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Abstract. In this paper we use the probability maodel displayed in [10] for solving
by the Monte-Carlo method some integral and linear algebraical equationg and for
estimating some functionals connected with the theory of *the transfer equation of
nuclear physics. Certain special cases of such problems have been solved with use of
different probability models by other authors. Here we also compare those models
with the ones defined in -thig paper.

1. Introduction. In order to solve the following integral equation
in the space L (£2) (*) by the Monte-Carlo method:

(1.1) w(X)— [ E(o, y)u@)u(dy) =g(a) (e ),
Q

(where (2, 2, u) is @ measure space, u(£2) < + co), the probability model
has been constructed in [10].

Suppose that there exists a set QyeX such that 2y = 2, u(2) > 0
and it fulfils the following conditions:

(A) Forall fe L (2\Q,) (}), the series ZT’; f converges in L (2\ £2,),

=0
where the integral operator I', is defined by the formula:
(1.2) [T.f1@) = [ K@, IfW)uldy) (we 2\NQ);
o\,

(B) IK(z,y)=0 for we 2/0, (modu), ye £, (mody);
(C) K(z,y) =0 for z¢Q, (mody), ye 2 (modyu).

The probability model is also constructed in [10] for obtaining an
estimation by the Monte-Carlo method of the value of the functional:

(1.3) (w,9) = [u(@) @) p(da),

]

(1) Le(4) (for 4 e X) is the space of Z-measurable and bounded on A (mod u)
functions.
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where #(x) is the solution of equation (1.1) and gpe L;(2) (*). In this paper
we shall use the probability models referred to above for solving by the
Monte-Carlo method some integral equations, linear algebraic equations,
difference equations and for estimating certain linear functionals connect-
ed with the theory of the transfer equation of nuclear physics.

2. The concept of the model § and model S. Suppose that there exists
a 2 x Z-measurable and. bounded on 2 x 2 function p(z,y) such that the
following conditions are satisfied:

(Py) a =i sup {[L(o,yiplo,y)u(@)} <1;

4 ze Q2q "0
(P4) Kz, y)p(z,4) =0 for ze Q(modu), ye Q(modu);
(Py) p(@,9) #0  for (@, y)e 2x 2 (modpX u).

Then there exists a set A*¢ X such that u(A*) = 0 and it satisfies
the following conditions (see [10]):

(B¥) K(w,y)>0 for me Q%\0Q,, ye O, (modp), where Q% = Q\A*;

(P}) ot = sup | [ E(a,y)p(s,y)ud)] < 1;
zcﬂ-‘.\.ﬂo 0Q
(P3) E(z,y)p(2,y) >0 for ze Qf, ye O (modp);
(2.1) G = sup {lg(@)[} < +oo.
zeQA\Do

In order to construct probability models solving problems (1.1),
(1.3), we defined in [10] a complete measure space (2, X, u), where

(2.2) Q=0u0*; I=ZInx*; Ld)=4ANQ)+6ds
(for A'ef);

0Q* is a set such that Q* =% &, Q*NQ = &; u is the complete measure

extending the measure u onto the o-field X' > X; § is a positive constant
and:

(23) I ={Ad: A=A0Q* AcZ}); é;= 1 ffﬁing*;eqs,
0 if ANnQ* = Q.

Starting from the measure space (.(5, 2'.7, ;;) we constructed two homo-
geneous Markov processes in the broad sense in the phase space 9. The Mar-

kov process corresponding to the tranmsistion probabilities P;(k, z, ,Z)

(8) L, (4) (for 4AeZX) is the space of p-integra.ble"‘ftmcﬁons on A.
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(t =1, 2) is called the #-th process (see [10]), where:
(2.4) Pk, a, 4) = [Pi(k—1, 9, A)P,Q1, =, dy)
) (for e @, 42, k =2,3,...);

[ Fi(o, y)uidy)  if me Q5N 0,

(2.5) Pi(1,w,4) =13
13 (@) if we A* U Qyu 2%;
(2.6) Fi(miy)
K(z,9) p(0,9) I (@, y)e (24N 20) X (2N Q)
- E(w,y)p<w,y)‘+% it (0,9) € (25N 20) X D,
hy(2) it (@, y)e (2552) X Q%;

(2.7)  My(2)

?

==

Q| =

[1— fK(w,y)p(w, y) p(dy) — bl0) fp(m’y)ﬂ(dy)]
o) Do

1 (£20) 9:(y)

2GM
(2.8) f@) = — [1y(w)|‘+xao<m)(l ] +A)];
—a
(@) = g(@)—gu(a) (we Q);
(2.9) M= §up {lp(z, )} < + o0

(@:1)¢(2°,\2)% 2

4 is a positive constant.
Write 2, = A*U02*\Q,. On the space of all trajectories of the
i-th process with the same initial state ze Q% \ Q,, which have the form:

(2.10) D=0, > oo >0 (e QU By, .en, By Q5NDY);

we define random variables £9(z) (i = 1, 2) by the formula:

9:(z) .
(2.11)  £(a) =f(f)(m; DByy ey &) = 2D, 2,) ... P(@, ) if zye £,

0 if m1€ Ql'

Then (see [10], p. 21), under conditions (A), (B), (0), (P,)-(P;), the
expected values of the random variables £9(z) (i = 1, 2) exist and are
finite. The solution %(z) in the space L, () of equation (1.1) is defined
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by the formula:
(2.12) w(w) = MV () +MED ()  for mwe 2N\Q, (modyu) (%).

By virtue of (2.12), we may solve the problem (1.1) by the Monte-
Carlo method.

