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1. The presentation of the problem

1.1. Introduction. The importance of the moments of the probability
distributions is very well known. The calculation of the moments of the
higher order may very often cause some trouble and even in the case
of the simple distributions this has occurred recently. As given by
Karl Pearson ([30], p. 157) in 1895 he published the first four moments
about the mean of the binomial distribution probably for the first time
(Phil. Trans. 186, p. 347). In 1899 the same author published the first
five moments of the hypergeometric distribution in the Philosophical
Magazine (February 1899, p. 239). In his qpinion ([30], p. 157) the method
of reaching those expressions needed a lot of transformations and did not
give general results. Hence it was justifiable to search for the methods
that lead to the expressions giving easy calculations of the moments of
an arbitrary order both about the origin and the mean. Among those
expressions the most remarkable are the recurrence relations because
of the convenience and facility in application. In some cases they have
. been known for a very long time. In this paper an outline of the attain-
ments in this field as well as the author’s own results will be presented.

1.2. The presentation of the known results. The establishment of the
recurrence relations for the moments of the probability distributions
has until recently been a troublesome problem. In 1919 K. Pearson.([29],
footnote p. 270) wrote on that subject: ,,A simple reduction formula for
the moments of a binomial (p+ ¢)" about its mean was sought in vain.
After a good deal of energy had been spent, we believe that u, being the
rth moment about the mean

d
(1.1) br = [

ar (Peqt'{‘qe‘pt)r] y 0<p<l,q¢q=1—-p,r=2,3,..

t=0
is, perhaps. the easiest expression for reaching these moment-coeffitients
by successive differentiation’.

As it can be seen from the formula (1.1) the moments about the mean
are being reached by the successive differentiation of the moment-gene-
rating function of the binomial distribution given in the form

(1.2) P(X =k) = (",:)pkq"—", k=0,1,2,...,n.
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In 1923, however, V. Romanovsky ([34], comp. also [33], p. 39-40)
published a recurrence formula for the moments about the mean of the
binomial distribution (1.2), convenient and easy enough in calculation,
which together with some other results had been communicated to the
Society of Naturalists of University of Warsaw as far back as 1915,
This formula is as follows(!):

_ Ay _
(1.3) Hri1 —pQ(an‘r—1+ dp)’ r=1,2,3,...

Romanovsky has obtained it by making use of the very simple
method: the differentiation of the moment-generating function of the
binomial distribution, appearing in the formula (1.1), with regard to p
and the comparison of the result with the respective coefficients at
in the series expansion of that function.

In 1924 K. Pearson [30] gave the recurrence formula for the moments .
about the mean of the hypergeometric distribution defined by

(7) (2%
. [7) k n—k
(1.4) P(X =k = (k) AL s
)

when samples of » are drawn from a population of N individuals (M indi-
viduals of A kind and N — M individuals of B kind) if a sample can contain
k individuals of A kind and n—k individuals of B kind and p = M/N,
0<p<l,qg=1—p, max(0,n— Ng) < k < min(n, Np).

Using the moment-generating function and the differential equation

of Gauss, which determines the hypergeomnetric function, K. Pearson
obtained the following relation

(15)  Nppyy = [(A+E) — E'H{p— [Np+n(g—p)] s +0pg(N —n) po},

r = 1’2’3’ coe
where
N—n
FZZ”PQFT; pr =0, pu=1

and ¥ denotes the operation of raising the order of a moment by unity,
i.e.
E:ur = Mria-
Assuming N — oo Pearson found from the formula (1.5) the recur-

(1) As it has been made known by R. Frisch ([8], p. 166) in professor Al. A.
Tchouproff’s opinion the formula (1.3) was first published by Bohlmann (Cf. Bort-
kiewicz, Jahresberichte der deutschen Mathematikervereinigung, Bd. XXVII (1918),
p- 73).
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rence relations for the moments about the mean of the binomial distri-
bution ‘

(1.6) #riy = [(1+ BE)Y — E](npgp,— pp,)

and consequently assuming limnp = 1 >0 he reached the recurrence
relation for the moments abﬁc’; the mean of the Poisson distribution
(L) pris = AL+ EY — E .

With regard to £ = 1+ 4 the relations given here can be also dealt
as the relations with finite differences. These relations are very elegant
and leave nothing to desire if we evaluate the moments one after another.
But it does not enable us to write down any desired moment without
knowing the preceding ones.

The aim of the paper of V. Romanovsky [35] in 1925 was to provide
a formula which permits to obtain the moments of the hypecgeometric
distribution independently. For demonstration he also used the Gauss-
function F(a, B, v, t) for which the following relation holds:

TF
atr’ |-,

In this formula U, denotes the so-called factorial moment of rth
order, i.e.

U,=E[X(X—-1)...(X—r+1)]
equal for the hypergeometric distribution

(1.8) U, = n(n—1)...(n—r41)(Nq)(Ng—1)... (Ng—r+1)
. . "N(N—1)...(N—r+1) .

Making use of the Newton interpolation formula Romanovsky has
hereafter established the relation
r r—k
(1.9) pe= D D (—1)CL8,, 1 (rg) U,
k=0 1=0
where 8§, ., denotes the so-called Stirling’s numbers of the second kind.
If we assume N — oo we derive from (1.8) the formula for the factorial
moments of the binomial distribution

U, =nn—1)...(n—r+1)q"

and next, with the same meaning of U,, the formula for the moments
about the mean of the binomial distribution which is of the same form
as the formula (1.9).

Also in 1925 Ragnar Frisch ([8] and [9]) beirg occupied with the
question of the establishment of the formula for the moments about the
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mean of the binomial distribution showed that the Romanovsky’s formula
can be obtained in a quite simple way by differentiation with regard
to p of the definition formula for the so-called incomplete moments about

the mean
n

(1.10) p(8) = N (k—EX) k), r=1,2,3,.
k=8
where in this case E(X) = np and II1(k) = P(X = k) is defined by (1.2).
Thus the formula (1.3) is of the more general character because it holds
also for the incomplete moments.
Using the formula for the partial summation known in numerical

analysis
n n n—~1 k
(1.11) e (8) = kagk =fn2 gk_Z Aka 9
k=s k=8 k=8 i=8
where

fi = (k—mpy ™', g = (k—ap)I(k), Af = frr—fe

Frisch obtained the further formula for the moments of the distribution
(1.2) about its mean

r—2 r—2
(112) (o) = salT () s—mpf *+pg 3 (7 ) ump 3 (7 e
i=0 i=0

which at 8 = 0 gives the formula (1.6) obtained by K. Pearson but pre-
gented now in the form

r—2 r—2
-1 —1
(1.13) My = ﬂqu("@- )m—pZ(“ i )#m-
i=0 =0
Thus (1.12) is the generalization of the relation (1.6) or (1.13)."
Next considering general properties of the linear equations between
the moments of the point binomial Frisch found the relation

S+ (v = e -1

- o (e L R

which by choosing k& conveniently permits to reduce the evaluations
only to some values of y; ([8], pp. 169-170).

In 1933 Alfred Guldberg [15] on the occasion of deducing the cor-
relation coefficient of the binomial distribution used the difference
equation of that distribution for reaching the moments. He mentioned
in the paper that the method of the difference equations may be used
for finding the recurrence relations for the moments of other distributions.

