and its computation in some special cases see [4] and [5].)

LEMMA 4. Let A be a faithful G-module and (G, A) have property (N^*) . If there exists $\varrho \in G \setminus \{1\}$ with $\varrho^2 + \varrho + 1 = 0$, then

$$A \cong C_2 \oplus C_2$$
.

Proof. Let $\varrho \in G \setminus \{1\}$ with $\varrho^2 + \varrho + 1 = 0$, which implies $\varrho^3 = 1$. Consider $x \in A \setminus \ker(1-\varrho)$ and define $c, d: G \to A$ by

σ	c (σ)	d(σ)
1	x	$-x+\varrho x$
Q	$\varrho^2 x$	0
ρ²	ρx	$x-\varrho x$

(All elements of G not listed in the table are mapped onto 0.)

c and d satisfy (*), so by Proposition 2 the block

$$(x, x, x, -x+\varrho x, \varrho^2 x-x)$$

must be reducible, which can only hold if 2x = 0 or 3x = 0. If $y \in \ker(1-\varrho)$, then

$$(\varrho^2 + \varrho + 1)y = 3y = 0.$$

Combining these results, we see that the exponent of A is 2 or 3.

Assume that the exponent of A is 3. Choose $x \in A \setminus \ker(1-\varrho)$ and define $c, d: G \to A$ by

σ	c (σ)	d(σ)
1	2 <i>x</i>	0
Q	x	х
ϱ^2	0	2x

(All elements of G not listed in the table are mapped onto 0.)

c and d satisfy (*), but the block $(2x, \varrho x, \varrho x, 2\varrho^2 x)$ turns out to be irreducible, contradicting property (N^*) . Therefore, the exponent of A must be 2. We have $\ker(1-\varrho) = \{0\}$, because the order of every element of $\ker(1-\varrho)$ divides 3. If $x \in A \setminus \{0\}$, then $x, \varrho x, \varrho^2 x = x + \varrho x$ are different elements of A and $A_x = \{0, x, \varrho x, \varrho^2 x\}$ is a subgroup of A, invariant under the action of ϱ . If there exists $y \in A \setminus A_x$, we define $c, d \in G \to A$ by

σ	c(σ)	d(σ)
1	x	$x + \varrho y$
Q	х	$x + \varrho^2 y$
ρ²	0	у

(All elements of G not listed in the table are mapped onto 0.)

c and d satisfy (*), but the block

$$(x, \varrho x, x + \varrho y, \varrho x + y, \varrho^2 y)$$

is irreducible, which contradicts property (N*). Therefore,

$$A=A_{\mathbf{x}}\cong C_{\mathbf{2}}\oplus C_{\mathbf{2}}.$$

Lemma 3 shows that property (N*) holds in this case, which completes the proof of Lemma 4.

LEMMA 5. Let $G \neq \{1\}$, $G \neq \{1, -1\}$, A be a faithful G-module and (G, A) have property (N^*) . If $\varrho^2 - 1 = 0$ holds for all $\varrho \in G$, then $A \cong C_2 \oplus C_2$.

Proof. Let $\varrho \in G$, $\varrho \neq \pm 1$. If $\ker(1-\varrho) = \{0\}$, then for all $x \in A$ we have

$$(1-\varrho)(1+\varrho)x = 0$$
 and $(1+\varrho)x \in \ker(1-\varrho) = \{0\}.$

Then $\varrho = -1$, contrary to our choice of ϱ . Thus there exists $y \in \ker(1-\varrho) \setminus \{0\}$. For $x \in A \setminus \ker(1-\varrho)$ define two mappings $c, d: G \to A$ by

σ	<i>c</i> (σ)	d (σ)
1	x	-x+y
ρ	-x	x-y

(All elements of G not listed in the table are mapped onto 0.)

c and d satisfy (*), so by Proposition 2 the block

$$(x, -\varrho x, -x+y, \varrho x-\varrho y)$$

must be reducible. This can only occur if $\varrho x = -x + y$ holds. It follows easily that $\ker(1-\varrho) = \{0, y\}$, the order of y is 2, and $\varrho x = -x + y$ for all $x \in A \setminus \ker(1-\varrho)$. If there exists an $\bar{x} \in A \setminus \ker(1-\varrho)$ with $\bar{x} \neq x$, then

$$\varrho(x+\overline{x}) = -(x+\overline{x}) \neq -(x+\overline{x}) + y,$$

so $x + \bar{x}$ must be contained in $\ker(1-\varrho)$ and A has at most 5 elements. Since $y \in A$ has order 2 and the only automorphisms of C_4 are 1 and -1, only $A \cong C_2 \oplus C_2$ remains possible. Lemma 3 assures that (N^*) holds in this case, and Lemma 4 is proved.

Proof of Theorem 2. Assume that A is a faithful G-module and that (G, A) has property (N^*) . If $G = \{1\}$, then (G, A) has property (N^*) for arbitrary A, which gives part (b) of Theorem 2. If $G = \{1, -1\}$, part (c) of Theorem 2 results from Lemma 1. If $G \neq \{1\}$ and $G \neq \{1, -1\}$, then Lemmas 2, 4 and 5 imply part (a) of Theorem 2.

I would like to thank Professor F. Halter-Koch for many discussions and advice during the preparation of the manuscript.

REFERENCES

- [1] R. T. Bumby, Irreducible integers in Galois extensions, Pacific J. Math. 22 (1967), pp. 221-229.
- [2] and E. C. Dade, Remark on a problem of Niven and Zuckerman, ibidem 22 (1967), pp. 15-18.
- [3] L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer. Math. Soc. 11 (1960), pp. 391-392.
- [4] P. van Emde Boas, A combinatorial problem on finite Abelian groups. II, Reports of the Mathematisch Centrum Amsterdam, ZW-1969-007.
- [5] W. Narkiewicz, Finite Abelian groups and factorization problems, Colloq. Math. 42 (1979), pp. 319-330.

INSTITUT FÜR MATHEMATIK KARL-FRANZENS-UNIVERSITÄT HALBÄRTHGASSE 1 A-8010 GRAZ

Reçu par la Rédaction le 30. 5. 1983