DEFINITION (2.1). The above probability model for solving the problem
(1.1) is called the modél 8. And the random variables £9(z) (i =1,2)
defined in the model § are called the estimators in the model 8. Obviously
(see (2.4)—(2.9)), each model S depends on a function p(z, y) satisfying
conditions (P,)~(P,) and on values of positive constants 4, d:

(2.13) 8§ = 8{p(=,9)4, d,}.
Let P(-) be the praobability measure defined on the o-field z by the
formula
(2.14) P(d) = [ a(@p(da) (for AeZ),
i

where = () is a function satisfying the following conditions:

(7e1) 0<m(@)< +co for ze Q (modu);
(7cs) n(®) =0 for we O (modp);
(rs) [ (@) p(az) =1.

\a

On the sample space of all trajectories of the ¢-th process, with the
initial probability distribution P(-) of the form

(2.15) Ty =By = ..~y (Be Qo UDy; Tyy Byy ..vy B QYNGQy),
the random variables 7@ (i = 1, 2) are defined by the formula:

(2.16) o = FO (g, y, ..., )

@ (@) 9;(2;) ]
if 2,e Qy;1>1
7 (Zo)P (T, B1) - D (D1, B) e S ’
= { @(%)g;(x) ,
n(mo) lf moe Qo’
0 if @ e 91-

Then (see [10], p. 30), under conditions (A), (B), (C), (P1)—~(Py), (r,)—~(%,)
and ge L,(Q), the random variables 7 (i = 1, 2) have finite expected

(3) In the case ze 2, (modu), from condition (C) it follows that the solution
u(z) of equation (1.1) is given by the formula: u(z) = g(z) for ze 2, (modu).
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values. And we have:

(2.17) (w, ) = Mol + M4,

where (%, @) is defined by formula (1.3).
By virtue of (2.17), we may also solve the problem (1.3) by the Monte-
Carlo method.

DEFINITION (2.2). The above probability model for solving the problem
(1.3) is called the smodel S. And the random variables % (i =1, 2) defined
in this model are called the estimators in the model S. It is easy to deduce
that (see (2.4)—(2.9) and (2.14)) each model S depends on functions p(z, ¥),
n(x) satistying conditions (Py)—(P;), (7;)—(n;) and on values of positive
constants 4, 4:

(2.18) 5 =8{p(@,y), n(@), 4, 8.

In order to solve conveniently some special cases of problems (1.1),
(1.3), in this paper we shall choose special forms of functions p(z, %),
m(%). Then, the estimators in models § (or in models §) will have simple
forms.

3. The solution of an integral equation in the space of measurable
and bounded functions.
‘We consider the integral equation:

(8.1) w(@)— [ E(w, ) u@)p(dy) =g(@) (2eQ)
Q2

in the space M (2, X, u), where (2, X, ) is a space with a finite complete
measure; M (2, 2, u) is the space of X-measuralbe functions, bounded
on Q.

Suppose that the kernel function K (z,y) belongs to M(Q2, 22,
uxu) and it satisfies the following conditions:

(A,) a, = sup { [ 1K(z, ) p(dy)} < 1;
::E.Q\.Qo o

(B,) E(n,9)>=0 for e O\ 0y, ye 2, (mod u);

(Cy) E(z,y) =0 for xe 2,y Q (modp),

where Qy¢ 2 is a set with u(£2;) > 0.
Moreover, we also estimate the value of the fumectional:

(3.2) (u,9) = [ (a)p(@)p(dw),

{2

where u(z) is the solution of (3.1) and ge L,(£).
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Let p,(x, y) be the function defined on 2 x L by the formula:
1 if K(w,y)>0,

(3.3) Prm¥) =\ 1" i E(z,y)<0.

Then it is easy to deduce:

(3.4) a,= sup { [K(@, 9)p:(o, 9)p(@)} < 1;
2eON\2y " 9

(3.5) K(n, y)p,(®,y) =0 for (@,y)e 2X2;

(8.6) pi(@,y) #0 for (,9)e 2% 2,

i. e. treating P,(z, y) as the function p(x, y) in Section 2, the conditions
having forms (P,)-(P,) are satisfied. Moreover, from (A;)—~(0,;) it follows
that conditions (A)-(C) of problem (1.1) are also satisfied (if the space
L. (9) is replaced by M (2, X2, u)). Then (see [10], p. 124), it is not difficult
to deduce that the model S{p,(, ¥), 4, 8} may be used for solving problem
(3.1) (*). Note that in this case we choose 4* = & (i. e. 2% = Q). There-
fore (see (P}), (A,), the constant «* becomes a,. And the constants
Gy, M become (see (2.1), (2.9)):

(3.7) ¢, = sup {lg@)} < +o0,
2!9\90
(3.8) M, = sup  {lpa(@, 9} =1 (see (3.3)).
(z,9) (AN Rg) x 2y

. Since y in problem (3.1) is a complete meagure, we can regard it as
the measure y in Section 2. Hence, from (2.2), (2.3) it follows:

(3.9) T =ZXUuX*; u(d)=ulAnR)+056y (for AeZ);

1 it ANAQ* £ O,

310) Z* —={Ad: A =AUD* AeZ}; b = -
(310) t AeZh 3=y 4 dnor 0.

From (3.3) and (B,) we have:

(3.11) Ko, y)p:(#,y) = |K(2,y)] for (z,y)e 2X2;
(3.12) P12, y) =1 2e 2\, ye Q) (mody).
Then formulae (2.6)-(2.8) have the forms:
K (%, y)] if (0, y)e (QN02) X (2N ),
818) P (o,9) = (Ko, 9+ - 20 it (@,)(@\0)x 2,
hy(z) H (2, y)e (2\ Q) x 2%,

(*) Similarly, we may also use the model S{p, (=, y),=(z), 4, 6} for solving
problem (3.2)
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1 9: (@) #(d!l]
3.14 ;' T 1— K b d
(3.14) (@) = a[ fl (z, ) p(dy)— (20) 2 f 5.
(ivEQ\Qo),
2 |
(3.15) o) = =190+ 20,00 (722 + 4]

g:() = g(w) —g,(x).