In the same year R. Risser and C. E. Traynard {33] used that method
for deducing the recurrence relations for the moments about the origin a,
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and for the incomplete moments about the origin «,(s) of the distribvtions:
Poisson, binomial, negativ binomial and hypergeometric. (As it is known
a,(8) may be obtained from the formula (1.10) at the asswinption E(X)
= 0). They have obtained the following results for »r = 0,1, 2, ..

The binomial distribution:

(1.14) a,,,(8) = g " IT(s) - p 2 [n (;) —(“:1)] a_(3),

(1.15) %r i1 —PZ[ () (»+1)]

The Poisson distribution:

(1.16) toats) = [ 16— 1)+ () o, ),
t=0

.
(1.17) a4, = AZ(:)a ‘
i=0

The hypergeometric distribution:
(1.18)  a,,,(8) = |( Nq—n)s’+1+sf”|[1 (8)+

Z[an( ) Np+n)(,+1)+ (i-:z)]ar--t (8),

(1.19)  a,,, = -j\'f;:?,.__zo[an( ) (Np+”)(@+1)+ (@._:2)]%,1.

The negativ binomial distribution given in the form:

(1.20) P(X=k)=l](k)=(—1)"( )qp, k=0,1,2,...
R e
2 STl e

In 1934 A. R. Crathorne [3] gave the simple formula for the moments
about the origin of the binomial distribution

(1-23) arl_l—ala T=1,2,3,..-

dp
For the demonstration of that relation he used the recurrence relation
for the cumulants », of the binomial distribution

dx,_
. = Pq- dp
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and also the formula which presents the relation between the cumulants
and the moments about the origin a,

r
(1.24) S e =Z(i_rl)xiar+l—i! r=1,2,3,...
i

both of them having been proved by R. Frisch [7].

In the same year A. T. Craig [2] deduced the formula (1.3) by the
same method which was shown by R. Frisch in 1925 and moreover he
also established the relation (1.23) and the formula for the moments of
the Poisson distribution

5 da,
(1.20) A1 = A ar—{— -&T

and the formula for the moments about the mean of that distribution

), r=20,1,2,3,...

du,
dA

In 1934 A. A. Krishnaswami Ayyangar [20] starting from the simple
transformation of the expression

(1.27) (k—np) (Z)p"f‘"‘

obtained the recurrence relation for the incomplete moments about the
mean of the binomial distribution

(1.28) . (s) =np[(E+q) ‘ug(s—1)—p,,(s)], r=1,2,3,...

where 4, (s— 1) denotes the incomplete moment about the mean of the
distribution (p+¢)*~' calculated from k =s—1 to k ==n—1 and
Euy (s—1) = pria(s—1).

Putting s = 0 he obtained from (1.28) the formula for the complete
monients about the mean

(1.29) e = mpUE+Q ' ug—u 1]y T =2,3,...

Considering, moreover, the other possibilities of the transformation
of the expression (1.27) the same author obtained a brief proof of the
recurrence relation for the incomplete moments about the mean of the
binomial distribution

(1.30) p,(8) = (s—np) " pa(8)+ {(L+ E) ™' — B} [npqpo(8) — ppa ()]

which in particular by putting s = 0 gives the formula (1.6) derived by
K. Pearson.

It results from the consideration carried further down that the
incomplete moment u,.(s) may be re-stated in the form of the relation

(1.31) up(8) = dy g (8) 4 pty o (3)-

(1.26) Hrp1 = A(Tyr_1+ )r r=1,2,3,...
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Taking into account (1.31) in the formula (1.30) we obtain the re-
currence relation for the coefficients d, by the comparison of the coeffi-
cients at u,(s):

(1.32) d, = (s—np)~ '+ [(1+ E) "' — E'1(npgd,— pd,)

where d, = 0, d, = 1.

In the next paper of the same year A. A. Krishnaswami Ayyangar
[21] elaborated the problem of the incomnplete moments about the mean
of the hypergeometric distribution (1.4).

Going out of the identities

(1.33) E(Np—n+k) = N(k—np)+(n—k)(Np—k),
(1.34) (n—k)(Np—k) = (k—np)'— C,(k—np)+ Cs,
where

(1.35) C, = Np+n(p—q), C,=npg(N—mn)
and .

(1.36) k(Np—n+k)II(k) = [n—(k—1)][Np— (k—1)]1(k—1)
he obtained the following recurrence relation after simple transformation

(1.37)  Nu.(s)— (s—up) 'y (s)]
= {(L+E) ' — B} [pa(8) — Crpa(8) 4 Cape (8)].

The author of the mentioned paper showed that in the case of the
hypergeometric distribution the formula (1.32) holds as well; moreover,
the relation for the coefficients d, can be found in the analogous manner
as described above, the relations (1.32) and (1.37) having been taken
into account:

(1.38) N[d,—(s—np) '] = [(1+EY '— E '}(dy— C,d,+ C,d,).

In 1935 W. J. Kirkham [19] again considered the problen. of esta-
blishment of the moments of the binomial distribution. He started with
the relation between the moments about the origin and the moments
about the mean

R ir ; .
s, = ) (——1)‘(7;)(1, idry. P =2,3,...
and from the semi-recursion formula obtained from the last one
T
. r :
(1.39) Hp = Qp— Z (i)iur— 5(111.
im1

The moments about the origin were found by Kirkham from

(1.40) a, = npu,_(n—1), r=1,2,3,...
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where u, ,(n—1) denotes the moment of order r—1 about the point
—1 of the distribution (p+¢q)" ! calculated as follows:
(L41) pra(n=1) = 3'(7)a,s(n—1).

i-0

Putting (1.41) into (1.40) he obtained for the binomial distribution

(1.42) a, =np2() a, ;(n—1).

In 1937 J. Riordan [32] gave the recurrence relations for the moments
about the origin of the binomial, Poisson and hypergeometric distribu-
tions. He obtained those relations using the moment-generating function
of each distribution and the Stirling’s numbers of the second kind. As
it is known the numbers which satisfy the conditions:

r

= Z t(t—1)(t—2)... t—z+1)8,,

z=1
or

A%07
(1.43) 8., =

2!

(comp. [26], p. 50) where 40" denotes the so-called difference of zero of or-
der z of the function 2" are called the Stirling’s numbers of the second kind.
We form the table of the Stirling’s numbers using the relation

(1.44) Sz,r+l = mSz,r'l'Sa:—l.r

(see [26], p. 50, formula (23); table 11, p. 409 and [10], p. 3).
It follows from the definition that

(1.45) 8,,=8,,=1
and
(1.46) 8,, =0 for x>r.

tk
Putting the generating function 2“"— m of each considered distri-
bution in the form k=0

ZA,:(e‘—l)“ —Z Z A,2!8,,

=0 z=0

Riordan obtained the relations for the moments by the comparison of
both sides of this equation at the well matched coefficient A,. So for
the binomial distribution

(1.47) ¢, = D' nm—1)...(n—2+1)p8,,, ;
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for the Poisson distribution
r
(1.48) a, = > N8,.;

z=0
for the hypergeometric distribution
nin—1)...(n—x+1)(Np)(Np—1)... (Np—2z+1)

(1.49) o, = 2' N(N—1)...(N—z+1) Sare

z=0

After further transformations by using the relation (1.44) he obtaimed
the relations (1.47) and (1.48) for the binomial and Poisson distributions
respectively in the form (1.23) and (1.25) and in the case of the hyper-
geometric distribution the relation (1.49) in the form

a =npa,(Np—1,n—1, N—1)—(N+1)dya,

where A,a, denotes the difference of the expression for ¢, with regard
to N. '

Considering the form of the moment-generating function of the
discussed distributions Riordan obtained the moments about the mean
by the same method and so: for the binomial distribution

r

= n(n—1)...(n—z+1)p0,,;

z=0
for the Poisson distribution
.
Mr = Z Azaa:.ﬁ
=0

for the hypergeometric distribution

_ Y et D). (Rp )
* NON—1).. (FN—a+1) o1

=0
where
zlo,, = A (—ay) .

