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§1
Consider a polynomial P: C — C. Newton’s method of looking for its roots
P
is to consider iterates of the rational function NP(z) =Z_P’—((zz)j on the

Riemann sphere C. Roots of P are fixed points, sinks for NP. For every p, a
root of P, the set of points whose trajectories under iteration of NP converge
to p splits into components. The component containing p is called the
immediate basin of attraction to p.

In this note we prove the following.

THEOREM A. Immediate basins of attraction to the roots of a complex
polynomial, for Newton’s method, are simply connected.

This answers a question of A. Manning [M].

We can also say something in the connection with the question of M.
Rees: find examples of rational functions with non simply connected imme-
diate basins of attraction to periodic sinks of period at least 2.

(In the case where a sink p is of period k for a rational map f, we mean
by its immediate basin of attraction the immediate basin for f*)

Namely we prove.

THEOREM B. Immediate basins of attraction to periodic sinks of period at
least 2 for a rational map of degree 2 are simply connected.

The methods we use are classical, going back to the famous memoirs by
P. Fatou and G. Julia [F1], [F2], [J], but to my knowledge Theorems A
and B have stayed unknown.

[229]
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§2

To prove Theorem A we need a lemma.

LEMMA 1. Let A be the immediate basin of attraction to a fixed point a
sink for a rational map f: C — C. Assume that A is not simply connected.
Then there exist in € two disjoint open connected sets U, U, intersecting A,
such that V = f(Uy) = f(U;) oclUguclUy, f(0U) =0V c A4 for j=0, 1,
VuAd =C and V is homeomorphic to a disc.

Proof of Lemma 1. We almost repeat a part of Fatou’s proof that a non-
simply connected immediate basin is of infinite connectivity [F2 pp. 74-76].
Analogous considerations can be found also in [J;, § 32, 46].

Denote our sink by p. Let y be a simple closed curve around p such that
f(y) is in the interior of the disc S, which has boundary y and contains p.
Assume additionally that y~ () f"(Crit f) = @, where Crit f is the set of

n>0

critical points, i.e. such that f'(z) =0. Denote by S, the component of
f~"(So) containing p. Let n = N be the first integer for which S, is not simply
connected. Denote two distinct components of C \Sy by U, and U, and their
boundary curves by 8, ;. Let V = C\Sy_,. Finally, define U,, U, to be
the components of f =1 (V) inside U,, U, having J,, 8, for portions of their
boundaries respectively. m

Proof of Theorem A. Suppose that 4 is a non simply connected
immediate basin of attraction for f = NP to a root p of polynomial P.
Choose zeV n A, V given by Lemma 1, and branches fvi'l, i=0,1 so that

w; = f,-'(2)eU; nA. Join z with w; by a curve y) c VnA. Take care
additionally to have y?ncl (J f*(Critf) = @. Define by induction !

n>0

= f,; 1 (#'~"), where f,~ ! is the extension of the preliminary branch along the
1

curve () y!. Define y; = (J y. The curve y converges to an f-fixed point
j=0 n=0
g €U;.

The reason is that fvi‘lo...ofvi‘l n times, n=0,1,..., is a normal
family of functions on a neighbourhood of y? with the set of limit functions
in Fr A which is nowhere dense. So all limit functions are constant, hence
limdiam (y]) = 0. Therefore all limit points of the sequence of curves y; are

n—aw

fixed points for f. They constitute a continuum. On the other hand they must
be isolated from each other. So we have actually only one limit point.

The conclusion is that Fr A contains two different fixed points g, q,
(belonging to two different components of Fr A). But the only fixed points for
NP are the roots of P and oo. We arrived at a contradiction. m
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Remarks 1. The proof above of the existence of g; is in fact a repetition
of Fatou’s arguments [F2, p. 81]. I developed his ideas studying the
convergence of “geometric coding trees” in [P]. In particular “geometric
branches” corresponding to periodic codes converge to periodic points. See
also [Pom].