By virtue of (2.4), (2.5) and (3.13)~(3.15), we can construct the ¢-th
process in the models S{p,(z, y), 4, 6}, Slp, (z, y), =(x), 4, 6} for solving
problems (3.1), (3.2). Let N(x, @, ...,®,) be the number of negative
terms of the set {K (2, #,); K (21, #,); ...; K (®,_1, 2,)}- Then, from (3.3),
(3.5) it follows:

n
(3.16) [] palmis m) = (—1)¥C0mened  for g, ..., @,_ye ON Dy
i=1

a}ne Qo-
Therefore, by (2.11), we have the following theorem:

THEOREM (3.1). Under assumptions (4,), (B,), (C1), suppose that the
Function p,(@,vy) is defined by (3.3). Then the estimators &) (x) (i =1, 2;
we O\ Q) in the model S{p,(=,y), 4, 6} solving problem (3.1) are defined
by the formula:

) —1N(z’$13-~-’zl_1) 3 @ Q
(3.17) E(z) = fO(z; 2y, ..., z) Elgi( 1) ( ) if e Oy,

0 if Tye 0%,
COROLLARY (3.1). Under assumplions (A,), (C,), suppose thai:
(BY) K(x,y)>=0 for me Q\£2,, ye 2 (modp).

Then the estimators EN(w) (i =1, 2; we 2\ Q,) in the model 8{p,(z, ¥),
4, 6} have the forms:

<+ ; 9:(@)  if me Qy,
] = f- (&) =
(3.18) & (@) =fiMe, @, ..., o) = l 0 if me 0%
Proof. From (3.3) and condition (B}) it follows:
(3.19) N(z,2yy.00y,2)) =0  for o,m,...,3_,e O\ Q.

Therefore, using Theorem (3.1) we have (3.18). This completes the
proof. .

From (2.16), (3.16) it is easy to deduce the following theorem:

THOEREM (3.2). Under assumpiions (A;), (Bi), (Cy), (7y)-(my) and
pe L(RQ), the estimators 7 in the model 8{p,(z,¥), n(z), 4, 8} solving

7 — Annales Polonicl Mathematici 31.1
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problem (3.2) are defined by the formula:
(3.20) #{
@ (a’o) g; (ml) N ,
| Y= (= )Nt i e )
= F{ (@) @1y -0y B) = w(@) ) / o o
0 if mle Q*’
where
(3-21) .N(a;o) = O fO?' w«e Qo-

ConOLLARY (3.2). Under assumptions (A,), (BY, (Cy), (71)~(ms) and
ge Ly(Q), the estimators 73 in the model S{p,(z,y), n(x), 4, 8} have the
form:

@ (o) g: (1)
(3.22) 70 = F (@, B3y 00y ) = 7t (%)
0 ’if .'DIG Q*.

'l:f ﬁle Qo,

COROLLARY (3.3) Under assumptions (A;), (B,), (C,), suppose that
the given function @(z) satisfies the following conditions:

(3.23) [o@pdz) =1; @@)>0 for ze Q (modp).
7]

Then the estimators 7 (i = 1, 2) in the model S{p,(»,v), n,(x), 4, 6}
are defined by the formula:

gi(w)  if ®e £y,

3.24 7D = 7D (ay, @y, ..., 7)) =
( ) m V' (@, y &) 0 if mye QX

where the function =, (x) is defined by

p(z) for we 2,

(3.25) (@) =l 0 for me Q%.

Proof. Using Theorem (3.2), from (3.19) we get (3.22). Corollary
(3.2) is proved.

By (3.23) it follows that the function z,(z) defined by (3.25) satisfies
conditions (m;)—(mws). Therefore, replacing the function =(x) in Corollary
(3.2) by the function =,(x) from (3.22), we get (3.24). Corollary (3.3)
is proved.

As an example of problem (3.2), we may consider the following problem
discussed in [6]: '

Let £ be the phase space of coordinates and velocity. It is known
(see [8]) that one may treat a transport process as a homogeneous Markov
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chain, the states of which are “the position” of the particle just before
the collisions in the phase space Q.

Let K (x, ) be the probability density of the transfer from the state
o to a state ¢ of this Markov chain. Then the solution of many problems
in the transport theory leads to the estimation of the funetional

(3.26) Jo = (g, u*) = [ g(a)uw*(z)dw,
I

where u*(#} it the solution of the integral transport equation:

(3.27) w*(@)— [ Ky, o)u*y)dy = o(@);

g () is the weight function defined on £; ¢ (@) is the frequency distribu-
tion function of the initial collisions aroused by the particles of the phys-
ical source.

In [6] problem (3.26) has been solved by the Monte-Carlo method
under the following assumptions:
{3.28) g(x) >0 for we 2 and g(»)e M(Q2),

where 1 (z) is the space of functions bounded on £;

(3.29) f.p(m)dm =1 and o@(x)>0 for zeQ;
4]
(3.30) KE(z,y) >0 for (z,y)e 2x02;
(3.31) sup{ [ E@yay} <1,
zed g

where 2 < R"(R"is the n-dimensional Euclidean space); and the integral
are understood in the sense of the Lebesgue measure on R”.

In order to construct a probability model for solving problem (3.26),
the homogeneous Markov chain {p(2), K(2,y)} has been- defined (see
[3], [6]), where p(2) is the density of the initial distribution and XK (z, ¥)
is the density of the transition probability.