Then after rather toilsome ca;lculations he obtained the relations
(1.3) and (1.26) for the binomial and Poisson distribution respectively
and the following relation for the hypergeometric distribution

s = D= D' (1) Kipr_o(¥p, m, N4+1))—-

=0

—np|p,— Z (:) Kip, (Np,n—1, N—1)]
i=0
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where

_ (Np—1)(n—1)
K. = N—1 N

In 1939 Harold D. Larsen [24] using the method of Kirkham proved
that the recursion formula for the moments about the origin of the hyper-
geometric distribution defined by the formula (1.4) is given by (1.40)
assuming that the moment u,_, is calculated from (1.41) for the distri-
bution with the parameters: N—1,n—1, Np—1. The moments about
the mean have been also calculated by Larsen who used the formula (1.39).

In 1950 Albert Noack [28] defined a large class of random variables
with the discrete probability distributions which can be derived from
the power series

(]
K-

N1 -

f) = Y a.#

where the coefficients a, are real either non-negative (in this case 0 < z < r)
or satisfy the condition (—1)"a, > 0 (in this case —r < z << 0). The pro-
bability distributions of that type are defined by the equality

zI
(1.50) P(X =) = H(z) = =

f(z—), ‘T=0,1,2,...

because it is clear that ) /T1(x) = 1. So defined distributions have been

z=0

called by A. Noack power series distributions (p.s.d.).

Using the method of deriving the moments given by Frisch and
applied by Craig this author found the following recurrence relations
for the moments of the discussed distributions:

The moments about the origin:

da,

(1.51) a, ., =a,a,+z<ﬂ, r=1,2,3,..

The monients about the mean:

(1.52) Bri1 =7‘,u2y,._l+z%, r =1,2,3,...
The author has discussed a few distributions which are the particular
cases of the hypergeometric series f(z) = F(a, b, ¢, 2z) and which at the
assumption abc > 0 appear to give the distributions of the type (1.50)
and he derived the recurrence relations for these distributions.

The formula for the moments about the mean for the Poisson di-
stribution quoted in the paper is identical with the formula (1.26) given
by Craig.
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In 1957 W. Krysicki [22] obtained the recursion formula (1.17) for
the moments about the origin of the Poisson distribution using the method
of the difference equations which has been discussed before now.

In 1957 R. Risser and C. E. Traynard ([33], second edition) published
the recurrence formula for the moments about the origin of the Pélya
distribution. The probability function of this distribution is defined as
follows:

k-1 n-k—1
Il (p+ia) [] (q+ia)
(1.63) P(X = k) = (k) :(4’; i B = I

n—1
Il (1+7a)
i—0
where a = S§/N,0<p = M/N <1,9 =1—p, N being the number of
individuals of a population, M = Np being the number of individuals
of A kind in the discussed population, N—M = Ngq the number of indi-
viduals of B kind in the same population, » = 0, 1, 2, ... the number of
successive draws during which each individual having been sampled
is returned to the same population and besides § individuals of the
same kind as the individual which had been drawn before are ad-
joined to the population (8 =1,2,...,) or taken off (S = —1,-2,...)
or the population is left without any ehange (§ = 0), k being the number
of draws in which the individuals of 4 kind have been obtained.

In case S < —1 the evident restrictions are obligatory:

<M i —(n—KkS<N—M.

The recurrence relation for the moments about the origin of the
Pélya distribution given by Risser and Traynard is as follows:

l—:m Z[?)P(:) +(na~p)(i:_1) —a(i_:2)] a, ;.

=0

(1.54) @, =

In 1960, using the method of the finite differences, I obtained
a simple formula for the moments of the Poisson distribution

r l"c
Y
(1.55) a,=2 a0, r=1,2,3,...
z—1 ’

identical with (1.48) on the ground of (1.43).
In 1962 using the same method I found the formula for the moments
about the origin of the generalized Poisson distribution defined by

hadY
(1.56) P(X =) = Cfe ™ %

=z
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where
>0, >0, x=0,1,2 C — 1—4¢ #1
q ’ y =0,1,4,..., = expl(l—q)ul—g ) 4

([11], p. 7). This formula is as follows:
(1.57) '

o = C[Zdnor I q)uzz (n+1 (?) @ tn—myw ]

n=1 m=

With ¢ = 1, the formula (1.56) becomes transformed into the prob-
ability function of the so-called PEBL distribution (Poisson Exponential
Binomial Limit) ‘

00

(1.58) P(X =2) =ce™™ —

where

>0, 2=0,1,2,..., ¢ =

For this distribution the analogous procedure gave

r un
(1.59) a, = c('m,.+u 407 )

(n+1)!

where m, denotes the moment of order r of the Poisson distribution with
the parameter 4 = qu > 0.

Also in this paper I communicated another recursion formula for
the moments of the generalized Poisson distribution which has been
found by making use of a differential equation.

In 1963 Carl Philipson [31] gave the formula for the moments about
the origin of the Poisson distribution

(.0 - D

which is identical with the formula (1.55) if we take into account that

(_l)r kkr A0
:Z (z—k)'k! !

-

(comp. [5], (11.6), p. 62 with the formula (2) in [10], p. 3).
In 1964 Tadeusz Srédka [36] gave the formula (1.54).

v !
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In 1965 A. R. Kamat [17], being occupied among others with the

problem of the incomplete moments about the mean, published some
other relations. Above all he noticed that assuming np — 1 if p -0

we derive at once from the formula (1.12) the recursion formula for the
incomplete moments about the mean of the Poisson distribution

r—2
(L61) w(s) = 5= @) +4 Y ("7 wis)

where

o) = D II(K),  m(s) = sll(s).

Similarly, from (1.3) Kamat obtained the relation (1.26) valid also for
the incomplete moments which as we have already said (p. 8) is the for-
mula for the incomplete moments of the binomial distribution.

For the geometric distribution
(1.62) II(ky = qp*, k=0,1,2,...

he derived the formula for the incomplete moments about the mean
d
(1.63) pe(s) = g™ " P (7' p ™™ ur 1 (8))

directly from the definition (1.10) by the simple transformation (we put
m = p/q after differentiation).

"~ Also directly from the definition (1.10) Kamat derived the recursion
formula for the incomplete moments u,(s) about the point m of the loga-
rithmic distribution defined by the formula

(1.64) P(X =1 =A-«€L, 1=1,2,3,...
where

1
(1.65) A = ~Ing’ g=1—p

(comp. [18], p. 131-132 or [13], p. 310).
He obtained namely

! A ’
(1.66) 4y (8) = i Broa—mp,_,(8)

where f._, denotes the above discussed incomplete moment about the
mean of the geometric distributi see (1.63)].