2. From Theorem A it follows that from every immediate basin of
attraction for NP to a root of P the point oo is accessible along at least
(exactly?) deg(NP|,)— 1 different radii (in a Riemann map parametrization of
A by the unit disc). Geometrically it seems that when we perturb the
polynomial z?—1, the preimages of an immediate basin 4 of a root, lying
between immediate basins of other roots, join each other and A4 to form a
number of new canals along which A touches co. The number of canals
would be at least deg(NP|,)—1.

3. In particular we conclude that Fr 4>00. If there is only one fixed
point for a rational map f which is a source (denote it by ¢q) and all other
fixed points are sinks, then all immediate basins of attraction to sinks
contain g in their boundaries; this fact was explicitly stated and proved by
Fatou [F2, p. 211]. For estimates of widths of some canals touching oo for f
= NP see [M].

§3
Theorem B will be concluded from the following

ProrosITION. If A is an immediate basin of attraction to a fixed point, a
sink, for a rational map f on C, A is not simply connected and C\A is not
homeomorphic to a Cantor set, then deg(f|,) = 3.

Proof of Proposition. Let Uy, U,, V be as in Lemma 1. Suppose that
(1) deg flygna = deg flu,na =1 and  deg(fl,) = 2.

Then we can consider g; =(f|Ul_M)’1: VnA-U,nA for i=0,1. Each
connected component K of FrA 1s contained in the intersection of the
decreasing sequence of sets K, = clgg ,(V), where g , = g; 0©9i, ©...0g; and

(i,) is°a 0, 1 sequence such that /"(K) = U; . (No component of Fr 4 can lie

in a component of U,, the set definined in the proof of Lemma 1, other than
U;. Otherwise we would have deg(f|,) = 3.). Now, (gx,,) is a normal family
-of functions on V' n A with all limit functions having values in the nowhere
dense set Fr A, hence constants. We conclude that diam K, =0 hence K is a
single point. This means that Fr A is homeomorphic to a Cantor set. So (1)
contradicts our assumption that Fr 4 is not homeomorphic to a Cantor
set. =
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"To prove Theorem B we also need the following

LemMma 2. Let A be the immediate basin of attraction to a fixed point p, a
sink, for a rational map f: C—C. If A is not simply connected then
# Crit(f|,) = deg(f|4) (critical points counted with their multiplicities).

Remark. We need this fact for Theorem B but it seems to be of interest
in itself. It seems to belong to a folklore knowledge but I was unable to find
it in the literature except for the case where # Crit(f|,) =1=>A4 is simply
connected, see [F2, p. 77]. So I will give a proof here; it will be just a minor
development of Fatou’s arguments. First, however, let us show how Theorem
B is hence derived.

Proof of Theorem B. Let p be a periodic sink for a rational map f, of
minimal period k > 2. Let A be the immediate basin of attraction to p for

iteration of f*. Suppose that A is not simply connected. There must be at
k-1
least one f-critical point in (J f7(A). Denote it by ¢,. We may assume c, € A4.
j=0
k-1
There must be another f-critical point ¢, € {J f7(A4) (or the multiplicity of ¢,

j=0
is at least 2). Otherwise # Crit(f*|,) =1, deg(f*,) = 2, which contradicts
k-1
Lemma 2. Suppose there is no other f~critical point c; € J f7(4) (and the

j=0
multlphcmes of c¢;,c, are equal to 1 or, in the case of ¢, =c,, the

multiplicity of this critical point is 2). If c,€A4 then # Crit(f*,) =2 but
deg(f*|,) = 3 (by Proposition because C\A contains f(4) and so cannot be a
Cantor set). This contradicts Lemma 2. If ¢, €f*(4) for 0 <s <k then
# Crit(f*,) = 1+deg(f*,). Since deg(f]ss) =2, we get # Crit(f*,) <1
1

+§deg( 4.0 <deg(f*,) (since in this case we even have deg(f*|,) = 4),
contrary to Lemma 2. The conclusion is that # Crit f=2deg(f)—2 > 3.
Hence deg f > 3.