Let

(3.32) a(@) =1— [ K(a,y)dy.
2

On the sample space of trajectories

(3.33) ) Ty B> oo =1
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corresponding to the value of the probability density

(3.34) @ (@) K (@, @) -« L (s @) a ()

the random variable #n[l] is defined as follows:

i
(3.35) [l = D) ga).

=0

Then it is known (see [3]) that
(3.36) My[l] = Jy = (g, w%),

i. e, #[1]is the unbiased estimator of J, (see [4]; p. 244).

To compare this unbiased estimator with the estimators in the model
S{p;(z, y), = (x), 4, 8} we suppose that there exists “the absorption
region” Q, = Q. Then it is known (see [10], p. 123) that

(3.37) L(xz,y) =0 for we ), ye 2 (Mmod.¥),

where & is the Lebesgue measure on R"
Moreover, it is easy to deduce that functional (3.26) may be written
as

(3.38) Jo = (U, @) = fu x)dx,

where % (x) is the solution in M (L2) of the equation

(3.39) w(z)— fK s u(y)dy = g(»).

Therefore, from (3.31), (3.30), (3.37), (3.29) it follows that the assump-
tions of corollary (3.3) are satisfied. Hence, we can use the estimators
7 (i =1, 2) in the model S{p,(z, y), =, (x), 4, 8}. for solving problem
(3.38) (i. e. problem (3.26)).- By (3.15), (3.24) we deduce that using the
estimators 7{9, in each “experiment” we only have to compute at
most one value of the function ¢(#). Therefore, if the calculation of the
values of g(x) is difficult, then the estimators 5{) (i =1,2) are more
convenient than the unbiased ¢stimator n[Z] (sece (3.35)).

In Sections 4 and 5 we shall solve problems similar to problems (3.1)
(3.2) for other classes of integral equations in the space M (Q, X, u).

*

4. Tirst of all, we consider the soli:ticn of the equation:

(4.1) w(@)— [ Ko, y)u(y)n(dy) = g(a)
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in the space M (2, 2, u). Suppose that there exists a set Qp¢ X such that
#(2) > 0 and it fulfils the following conditions:

() o= sup { [ E@ypudy)<i;
EGQ\DO 9\90
(B,) K(z,y)=>0 for 2¢ O\, ye 2 (modyu);
(Cy) K(®,y) =0 for se 2, ye 2 (modu);
(Dy) o = sup { [ E(z,y)pdy)}< +oo ().
TeO\Q, g

‘We also estimate the value of the functional:

(4.2) (4, 9) = [ ul@)p(a)u(ds),
e

where u(2) is the solution’ of (4.1) and ge L,(£2).
Let P, be a constant satisfying the conditions:

(4.3) 0<Z:<1; Pola—a)<l—a, (5.

It defines a funection p,(x, ¥) on 2 x £ as follows:

1 for (@, 9)e (2N 20) X(2\Qy),
(4.4) Po(w,y) = B for (@, 9)e (2N L) X &,
1 for (z, 9)e 2, %X Q.
Then
458) [ E(@, )pel, 9)p(dy) = 1-P) [ K(z, y)p(dy)+
Q o\,

+ P2 fK(wt?/).“(d?/) (for e O\ Q).
9

Therefore, from (A,), (D,), (4.3) we deduce

(4.6)  ag = sup { [ K(@,9)ps(@, 1) p(@)} < (1—F)op+ Back < 1.

xig\f)o 0
Moreover, by (B,), (Cs), (4.3) it follows
(4.7 K(z, y)ps(w,y) >0 for' we 2, ye Q (modu),

(4.8) po(z,y) #0 for (z,y)e 2 x Q2.
(5) It is obvious that a3 > &@,.
) L e, if a; = @, we choose P, such that 0 < 7, < 1, and if a; > @, we choose

. l1—a,
Pe With 0< Pp< min< 1, —/——>.
62—(7-2




102 Nguyen Quy Hy

From (:4.6)—(4.8) it is easy to see that regarding p. (2, ¥) as the function
p(z,y) in Section 2, the conditions of the form (P,)-(P,) are satisfied.
Besides, from (A,)~(C,) it follows that conditions (A)-(C) of problem
(1.1) are also satisfied (if the space L,(Q) is replaced by M (L2, X, u)).
Like in Section 3, we can use the models 8{p,(%, ¥), 4, 8}, S{p.(=, v),
7w(®), 4, 6} for solving problems (4.1), (4.2). In this case the measure space
(55, f, ;:) is also defined by formulae (3.9), (3.10). The transition prob-
abilities Py (%, @, .tf) of the i-th processes are defined by (2.4) and the
following formulae:

fr z, ) p(dy) for e Q\Q,,

(4.9) P,(1,2,4) =
Zﬁ () for ze QU Q*,
(4.10) Fy(z,y)
K(z,¥) for (z, y)e (ON Q) X (2\ Q,),
= '-21((517,;1!)-!-,72;;—0% for (@, y)e (2\0Q;) X £,,
h;(z) for (2, y)e (2N Q) X 2%,

(4.11) k(o) = [1— fK(w,'y)n(dy)—ﬁzfK(m,:u)#(dy)—
%o

N2,

_ Daygi(@) u(dy)]
#(£,) ) g:(y)

2@
(4.12) g (@) = [IJ(m)I + X, (0) ( ‘2; 2) + A];

92(2) = g(=) —g.(®),

where the constant G, is defined by (3.7).
From (4.4) it follows

»

(413) [] pa@isy @) =DPa  (f0r e, @y vy By € O\ 25 @6 Q).

i=(
Therefore, by (2.11), (2.16) it is easy to deduce the following the-
orems:

TurOREM (4.1). Under assumptions (A,)—(D,), suppose that the function
Pz, y) 18 defined by (4.4). Then the estimators

@) (1=1,2; 2e Q\Q,)
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in the model S{p.(x,y), 4, 8} solving problem (4.1) are defined as follows :

. : (Bo)'g5(m)  if mpe Oy,

4.14 EN o) = f (@) 21y ..., 2) =

( ) 2() fz( et 8] ’ l) 0 'I:fmle.Q*.
TEEOREM (4.2). Under assumptions (Ay)-(D,), (m1)—(m,) and pe Ly (Q),

the estimators o (i = 1,2) in the model S{p.(w,y), =x(x), 4, 6} solving

problem (4.2) are defined by the formula

99(%)9:'(:’}!) ’I:f .’.l'?lE QO; Z; 1,
70 (%) Do
(418) 7§ = FO(my, @3 ...y @) = ¢ (o) g: (o) if mye £,
7 ()
0 ’l..f &€ Q*.