2 — Dissertationes Mathematicae LXXX
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Kamat gave also the recurrence relation for the incomplete moments
about the mean of the hypergeometric distribution

(1.67)  p(8) = (N—r+1)"'[(Ng—n+s)(s—np) ~"slI(s)+

+ E(r:l) F‘i+2(3)—(NP+”q—‘”P)rZ_:2 (r;l) Hiy1 (8)+
i=o izo

+<N—n)npq§‘(’;‘)ni<s)].

The contributor remarked that this formula leads at N — oo to the
formula (1.12).

It is remarkable that the formula derived by Kamat leads at s = 0
to the formula (1.5) already established by Pearson (by another me-
thod).

Furthermore Kamat completed the results of A. Noack extending
them for the moments about an arbitrary point m = m(z) of the power
series distribution (1.50) but using the same method as A. Noack. He
obtained namely

’

’ ’ ) d:ur ’ dm
(1.68) Bryr = (ay,—m)pu,+2 _d_z_ +rzp,_, E‘

Apparently, in the special case of m = a, he obtained the formula
(1.52) for the moments about the mean.

In 1967 I published the relations for the moments of the distribu-
tions (1.56) and (1.58), this time, using the method of the difference
equations. The relations are the following [12]:

The generalized Poisson distribution (1.56):

r

a, = 1qu [2(:) Cp i %mr+l l

i=1

where m, , denotes the moment about the origin of order r+1 of the
Poisson distribution with the parameter 4 = qu >0 at ¢ #* 1;
The PEBL distribution (1.58):

r

s = [ o= 3 (7)o

r-1 — VA E2 b r—1
rLu =

where m,,, denotes here the moment about the origin of the Poisson
distribution with the parameter 2 = u > 0.
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2. The recurrence relations
for the moments about the origin

2.1. The power series distributions. Now I shall present here the
application of the method of the difference equations for deducing the
recurrence relations for the moments of the power series distributions
(1.50). Apparently, using (1.50), we can write

2.1) Mz+1) = z% ().

We multiply both sides of the equation (2.1) by (z-+1)*! and
sum up with regard to z from x = s to ¢ = oo

2 (@17 I (@+1) = zz_-‘%ﬂ (@+ 17" (@)

Considering that

2 (z+1Y" T+ 1) = 2 2 T (x)— s T1(8)= a,.,,(s)—s "' T1(s)
=8 r=8
we have

a,,,(8) = §TI(s)+ Z (z4+ 1Y T (z+1).

If we now use the relation (2.1) we obtain the following theorem:

THEOREM 2.1. The incomplete moments about the origin of the power
series distribution (1.50) are given by the following relation: '

(2.2) a ) (8) = s'Hn(s)+zZ (41741 2240 g

£

and the complete moments of the distribution with the variable taking values
from zero by:

o0

(2.3) a,, =22 @+1y" 2= @y, r=o0,1,2,...

=0 z

We derive the formula (2.3) from the formula (2.2) at once putting
s =0.

Deducing from (2.2) or (2.3) the recurrence relations for the moments
of the specific cases of the formula (1.50) it is necessary only to calculate
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the relation a@,,,/a.. I give here a few applications of the formulae (2.2)
and (2.3).

(2) The binomial distribution. The substitutions:

P _P

(z) = (1+z)n’ a, = C:) R =
/ 1—p q

allow to derive for the random variable X the binomial distribution in
the form
Hz) =Ci(1+2)", =z2=0,1,2,...,n.

In this case
@z n—2x

a, z+1

thus putting it into (2.2) we have

(2.4) a,,,(8) = CL(L+2) " +2 ) (n—a)(z+ 1) 1 (x)

=8

= s O p g 0+ % [fné{: (:) a,_;(8)— ::Z_: (:) aH_lk,-(s)].

The next transformation leads (2.4) to the formula (1.14) and then
at 8 = 0 to the formula (1.15).
(b) The Poisson distribution. If we assume

f(z) =¢€ and a, = )

the function I7(z) takes the form of the Poisson distribution
@) = 6*— ~0,1,2
(®) = e P r=090,1,45...
In this case
Goy1 _ 1
a, z+1

then after substituting in (2.2) we have

z; o0
(2.5) a(8) = e — 2 Y (@+1) (o)

r=8

= z[s’H(s—1)+Z(:) ar—z’('g)]'



2. The recurrence relations for the moments about the origin 21

After further transformation we obtain from (2.5) the formulae
(1.16) and (1.17). It is possible to derive these relations taking into con-
sideration the fact that the Poisson distribution is the limit distribution
for the binomial distribution, assuming #» — oo, p -0 so that limnp
=2>0.

(¢) The negative binomial distribution. Taking
f@Ry=Q—2)", a,= (—1)5’(;"), n>0,0<z2<1
we obtain the so-called negative binomial distribution in the form
(2.6) () = (—1)1( )(l—z)"z”’ 5=0,1,2,...

equivalent to (1.20) for 2z = p.
We find that
@y _ nto

@, z+1°
Then it follows from (2.2) that

a,,,(8) = T I(s)+ Z (n+2)(@+1) I (2)

- '“n(s)+p2[ ()a,. ; (r)a,_,_l_,;(s)].

which leads to (1.21) and (1.22).
In particular, putting n = 1 we get the relations for the moments
of the geometric distribution (1.62). Thus we have

(2.7) G pa(8) = -lq-[s'+‘17(8)+p 2 (if)) ar-uto],

(2.8) an =2 2 (1) e

For illustration we calculate a few first moments from the formula
(2.8):

o =2, a2=£(2£+1), a,=£[6(£)—|—6£+1].
g ¢\ ¢ gl \q q

Apparently (1.16) can be also found from (1.21) when the following
limit theorem is used:

If n - o and p — 0 so that the condition limnp/q = A > 0 is fulfilled,
the probability function of the megative binomial distribution tends to the
probability function of the Poisson distribution with the parameter i >0
([6], p. 181, German ed. p. 151).
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Taking 2z =n/1+7n and » = 4/y, >0, A1 >0 we get from (2.6)
a form of this distribution called Pélya—Eggenberger distribution
A
F(— +a:)
n ( N )z A
]

2.9) Il(a) = (L) 7

w!I‘(—;l) 1+
n
i+x—l. n ’ .
= (1) . )(I:;) (1+?}) ", T =0,1,2,3,...

In this case from (1.21) and (1.22) we have

r

= r+1 _n Ar r .
@10) aria(6) = (L T+ D [n ( )+(@.+1)] 4 (9}

2.11) G = [#2) +(;7)] s

3
In order to get the recurrence relations (2.10) and (2.11) for the

moments of the Pélya—Eggenberger distribution we can also use the
following theorem:

If n »> o0, p >0, a >0 so that np - A, na — n, the limit form for
the probability function of the Polya distribution given by the formula (1.59)
18 the probability function of the Pdolya—Eggenberger distribution (2.9). ([5],
p. 128, English ed. p. 131).

For illustration I present a few first moments about the origin cal-
culated according to the formula (1.22) and then aecording to the formula
(2.11):

a, = ng, a, =n£[(%+1)—1i +1],
q q q

p
7
o =1, a=Ai(A+1+y),
ay = A[(A+2n) (A+ 1+ )+ 22+ 9 +1).