Proof of Lemma 2. If some critical points of f in A are multiple perturb
feC® a little in small neighbourhoods of these points by replacing z* by a
finite Blaschke product type of maps to obtain multiplicities of all critical
points in A equal to 1. If necessary, perturb it further by composing with
small translations supported by neighbourhoods of critical values to have
U fc)n U f"(c;) =@ for every critical points ¢, c, €A, ¢; # ¢, and

n>0

p¢ U .

n>0

Order the points of f~(p) N A by writing w, = p, w,, ..., w,, where d
= deg(f],). Consider a smooth simple closed curve y, around p such that no
critical value for f|, is contained in the domain S! bounded by y and
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containing p and such that y, = f(y,) = Si. Consider a smooth isotopy 7,,
t €40, 1) in the annulus bounded by y, and y,. In the construction keep care
about not having a pair of two different points ™! (c,), f 2 (c,) for f-critical
points ¢, ¢, in one curve y,. For te{0, 1) denote by S! the domain
bounded by y, and containing p. For every ¢t > 0 write

S} = the component of f~E®(S/_..) containing p

(here E stands for Entier).
For 1 <i<d, t 21 define

Si = the component of f~!(S!_,) containing w;.

If t <2 then S are disjoint from each other. With growing ¢ they begin
to coincide.

As in the proof of Lemma 1 consider T such that S} is not simply
connected, whereas Si_, is. Then

@ # Crit (f1s2) > deg (fl51).

This is so because by extending f |si. to f defined on the union of the
family of topological discs (D;)j-, complementary of St in € by maps of
z =z type we obtain

# Crit(flupj) =degf—-r.
This together with
3) # Crit(f) = 2deg /-2
yields
# Crit(fs1) = deg f —2+r

and (2) follows. (The proof of (3) is straightforward.)

As t grows from 2, we have a sequence of parameters t, <t, <...
<t;-, indicating instants where new coincidences occur between certain
pairs of sets Si. Every new coincidence results from a confluence of two
topological circles d;;, d;,, components of FrS; and FrS;; respectively, at a
point 'c;, We can look at the sets FrS! as levels where a certain Morse
function G is constant. If we had not needed preliminary perturbations of f
and if p were critical of multiplicity d’ then by placing p at co we might take
for G Green’s function lim d'~"log|f"(z)|. Of course, c; is a critical point for

n—a
G and its forward trajectory contains a critical point for f. We claim,
however, that c; itself is a critical point for f.
Assume the contrary. Denote 6§ju5:; by 4, and, for ¢ ~ 0, the union of

components of the boundary of Sfjﬂ uSﬁ;+£ close to _6,j by 6,j+e. Choose a
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small disc U with the origin at c;. For ¢ <0 the two-component set
( ;'jﬂuSﬁ;.“)mU has a two component image in f(U), according to the

assumption that c; is not critical for f.

Both components of the image belong however to the same connected set
S,lj_lﬂ. The components of C \S,’j_lﬂ are simply connected. Both compo-

nents of f ((5,j+£r\U) belong to the boundary of the same component of
¢ \S,‘j_ 1 +¢; hence, they belong to the same simple closed curve £, a component
of Fr S,‘I_HG, see Fig. 1. (We have eliminated a possibility shown on Fig. 2
by considering subsets of the sphere.) So f (5;'j+s) =f (6:';.”) = &,. But now,
for ¢ > 0 the set &, in Fr (S,‘j_l,,,), close to &, for ¢ <0 and obtained from it

by surgery through f (c;), has two components and is the image of the simple
closed curve 5,1.”, which is impossible.

Fig. 2
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The conclusion is that every parameter ¢; gives rise to the absorption of
a new f-critical point. By induction we obtain # Crit(f]si) 2> deg( f |s)) — 1.

Starting with this inequality for every i > 2, t = T, together with the inequali-
ty (2), we can continue induction until all sets S! coincide. Then we get
# Crit (fsi) = deg(fl). =

Added in proof. Recently M. Shishikura has informed me that he proved a theorem stronger
than Theorem A: the Julia set of NP is connected.
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