CororLrARrY (4.1). Under assumpiions (A,)—(D,), suppose that the
given function o () fulfils condition (3.23) and the given function g (@) satisfies
the condition

(4.16) g{w) =0 (for me 2, (mody)).

Then the estimators 0 (i = 1, 2) in the model S{p,(z,¥), n.(%), 4, 6}
solving problem (4.2) are defined as follows:

a; (Py) " if ;e y, 121,
(417) 79 = FO (@, 21, .0 m) ={ g, if tye Dy,
0 ?:f.mlE Q*,

where the function my(x) is defined by (3.2b) and

ai=(—1)i(@+d) (1 =1,2).

1—a2

Proof. We know that function =, () defined by (3.25) satisfies con-
ditions (m,)—(m,). Moreover, from (4.16) and (4.12) it follows

2G1-ﬁz
1 - ag

g:(@) = (—1)"( +A) for ze 2, (mod ).

Therefore, using Theorem (4.2), from (4.15) we get (4.17). This com-
pletes the proof.
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As a special case of problem (4.2) we can consider the problem discussed
in [8] and described below.

Problem (3.26) of the theory of the transport equation has also been
solved by the Monte-Carlo method in the mentioned paper, under assump-
tions (3.29), (3.30), (3.37) and the following assumptions:

(4.18) fK(m, y)dy <1  for me Q\Q, (7),
2
(4.19) g() =0 for we Q, and ge M(Q);
(4.20) [ E@pay<i—y forweQ (0<y<1) ().
o\2,

The probability model for solving the mentioned problem has been
constructed in the following way (see [8]): '
Let n[co] be the random variable defined by

(4.21) nleol = > g(m),

=0

where %,—~>;—>...>®— ... i8 a trajectory of the homogeneons Markov
chain {p(x), K (2, y)}.
It is known that

(4.22) Myloo] =dJ, = (g, w¥),

i. e. n[oo] is the unbiased cstimator of J, (see [4], p. 244).

In order to compare the unbiased estimator 5[ oo] with the estimators
in the model S{p,(z,y), m(x), 4, 6}, we note that functional (3.26)
may be written in form (3.38). Moreover, from (4.20), (3.30), (3.37), (4.18),
(3.29) and (3.38) it follows that the assumptions of Corollary (4.1} are
satisfied. Hence wec an also use the estimators 7{? in the model S{p,(z, ¥),
7, (@), 4, 6} for estimating the value of J,,.

Obviously, in this case the estimators 7" ({ = 1, 2) are more con-
venient than the unbiased estimator n[oo] (see (4.17), (1.21)).

(") Since, at cach state x outside “the absorption region”, the particle may
either {ly out or transfer to a state of the phase space Q (with the probability P(z— Q)
=A.K(a:,y)dy).

(%) L. e. the probability of the absorption or of the flight at each transition is
greater than y (see [8], p. 591).
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9. Now we consider the solution of tﬁe equation

(6.1) w(@)— [E(, y)u(y)pdy) = g()

in the space M (2, X, u). Suppose that there exists a set Q,¢ X such that
#(2) > 0 and it fulfils the following conditions:

(Ag) TFor all fe M(Q,ZX,u) the series D' [I™f](») converges in
n=0

M (L2, X, u), where the integral operator 7' is defined by the formula
[Tfl@) = [ E(z,9f)p(dy);

a\2g
(Bj) K(w,y) =0 for we 2\Q), ye 2 (modyu);
(C,) K(w,y) =0 for we 2, ye 2 (modp);
(D,) [E (@, p)u(dy) =di for all me O\Q,,
el

where o is a positive constant.
Moreover, we also consider an estimation of the value of the func-
tional

(6.2) (u,9) = [ w(2)g(@)u(da),

Q2
where u(2) is the solution of (5.1) and @e L,(£2).
Let 7, be a. constant satisfying the condition
(5.3)- 0< By < (a3)™';
we define the function p,(z, ¥) on 2 X 2 by
(5.4) pi(z,y) =5, for all (z,9)e 2 X 0.

Then, from (D,), (5.3), it is easy to see that, regarding ps(z,y) as
the function p(z; ¥) in Section 2, the conditions of the form (P,)~(P,)
are satisfied. Besides, from (A,;)—(C,) it follows that conditions (A)—(0)
of problem (1.1) are also satisfied (if the space L, (£2) is replaced by 17 (2,
X, u). Therefore, like in Section 3, we can use the models 8{ By, (%), 4, 6}
and S{7,, 4, 6} for solving problems (5.2), (5.1). In this case, the measure

space (2, 2, -ﬁ) is also defined by formulae (3.9), (3.10). And the transition
probabilities P;(%k, #, A) of the i-th processes are defined by (2.4) and the
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following forniulae:

- fF,-(w, y)u(dy) for me N\,
(5.5) Py(l, 2, 4) =

A
77 (x) for xe Qyu Q%,
(8.6) Fy(w,y)
Pl (@, ¥) for (z,1)e( QN Q) X (2N 4),
— P3f; (%) .
= Kz, y)+ ——  for (z,1 O\ Q) X 2
Pl (2, ) 2 (207:7) ( ;J)E'( 0) 0y
hy(@) for (z, y)c (2N £)) x 2%,
1 _ Pag:() #((l'y)]
b.7 h;(@ =—[1— s | (2, y) u(dy) —
6 W@ = 1B [ Ko p)uldn) =05 S
(e 2\ 02y),
26,7, Al
(5.8) g:1(2) = _[lg(m)l'l‘%s)o(w)(l_p—aa: +'—1)]1

go () = g(#) — g1 ().
Then, from (2.11), (2.16) it is easy to deduce the following theorems:

THrOREM (5.1). Under assumptions (Ag)—(D,), suppose that Py is a
constant satisfying condition (5.3). Then the estimators EP(z) (i =1, 2;
ze @\ L0y) in the model 8{Pg, 4, 8} solving problem (5.1) are defined by the
formula

(Bo) ' gslw)  if mpe 0y,
0 if xpe £2%.
TuworeM (5.2). Under assumpiions (Az)—(Ds), (m1)—(7w;) and pe L,(2),

the estimators 4 (i = 1, 2) in the model 8{7p,, n(x), 4, 6} solving problem
(6.2) are defined by the formula

(5.9) (@) = [P (@; 21, .00y @) E[

@ (20)g: (%)) .
i 0 —_— e)
(6.10) 77%) = Fg)(w.,, LigriyXy) = l ﬂ(mo)(ﬁa)l if ae £,

0 if we %,
COorROLLARY (5.1). Under assumptions (A,)—(D,), suppose that the
given function @(x) satisfies condition (3.23) and the function g(x) satisfics
condition (4.16). . .
Then the estimators 73 (i =1,2) in the model S{B,, m;(x), 4, 6}
solving problem (5.2) are defined by the formula

(—1F(B)"'a  if @ 2,

5.11 78 = (g @, ... 3) =
( ) 73 3 (@9, 4, y %) IO if @e Q*,
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where the function 7, (x) is defined by (3.25) and

2G. 5
(5.12) o =2Ps_
1 —7Pa,

Proof. We know that the funection x,(a) defined by (8.25) satbis-
fies conditions (=,)—(w,). Moreover, from (4.16), (5.8) it follows

2G,7,

g;(@) = (—1)‘(1_1_, = +A) for all e @, (modpu).

Hence, nsing Theorem (5.2), from (5.10) we get (5.11). This completes
the proof.

As an example of problem (5.2) we may consider the problem dis-
cussed in [9].

In that paper, problem (3.26) of the theory of the transfer equation
has also been solved by the Monte-Carlo method, assuming (3.29), (3.30),
(3.37), (4.19) and the following conditions are satisfied:

(6.13) The Neumann series for integral equation (3.39) converges in
M (L2);

(5.14) f Kz, y)dy =1 for all ze Q.
2

In [9] (see p. 1085-1086) the unbiased estimator n[co] of J, (see
(4.21)) is used to solve problem (3.26). In order to compare this unbiased
estimator #[co] with the estimators in the model S{@,, =, (2), 4, 8}, we
mnote that functional (3.26) may be written in the form (3.38). Moreovel,
from (3.29), (3.30), (3.37), (4.19),(5.13) and (5.14) it follows that the assump-
tions of Corollary (5.1) are satisfied. Therefore we can also use the estimators

7 in the model 8{ B, =, (), 4, 6} for estimating the value of J, Obviously
in this case the estimators #{? are more convenient than the unbiased
estimator n[ o] (see (4.21), (5.11)).

6. The solution of some systems of linear algebraic equations. Now
we shall point out some applications of the models § for solving equa.tlons
of the form (1.1), when Q is a discrete set.

First of all, consider the following system of linear algebraic equations:

(6.1) u—Au =b,

where % = (Uy, Uy ..., ,) is the solution of (6.1) and b = (b4, ba, ...; b))
is a given vector. Suppose that the elements a; of the matrix 4 = (4;)nxa
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satisfy the following conditions:

2 = max | ; ;
(6.2) ) = max { gj gl } < 1;
(6.3) ;20 for ie N\Ny; je Ny;
(6.4) a; =0 for ie Ny; je N,
where

(6.5) N ={1,2,...,n}; .ND={%1,41«2,...,%3}CN (n>s>=1).

It is clear that we may treat this problem as a special case of problem
(3.1) in the following way:

Let 2 =N ={1,2,...,n} and let X e the class of all subsets of
Q. Then the measure g of a set {iy, %y, ..., 4y,} of the o-field X' may be
defined by '

(6.6) #({i1, ia, e in}) =m and u(P) =0.

Hence, u(2) = u(¥N) =n< +oo0 and g is complete measure on X,
i. e. (2,2, u) is a space with a finite complete measure. Then equation
(3.1) becomes a system of linear algebraic equations (6.1). From (6.2)—(6.4)
it follows that conditions (A;)-(C,) are satistied, where K(i,j) = ay,
Qo = Ny = {0gy Nay ..., 0} and u(€) = u(N,) =s8>0.

Therefore we can use the model § of Section 3 for solving problem
(6.1) by the Monte-Carlo method. In this case, one may choose the number
n+1 as the set Q*, and § = 1. Then, from (2.2), (3.9), (3.10) we have

(6.7) 2 =Nu{n+1} ={1,2,...,0+1};
(6-8) ;‘({iniu "°77;m}) =m fOl‘ {":11?;2i "'71"1)1.}627
where £ is the class of all subsets of Q = {1,2,..., n+1}. Then the i-th
processes become Markov chains consisting of n+1 states 1,2, ...,n+1.
And these 2-th processes are called the -t chains.