(d) The logarithmic distribution. Consider now the logarithmic
distribution defined by the formulae (1.64) and (1.65) for which

1
e

a; = ng[(n+1)(n+2)( )2+3(n+1) —‘Z— +1];

f(z) = —log(l—2) and a, =
In this case
@Grpy @
a, +1°
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On the ground of (2.2) we have then

Ui (8) = 8 I (8)+p D @(@+1) I(s)

otherwise i
4 (®) = ) +p Y (1) arai (9)
i=0
. r—1
= i)t a| a1+ D iy i)
i=0

then
(2.12) Oy (8) = ql[ 1(s)+p 2 i) As)]

Assuming s = 1 we get the complete moments

r—1 .
(2.13) a4, — %[A%— St a,._i].
=0

The relations can also be derived in another way. It follows from
the formula (1.20) that

If we divide both sides of this equality by 1— ¢" we obtain

= k) =1.

As we can see the above expression may be considered as the new proba-
bility function of the random variable which we denote by Y and which
takes the values I =1, 2,3, ...

Thus we have

o\
(2.14) Py =1 =Y (‘"

1 _ q'n. l
It is the probability function of the truncated negative binomial
distribution. Taking into consideration the form of (2.14) we obtain

directly the formula for the moments y,(s) of the truncated negative
binomial distribution

)plqn; l=1,2,38,..

1
(2.15) Yr+1(8) =I_—q; 4G(8), r=20,1,2,..

where a,.,(s) denotes here the incomplete moment about the origin of
the negative binomial distribution.
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It is known that if » — 0 then the probability function of the loga-
rithmic distribution (1.64) is the limit form of (2.14); with that we have

(2.16) A= 1im—1—”q—n, g=1—p
n—0 —q

([18], pp. 131-132 or [13], p. 310) for the coefficient A defined by (1.65).
We transform (2.15) using (1.21) as follows:

_ S ) p o as) p"‘[ A ]?.r-,@f.*i)-
yr+l(s)__q_ ——__n—i_n"“ 1_qﬂ:+.-q_ 4 n(i)+(i+l) 1—¢"

i=

q
= 'gr:—- IH_Esq)n + n%yo(s)-k z,_." l ['n(:) +(i:_ 1)] Vr-i(8).

At n — 0 the second component and the first component in the bracketts
fall off and the moments of the truncated negative binomial distribution
give the moments of the logarithmic distribution. Besides, at s = 1 using
(1.64) we get the formula (2.13).

2.2. The Pélya distribution. Let us denote the so-called factorial
polynomial with the step & by a*" i.e.

(2.17) s®M — p(@—h)(x—2h)... [a—(k—1)h].

Using this notation we can put down the probability function of the
Pélya distribution (1.53) as follows:

[kofa] ["f*knfa]

(2.18) 10 = ()™ oa

where 0 < p <1, ¢ = 1—p and the numbers k and a satisfy the condi-
tions: £k =0,1,2,...,n

—ka<p and —(n—k)a<gq.
Note that
n n-1
a,,(8) = 2 KTk = 2 (k+ 1Y+ T (k+1) \
k=8 il
n—1 3
= Z (k+1)r+1 ﬂl! “.p[k+l'_a]q["'—k—l» _]
k=s—1 (k+D)!(n—k—1)! {=ai
n-1
= . [n—1\ (p+a)kglr k-tmal
= nPZ (k+1) ( k ) (l-{-a,)[““l"“l

k=8-1
n—1
=np D (k+1)y1T*(k)

k=3-1
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where
(])—{—(l)“‘ —a]qn k-1, -a)

n—1
(2.19)  [I*(k) = ( k ) (1+a)[7l 1, e
denotes the conditional probability in the Pélya distribution which can
be interpreted as the probability of obtaining % individuals of A kind
and n— k—1 individuals of another kind according to the discussed in
1.2 scheme of Pélya in the result of n —1 draws assuming that an indi-
vidual of A kind has been drawn from discussed population.
Respecting the Newton formula and denoting the moment of the
distribution (2.19) by a,'.‘ we obtain the recurrence formula for the in-

complete moments about the origin

(2.20) —»pZ() al (s—

and in the particular case of s = 1 the formula for the complete nioments
about the origin

(2.21) ,H_an() &, r=0,1,2,...
i=0
Structurally the formula (2.21) coincides with the formula (1.12)
and is identical with it in the special case when we derive the binomial
distribution from the Pélya distribution.
We shall evaluate a few first moments according to (2.20):

a,(s) = npay (s—1).

Notice that a] (s—1) can be obtained from the just reached formula
for a,(s) replacing » by n—1, p by p+a, 1 by 14+ a and aj(s—1) by
ay* (s—2) where a)*(s—2) is evaluated for the distribution (2.18) with
the parameters: n—2, p+2a, 1+ 2a, i.e.

vy g N (n—2) (PH2a)k gkt
ay (8—2) = 2 E ] (1+2a)["_2"“1 .
k=8-2

Hence

np[ag(s—1)+af (s—1)]

(n—1)(p+ a) a;* (8—2)]
14 a
(2,—a]

‘,[2 llp
= a" (s—2).

ay(s)

= np [a3(8—1)+

=npay(s—1)+—
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In similar mood we evaluate
a5(8) = np[az (s—1)+2a; (s—1)+ a5 (s—1)]

n—1 +a - n—1 2.1] +a (2.~a) nunp

+2 (ﬁﬂ—’f‘” a::“<s—2)+a;‘(s—1)]

n[lullp[lr-a] n[zll]plzl'a]
= —nar a (—1)+3 —par 0 (8—2)+

,n[3.l]p[3,—a]

+_

1[—3._—‘1] a:‘*(8—3).

For the next moments we have

nllyllp[l.—a] nl? llp[2 —al
a,(8) = — el ay(8—1)4+7 - el T a2 (s—2)+
nl¥1 pl3.-al uiH1) plé-al
+6 - SO @ (s—3)+ BT a (s—4),
a; (8) = T qih—al a(s—1)+15 -Fja_]“-— o (s—2)+
[aup[a -a} ' [411p[4 -al *
n[slllplsv—al
+ s % (3—5).

In all these examples a**(s—m) (m = 1,2,...) denotes the moment

of order zero of the distribution (2.18) with the respectively changed
parameters, i.e.

n—m

_ ma -a) In—m--k,—a)
*(8—m) Z ("’ P+ 1_}_) )[nq_m 7~y m=1,2,..
ma !

k=8—m

Let us note that the coefficients at the successive expressions of
the type

n[ivllp[jl_a] . )
'—w—"‘, ]=1,2,3,...,T

are the Stirling’s numbers of the second kind.
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We demonstrate that the Stirling’s numbers satisfy the following

relation
r
2 (l) St = Bnyr,rery M2 1.