It is easy to deduce (see (2.5), (3.13)-(3.15)) that the probability
p§) of the transfer from the state & to the state j in the i-th chain is defined
as follows

(6.9) )

[Iavkj| if ]i;e N\No; jE N\No,
i)
a,,,.+;l:‘§—,., if e N\Ny; je N,

= | b ¥ ,
1= Dlagl——= D' Q) i ke N\Fy; j =n+1,

if k& =jel\f = {Ng, Ngy vvy Mgy B+ 1},
if keN; j #k,
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Where
)] 2B 2) (1)
010) W) =~ +an, ()T )i M =B (ke ),

(6.11) B = max {|b)]} (see (3.7)).
1eN\ Ny

It is known (see (3.3)) that in this case the function p,(z, ¥) has the
form

1 if @y = 0,
6.12 i,4) =
( ) P1(%, ) l 1 if ay< 0.
Thus we can construct the model S{p,(%, j), 4, 1} for solving problem

{6.1) (see definition (2.1)). And from Theorem (3.1) and Corollary (3.1)

it follows
THEOREM (6.1). Under assumptions (6.2)-(6.5). suppose that on the

space of all trajectories of the i-th chain, with the same initial state ke N\ XN,
of the form:

(6.13) kT ook (e Ny Byyonny Fpore NNN),

we define random variables £V (k) as follows

bsgl)( . 1)1\?(k,k1....,kl_l) ,if kl € NO?

6.14) ENE) = fO(F; Togyvnny kyy) =
( ) EE) =[O (F; Toyy onny Ky 0 if b=n+1,

where N (k, kyy ..., ky_y) s the number of negative terms of the set {a ,
Tyiey? == akl—zkl—l} : .

Then the expected values of the random variables EV(k) (¢ =1, 2)
exist and are finite. And the solution uw = (uy, Uy, ..., u,) of (6.1) 28 given
by the formula

(6.15) w, = MEV(R)+ M EQ(E) (ke NN, (%),

i.e. E)(E) (1 =1, 2) are the estimators in the model S{p.(i,]), 4,1} for
solving problem (6.1).

COROLLARY (6.1). Under assumptions (6.2), (6.3), (6.5), suppose that
(6.16) ay =0 for i« N\N,, jeN.

Then the estimators E (k) (i = 1, 2; ke N\Ny) in the model S{p.(4, j),
4, 1} solving problem (6.1) are defined by the formula
) if T Ny

8.17 () k) = F(0) Iexley, ..., k) =
(6.17) EV(R) = f17(Fe; Feyy ..y Ky 0 if by =n+1.

{*) It is known (see (6.4)) that u;, = by, for ke N.
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We know that various probability models have been constructed for
solving problem (6.1). If assumption (6.3) is replaced by (6.16), the follow-
ing Von Neumann-Ulam model will be the most convenient one among
the considered models (see [11], p. 140).

Let
ay; if 1¢ N, je N,
n .
1— > a; ifieN,j=n+1,
(6.18) Py = ~ 7 €L, ] ’
1 ifi=j=n+1,
[ 0 it i =n+1, j #4,

be the probability of the transfer from the state ¢ to the j of the Markov
chain consisting of n 41 states 1,2, ..., n+1. On the space of all trajec-
tories of this Markov chain, with the same initial state %, of the form

(6.19) ksl >.o.oly =41 (R, kyyeens by N),

the random variable &, (k) is defined as

(6.20) L) =i Ty B) =y (01— ) ay_ )™

j=1

Then (see [11], p. 141-142]) the solution u = (uy, %y ..., u,) of
(6.1) may also be defined by the formula

(6.21) w, = ME (k) for ke,

ie. El(k) is the unbiased estimator of u,. Obviously, the estimators é‘f’(k)
in the model S{p,(i,j), 4,1} are more convenient than the unbiased
estimator & (k) (see (6.17), (6.20)).

Note that we may find many difference equations as examples of
problem (6.1) (see {2], [6], {11]). Among these examples we pay specially
attention to the following ones:

ExAMPLE (6.1). Consider the boundary problem for the elliptic equa-
tion

o*u % ou ou
(6.22) @ par + o +c% +d@ +eu=Ff for (x,y)e@,
(6.23) u =¢ for (@,y)el,

where I'is the boundary of the domain @ < R?; the given functions a, b, ¢,
d, e, f (or @) are continuous on @ = Gu I (or on I') and '

(6.24) a(z,y)>0; b(z,y)>0; e(z,y)<0 for(z,y)e@.
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We have to find a solution u, continuous on @, of equation (6.22)
that assumes specified values ¢ on I'. It is known that under some simple
additional assumptions (see [1], p. 45), we can use the method of finite
differences to solve this problem. Then the solution of (6.22), (6.23) leads
to a system of suifable difference equa.tions
(%) (k)

Al
(6.26) ul® =

) ul L+l
E(].,) l+1+ E(“ )1+ .D(k) ’ll( )+

D
+ E«l-r w0 for (i,k)e@",

(6.26) uw® = for (r, s)el™,

where G* (or-I™) is the set of the inner points (or of the boundary points)
of the net, and corresponds to G (or I'); the values of A", BYM, 0¥ D®,
E®, f& o9 are fully determined by the given functions a, b, ¢, d,
¢, fy p and the values %, ! of the steps of the net. If the values 2,1 are
sufficiently small, then the following conditions are satisfied (see

[1], p. 447)

A B o o
(6.27) —15('75'> 0; E(k) > 0; ‘E@)‘>O; Ly(l.) > 0;
- 1
4®  Bp  ¢®  p®
(6.28) ' 7P + g + " + TR <1.

It is clear that equations (6.25), (6.26) are of the form (6.1).

From (6.26)-(6.28) it follows that the assumptions of Corollary
(6.1) are satisfied. Then, by virtue of this corollary, we can solve dif-
ference equations (6.25), (6.26) by the Monte-Carlo method.

ExAMPLE (6.2). It is known (see [5]) that the solution of some
other boundary problems leads to the following difference equations:

(6.29) Ay, —2Baw;+Cuy_, =9g; (1 =1,2,...,0—1),

(6‘30) Uy = Goj Uy, = Gn>»

where 4;, B;, C;, g; are given coeffcients and fulfil the following con-
ditions:

(6.31) .A,> 0; G{> 0; Bi> %(A.£+Ci)+ﬂ,

where B is a positive constant. Obviously, equations (6.29), (6.30) may
be written in the form (6.1), and from (6.30), (6.31) it is easy o see
that the assumptions of Corollary (6.1) are satisfied, i.e. we can also
use the model 8{p,(%, j), 4, 1} to solve the system of difference equations
(6.29), (6.30).
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Previously we considered system (6.1) of linear algebraic equa-
tions as the special case of problem (3.1), when (2 is the discrete set
Q ={1,2,...,n}. Analogously, we may consider other systems of
linear algebraic equations, corresponding to problems (4.1), (5.1). For
example, using the results of Section 4, one can solve the following system
of linear algebraic equations using a model §

(6.32) u—Au =b,

where the elements a; of the matrix 4 = (ay),., satisfy the following
conditions:

(6.33) max { D' ay) < 1;
'J'S.N\Aro jEN\&\?o

(6.34) wij>0 fOl‘ ’l:E.N\.No, jEN;

(6.35) a; =0 for ie Ny, jeN.

Here the sets N, N, are defined by (6.5).

It is clear that this problem is a special case of problem (4.1),
where Q2 = N. Therefore Theorem (4.1) applies to solve problem
(6.32).

7. The solution of an integral equation in L (2). Now we consider
the integral equation

(7.1) w(@)— [ K(z, y)uly)u(dy) =g@) (0é Q)

in the space L (), where u(2) < + co. Suppose that conditions (A)-
(C) are satisfied and that, moreover,
(D) a; =vrai sup {[ K (2, y)ludy)< +oo ().

s zeN\y "0

Together with the solution of equation (7.1) we also estintate the
value of the functional

(7.2) (4, 9) = [u(@)p(@)n(d),
Q

where «(2) is the solution of (7.1) and ¢e L,(Q).

Since problems (7.1), (7.2) are special cases of (1.1) and (1.3), there-
fore models S, § can be used for solving these problems. In order to
get simple estimators, we may counsider the following models 8, S:

Let P, be a constant satisfying the condition

1
(7.3) 0<p < —-

(1 af > 0.
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We define the function p,(z,y) on 2xQ by

7, if K(z,9)>0
(7.4) Da(2, Y) E‘ o ’
—p, if K(w,y)<0.
Then, from (D) and (7.3) it follows:
(7.5) vrai sup { [ E(,y)palo, y)u(dy)} < 1;
g TEONS ‘0

(7.6) K(o,y)p,(z,y)=>0 for me 2 (modu), ye @ (mody),
(7.7) D2, y) #0  for (z,9)eRxQ (Mmodyu Xu);
i.e. regarding p,(#, y¥) as the function p(z, y) in Section 2, conditions
of the form (P,)-(P,) are satisfied. Hence, from (2.11}, (2.186) it is easy
to deduce the following theorems:

THEOREM (7.1). Under assumplions (A), (B), (C), (D), suppose that
the function p,(z, y) is defined by (7.4). Then the estimators EP(z) (=1, 2;

we Q5N Q,) in the model S{p,(m,y), 4,8} solving problem (7.1) are
defined by the formula

g‘i(wl) N .
i c(—1¥ (T ZyaeersTp—1)
(7..8) 6(:)(50) = f‘g{)(m; ml’ ceey ml) = . (?‘4)1 ( ) 1 1 ’llf mlf Qﬂ’
lO if e ;.

THEROREM (7.2). Under assumptions (A), (B), (C), (D), (m)—(x=;) and
pe L(Q), the estimators n{) (i = 1, 2) in the model S{p,(z, y), n(x), 4, 8}
solving problem (7.2} are defined by the formula

o @ (29)g; ()
(7.9) 775:) =F9)(mo; By ooy ly) = W(mn)(@)l
0 ’if .’)'},e 'Ql .

(=1 no)if gy Q,

It is known that in [7] various probability models have been con-
structed for solving problem (7.2) under a special case of assumptions
(A), (D), where 2 = R", u =% and
(7.10) vrai sup{f | K (@ y){d-y} <1

26}

(7.11)  vrai sup{f f | K (2, 2,) .. K{0_q,y 2p)|dz, ...dm,n}< 1 (W),

Te
(m)

From (7.9) it is easy to see that the estimators #{’ (i = 1, 2) in the
model S{p,(z,¥), n(x), 4, 6} are more conveairnt than the kucwn
unbiased estimators of (w, ¢) (see [T], [4], p. 244-245).

(11) Note that in [7] one considered problem (7.2) witliout assuinptions (03), (),

8 — Annales Polonlei Mathematiei 31.1
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Previously we considered some special models S, S. By virtue of these
models, one ean construct the computational sehemes §,, S, for solving
the correspondent problems with. the error less than e. In [10] these
schemes are called the s-schemes.

Note that from the assumptions of the theorems in this paper, we
can estimate the mean times T, needed to solve the problems by the
correspondent e-schemes (see [10]). '

The author wishes to express his gratitude to Professor B. Bojarski
for many valuable discussions and remarks. .
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