(2.22)
l=m
We use the method of the mathematical induction. Note that (2.22)

is valid for r = 1. Assuming now the validity of (2.22) for » we demon-
strate that it is also true for r+1, i.e. we demonstrate the relation

+1

r+1
2( l )Sm.l = S'm+l,r+2"

I=m

-

We have

l

r+1 il r+1 . .
L = gm( ) Sm,l = ;‘m[(z)+(l_l)] Sm,l .
On the ground of the property (1,16) of the Stirling’s nuinbers we

have next

r +1
b S s S s

I=m

Taking now into account the induction assumption we get

L = Sn |-l.r+l‘|'2,1 (l_r[) Sm,t+Sm,r+l'

l=m

Putting I—1 =j,m—1<j<r—1 we have

r—1
L= S'm.+1.r-H + 2 (;) Sm,i+1+‘gm.r+l

j=m-1

= Spiirin +2 (;) Smrort (1) Bt Bris-

=m

On the ground of (1.44) and (1.45) we have now

L= Sm+l.r+1 + TZ_:I (;) (mSm.j + Sm—l.i)_l— (mr—]) + S’“-”"
j=m

Srn+l.r+l+'m’ 1‘2—1 (;) Sm,;' + S (;) Sm—l+(mr_1) + Sm.r+l
I=m j=m

S’,,,”_,,,.H—f-m j (;) S —m8,, .+ ;21 (;) T (mr_ 1) + 8,01
j=m =m
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Using the induction assumption we obtain

r—1
L= Sm+1.r+1+mSm+l.r+l_'m'Sm.r+ 2 (;) Sm—l,}+ (mr_l) + S1n.r+l
j=m
r—1
= (m+ 1)Sm+l.r+1_mSm,r+ 2 (;) Sm-l,i+ (m"_ l) + Sm.H—l
j=m

= (’m‘*‘l)SmH r+1 mSm rt 2 () m—1,j " (m:l) Sm—l,m—l_

j=m—1

— St (1) + S

Using again the induction assumption and the relations (1.44) and
(1.45) we have

L = (m+ 1)Sm+l.r+l + Sm.r+1_ (mSm.r+ Sm—l.r)+ Sm.r+l

— _ Q —
- Sm+1.r+2_ m.r+l+Sm.r+l— ASm+1.1‘-}-2 = R.

On the basis of (2.22) we shall demonstrate the following theorem:

THEOREM 2.2. The incomplete moment about the origin of r-th order
of the random variable with the Polya distribution (2.18) can be expressed

by

,n[m.llp[m,—a] .
223)  a(0) = ) g S, dte—m), v =1,2, ...

me=1

where 8, , denotes the Stirling’s numbers given by (1.43)—(1.46).

We demonstrate the validity of this relation using the mathematical
induction and (2.20). Apparently (2.23) is valid for » = 1. Assuming now
the validity of that formula for » we shall demonstrate that it is also
true for r+1. We have, namely:

ot =np Sl et
=0

lml] [m,—a] -
— np %(8—1)'*'2 Z i —m)]

(1+ a [m, —al
1 [m,1] [m, — .
— np ao(8—1)+ = ()1 - ()’[’,f_‘f,,) C e (g —1— m)Z (7) S z]

m=1 l=m
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On the ground of (2.22) we finally obtain

ar+1('5‘)

r __qyIm,) Im, —el
— np[a;(s—1)+2 -7 (p+a) Sm+,r+1aa’"+"‘(s—1—m)]
m=1

(1 +a)[m.—a]

plm 111 pmt1. —al )
= npay (s— 1)+ E Spmirr@ " (s—1—m)

1[m+l , —aj

r+1

[m,1] . [m, —a]
n D *
= E —{ma Smr10g (§—m).

Putting s =1 we simplify (2.23) and obtain the formula for the
moments about the origin

(2.24) @, = ¥ 8

m=1

The relation (2.24) allows to derive the formula for the so-called
factorial moments of the discussed distribution. As it is known ([18],
p. 63) we call the expression

(2.25) ap =) ap, r=1,2,3,...

the factorial moment about the origin of rth order in the case of the
discrete random variable. '

Between the moments and the factorial moments the following
relation holds:

.
(2.26) &= > amSn,y 7=1,2,3,...
m=1

(comp. [16], p. 296; [4], p. 106; [1], p. 79; [14] formula (7.3) p. 217;
[27], p. 371).

It results from (2.26) that in the case of the Po6lya distribution the
formula for the factorial moments is as follows:

n[f: 1] p lr- —~al

(2.27) ay = r=1,2,3,..

1[1'. —a) ’

In the particular cases mentioned below it is possible to derive the
factorial moments on the same ground. As we have already written
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Riordan, who found the relation of the type (2.26) for binomial, Poisson
and hypergeometric distributions, did not take into account the possi-
bility of obtaining the factorial moments in his paper. As far as those
distributions are concerned we shall cite the papers in which the factorial
moments have been derived through the special research made for this
purpose.

The incomplete moment about the origin of rth order of the hyper-
geometric distribution (1.4) is expressed by

r

,n[m,l] N )[m.ll .
(2.28) a,(s) = Z —% ----- 8, ,a™ (8—m).

m=1

We obtain that relation from (2.23) after putting ¢ = —1/N and
after some transformations. In case s = 1 (2.28) gives (1.49). We evaluate
ar* (s—m) for the distribution (1.4) with the parameters: N —m, n—m,
Np—m.

The factorial moment about the origin of the hypergeometric distri-
bution is as follows:

(r1l( Npyir1
(2.29) 4y = AP

‘Wﬂ"
([18], p. 147).
The incomplete moment about the origin of 7th order of the binomial
distribution (1.2) is expressed by

(2.30) a.(s) = D w™p"8,,  al* (s—m).
m=1

This relation is the immediate consequence of (2.23) for a = 0. In
case 8 = 1 it is identical with (1.47). We evaluate al**(s—m) for the
distribution (1.2) with the parameters: p, n—m.

The factorial moment about the origin of rth order of the binomial
distribution is as follows:

(2.31) ayy = n"p

([23], p. 858; [25]), p. 440; [18], pp. 90 and 122; [1], p. 82).
The incomplete moment about the origin of the Poisson distribution
is expressed by
,
(2.32) : a,.(8) = A" 8y pag(s—m).
The relation (2.32) is the consequence of (2.30) if we take the con-
dition 1 = limnp at which the Poisson distribution is the limit distri-

n—>o0
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bution for the point binomial. In case s =1 (2.32) is identical with
(1.48).

The factorial moment about the mean of rth order of the Poisson
distribution is 28 follows:

(2.33) gy = A

([1], p. 83; [14], p. 219; [18], p. 147).
The moment about the origin of rth order of the random variable
with the negative binomial distribution (1.20) is expressed by

r

(2.34) a,(s) = Z plm =1l (%)m S (8—m)

m=1

where «*(s—m) is the incomplete moment of this distribution with
the respectively changed parameter, i.e. written on the basis of (2.17)
in the form

(2.35) H""‘(k) S pkqn+m,

k=0,1,2,..., m =1,2,3, ...

The relation (2.34) may be derived by following the procedure shown
by the demonstration of the relation (2.23) for the moments of the Pélya
distribution.

Taking p = /149, n = A/ and consequently ¢ =1/(1+79), plg=17
‘we obtain the formula for the moments of the Pélya—Eggenberger distri-
bution (2.9):

r [m.~11
(2.36) a,(s) = Z (%) 7™ S 6 (8 - 1)

If s =1 the relations (2.34) and (2.36) are being reduced to the
moments about the origin. We can also obtain (2.36) on the basis of the
limit theorem on page 22.

For illustration we shall evaluate a few first moments about the
origin from (2.34):

m=1
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(Comp. with the false formula (5.13.11) in [6], p. 179, German ed. p. 150).

Inserting n = 1 into (2.34) or 4 = 7 into (2.36) we obtain the relations
for the moments of the geometric distribution (1.62), namely

r

p\" .
2.37 = = '8y, -a5 (8—m),
(2.37) a,(s) ;(q) m! 8, o (8—m)
(2.38) a,(8) = Y n"m! 8, 07" (s—m).
m=}

From the above given relations follow the relations for the factorial
moments of the discussed distributions and so:
Negative binomial distribution

(2.39) gy = i1 (%)
((18], p. 131);

Pélya-Eggenberger distribution

A=l
(2.40) e = (;) 7
Geometric distribution
(2.41) oy = (3) r
q
or
(2.42) a[’l = T’/rr!

([14], p. 219).

It follows from the remarks made in 2.1 that the formula for the
incomplete moments y,.(3) of the truncated negative binomial distribu-
tion is as follows:

r

1 m
(2.43) yo(8) = = 3 amo (ﬁ) Sr ™ (s— m)
q" & q
where
7+ m) 1l
(2.44) o (s—m) = Z (—?L:f').___.. e, mo=1,2, ...
k=8—m :

Inserting s = 1 into (2.43) we obtain the moments about the origin of
the discussed distribution. If we write (2.43) in the form

fnq" 1 - m—1, - 4 " m
—¢ (n1)m " ”(—q—) 8, a5 (8—m)

Yr (8) =

m=1
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and assume n — 0 then according to (2.44) and to the already discussed

limit theorem (2.16) we obtain the relation for the moments of the loga-
rithmic distribution (1.64):

a,(8) = AZ (m— 1)'( ) Sy, 0 6T (83— m)

m=1
where
i L
&G e—m)=g" ) x p*.
k=8—m
Hence
: _ m 3 mt 1 k
(2.45) a(s) =A (m—1)!p™8, . o p*.
m=1 k=s—m ‘

From (2.45) we obtain the complete moments at s = 1:

(2.46) AZ(m 1)! "'S,,,,Z m[k'

k=0

— Ag (m—1)! (—:i)m s

or on the basis of (1.43) in the form:

(2.47) a, = AZ( ) am0

m=1

The first mmoments of the discussed distribution are the following:

2
oal, o 3 4 PAtAptry
q q ¢

The methods of reaching the moments for the logarithmic distri-
bution given here seem to be much more practical than the method
presented by M. G. Kendall and A. Stuart ([18], p. 133). There the mo-
ments have been found as the coefficients of the series expansion of the
moment-generating function and this method does not give any general
results.

The factorial moment about the origin of »th order of the logarithmic
distribution is the following:

(2.48) oy = (r— 1)!(%)'.

al=A£, P a=AM

’

3 — Dissertationes Mathematicae LXXXIII
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3. The recurrence relations
for the moments about the mean of the Polya distribution

3.1. The first method. The incomplete moment about the mean of
rth order of the Pélya distribution is defined by (1.10) where E(X) = a,
= np and II(k) is given by (2.18).

Let us note that for the Podlya distribution given by (2.18) the fol-
lowing identities hold:

(3.1) k[g4 (n—k)a] = k—np+ (n— k)(p+ ka),
(3.2) (n—k)(p+ka) = —a(k—np)*+c,(k—np)+c,
where

(3.3) ¢, = na(¢q—p)—p, ¢, =npg(l+na),

(34) klg+(n—Ek)elll(k) = [n—(k—1)][p+(k—1)a]lI(k—1).
Proof. To 3.1.
L =k(¢g+(n—k)al = k—kp+nka—¥a
= k—np+np+nka—kp—K'a
= k—np+n(p+kae)—k(p+ka)
=k—np+(n—Fk)(p+ka) =R.
To 3.2.
L =n—k)(p+ka) =nka—ka+t+np—kp
= —K'a+nka(p+q)—kp+np(p+9)
= — Kk a+nkap+ nkaqg— kp+np*+npq
= —ak’+2aknp — an?p?— knap + an?p+ knaq— kp + np®+ npq
= —a(k—np)*+ k(naq— nap — p)— np (nag— nap — p)+npq-+napq
= —a(k—np)*+ (k—np)[na(q—p)—pl+npe(1+na) = R.

To 3.4. At first note that the probability distribution (2.18) can be
expressed as follows:
p[k, —a] q[n, —-a)

(k) = (Z) (g+ na)yFral 1m=d ‘gt na).

Th
. us " p[k,—al q[n,—a] .
L= klg+n— R alT(h) = (3) - F e Jmm (@ +r0)bla-+Hn—k)a]
n[k,l] P[k—l, —aj q[n. —a)

= (k—l)! ’ (q+na)(k+l,a] [P+(k— I)GI'W '(q+m)[q+(fn—k)a]

n p[k—l.—a] q[n—(k-l).-a]
= (k—l) (q+ na)&a R ‘(g+na)[n—(k—1)][p+ (k—1)a]

= [n—(k—1)1[p+(k—1)alMI(k—1).
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THEOREM 3.1. The incomplete moment of r-th order of the Pdlya distri-

bution defined by the formula (2.18) may be expressed by the recurrence
relation

(3.5) {(1+E)T_I—Er-'l}(—4#2(3)'{‘01/‘1(3) +02!‘o(3))

= 1, (8)— (8 —np) " u,(s)
where the values of the coefficients ¢, and ¢, are defined by the relations (3.3)
and r =2,3, ...

Proof. Multiply both sides of the identity (3.4) by (k—np)"~! and
sum them up for the values k from s to » and then use the identities (3.1)
and (3.2)

L = ) kig+ (n—k)a](k—np)y " II(k)

k=8

— ¥ [(k—np) + (n— k) (p+ ka)] (k—np) - [T (k)
k=8

[(k—np)— a(k—np)*+ ¢, (k—np)+ ¢o](k—np) " [1(k),

F

&
Il
3

R

[l
N

[n—(k—1)1[p+ (k—1)a)(k—np) ' [T (k—1).

&
I
9

Substituting k—1 = %', k¥ = k' +1 we get

R= D' (n—K)p+Fa)(k —np+1Y (K

k'=8-1

= 3 [~ a(K' —np)+ ey (k — np)+ ¢ (k' — mp+ 17~ IT () +
k'=8

+(s—np) ' [n—(s—1)][p+(s—1)a]lI(s—1).

Regarding that u,(s) = Fu,_,(s) and L, = R we obtain

I‘r(s)‘f'Er_l(—aﬂ2(3)+01ﬂ1(3)+02.“o(3))
= (1-;—E)'_](—ay2(s)+ 01#1(3)+02#0(3))+(3—np)r_13[Q'+(”—3-)0']]7(3)-
After arrangement of this expression we have

{(1+E)r_l—E”_l}(_aﬂz(s)+clﬂ1(3)+ 0’2!‘0(3))

= up(8)— (s —np) - 8[q+ (n—s)al I (s).

Putting » = 1 in this formula we obtain

(3.6) pi(8) = slg+(n—s)a]ll(s).
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Taking this expression into account we reach the required formula
(3.5).

If we assume s = 0 then 4,(s) = x4, and we get the recurrence re-
lation for the complete moments about the mean of the Pélya distribution

(3.7). {A+EY ' — B (— apat+ 0y o1+ 62 o) = foy

We will demonstrate now that it is possible to establish the relation
between the incomplete and complete moments about the mean.

THEOREM 3.2. If the complete moment u. about the mean of the Pilya
distribution 18 known then the incomplete moment u,(8) about the mean
of r-th order of the same distribution may be obtained by the equality

(3.8) b (8) = popio(8)+ d, iy (8), r=1,2,3,...
where
(3.9) doy =py =0, dy =p,=1

and the coefficients d, satisfy the following recurrence relation
(3.10) {1+ Ey ' — B 'H(—ady+¢ydy+ ¢y dy) = d,— (3~ np) !

where ¢, and ¢, are keeping the meaning given by (33) and d, and d, are defined
by (3.9).

Proof. We must fit the values of the coefficients d, so that the re-
lation (3.8) would be satisfied. Putting (3.8) into (3.5) we get

{1+ By ' — E "} [ — a(papo(8) 4 dopra (8)) + €1 (2 10 (8) + dy py (8)) +
+ 03 (0 o (8) + do 1 (8))] = ta, 180 (8) + 11 (8) — (85— mp)" ™ 1y (8)
otherwise
{1+ E) '—E "} [ (8)(— ady+ €1, 4 cady) + 1o (8) (— Bpta+ €3y + o )]
= 1 (8)[d,— (8 —np) "' 1+ po(8) 1,

Comparing the coefficients at u,(s) we get the relation (3.10). For example
putting r = 2 we have

—ad;+ce¢,d, =d,—(s—np) or dy(1+a) =cdi+s—np.
On the ground of (3.9) we have

4 — ¢+8—np
2 14+ a -

and taking (3.3) into account we get

na(@—p)—pts—np _ ma(g=p)ts—p+n)

d, =
2 14a 14a
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Making the analogous calculations at r = 3 we obtain

dy[2naq—2p(1+ na)—al+2npq(1+ na)+-na(¢g—p)—p+(s—np)*
1+42a )

Putting in the discussed formulae a = —1/N with N being the
number of the individuals in the population we get as a particular case
the relations (1.35), (1.37), (1.38).

If a = 0 we immediately obtain the formulae (1.30)—(1.32) for the
moments of the binomial distribution.

Assuming limnp = 1 >0 we derive the formula for the incomplete

n—00
moments of the Poisson distribution
(3.11) ML+EBY ' — B Y pg(8) = py(8)— (s— A g (8)

which for s = 0 gives the formula (1.7) for the complete moments that
had been obtained earlier by K. Pearson (but by another method). In
particular, while keeping the conditions (3.9) and (3.10) we get the relation

(3.12) ML+ EY "—EYdy = d,— (s— Ay,

The analogous procedure allows us to reach the recurrence relation
for the incomplete moments of the negative binomial distribution

P . - n P r—1
(3.13) E {(1+E_) '—F B (#1(3)+ ? .“0(3)) + ('5'*"' E) p(8) = p,(8)
and keeping the conditions (3.9) and (3.10) — the relation
r—1
3.14) L {(1+E)"“—E’"}(dl+ i d.,) + (s—'n i"i) =d,.
q q q
Using the substitutions already given on page 31 we obtain the

relations for the moments of the Poélya-Eggenberger distribution in
the form

A .
(3.15) n{(1+E)’*'—E"}[ul(s)+ﬂ(1+nmo<s)]+(s<~-A)"1n1(s>=ur(s)
or keeping the conditions (3.9) and (3.10) — the relation
2
(3.16) n{(1+E)’-1—E'-'}[d1+;(1+n)do +(s—A =d,.
Putting 8 = 0 we get the relations for the complete moments about

the mean. For example, if we evaluate according to (3.13) for r =2, 3, 4
we obtain

P P P P P
p=nd, o Z ), u4=nF[3(n+1+p)?+3?+l].
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In the case of (3.15) the moments are given in the form
pe = A(1+7n), pa =A(1+n)A+27), p=2i(1+9)[1+3(1+9)(A+29)].

Putting » = 1 in the formulae (3.13), (3.14) or 4 = % in the formulae
(3.15), (3.16) we obtain as a special case the relation for the moments
about the mean of the geometric distribution, namely

P 1 p\"!
(3.17) Mr(8)=?{(1+E) —E }[#1(8)+Euo(8)]+(8—;) £, (8)

or
(3.18) p,(8) = n{(L+ BV ' —E"}Hua () + L+ 1) o ()] + (s— 1) " (8).
Whereas keeping the conditions (3.9) and (3.10) we get the relations

19) 4 =2 qurmri-Ey et al (- 2)

(3.20) d, = % (14 By ' — B} [dy+ (L4 ) do]+ (s— ) .

From (3.17) and (3.18) we obtain the complete moments about the
mean at s = 0.

3.2. The second method. We will here discuss another method of
reaching the moments about the mean of the Pélya distribution. For
this purpose with the view to the form of the probability function (2.18)
of that distribution and its expected value a, = np we first perform the
following transformations

(k—a,)' [1(k) = (k—np)"II(k)

- 1\ (ne1| (p+ @)t -agi—kal
= npt=np) 1(1—1"—)(2'—1)' (Lt a1 -a

k
= np(k—npy ' [IT* (k—1)— (k)]
where 77" (k—1) is defined by (2.19). Denoting the expected value of the
distribution IT*(k) by
* (n_l)(p+a‘)

a1 1+a
we can write
1
— (k—a,)" 11 (k)
np
B . _ r—1
=Lk—1—a;+1+“+(” 1)1(“:;“) "p(1-+“)] T (k—1)—(k—a,) " 1(k)

r _ _ r—1
—|r—1—a'+ 1+"“1(irap) p] T* (k—1)— (k— a,)" " [T (k)

14+ na
14a

1l

_k—l—a'l"—l—q ]'— m*(k—1)—(k—a,)" ' [I(%).
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Thus
1 = 1+ na 1 ~
— u,(8) = k—1—a) + m*(k—1)— k—a,)  II(K).
up 1) kZ[ adtag | D= 3 e k)
Putting k—1 = k' in the first component of the sum we get
1 < 14 na ]r-?
T — kl— * H* k: _
'np Mr(s) k’gl[ aQ ‘Hl 1+a ( ) .ur—l(s)
14na\!
=(E+q 1—{-0) po (8—1)— 1 (8).

We have then

THEOREM 3.3. The incomplete moment about the mean of r-th order
of the Pdlya distribution defined by the formula (2.18) is expressed by the
recurrence relation

. ¢ 1 r—1 N
321 (o) = | (B4 e - 1— a0,

r=1,2,3,...

where pr (s—1) denotes the incomplete moment about the mean of the Pdlya
distribution defined by (2.19), i.e.

n—1 n—1
=1y = D I°(h),  pi(s—1) = D' (k—al) 1" (k).
k=s-1 k=8—1

If s =0 we get the formula for the complete moments about the
mean of the Podlya distribution

1+na\"!
1+a) P';_.“r—l]s r=2,3,...

For example we derive the second and the third moment about the
mean from (3.22) by putting r =2 and r = 3: We evaluate yu; from
the relation u; = o —a;? using the formulae for af and o given on
page 26. Thus

(3.22)  p, =np [(E+q

—n 1+ na
U = MPq 1ta ’
1+na\® , N 1+ na\?
Ha ="*P[(E+q 1ta ) ﬂu—uz] = %P[#ﬁqz( 1ia ) _Mz]
_ np{(”—l)(P-l-a) [1+(”—2)(P+20»)I _(ﬂ—l)(P+a)]+
14a 1+ 2a 1+a
1+ na (1+na, o )}
I7%a Vige T2
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If a = 0 we get the relations for the moments about the mean of
the binomial distribution. In particular, the formula for the complete
moments coincides with (1.29).

If a = —1/N we obtain the formula for the moments about the
mean of the hypergeometric distribution

N r—1 .
323wl =mp|(Bragr) me—n—n 0]

In the case of limnp = 4 we get the formula for the incomplete

n—rod

moments about the mean of the Poisson distribution
(3.24) 4 (8) = ALE41) " po(8—1)— p,.., (8)].

The analogous procedure to that given above allows us to obtain
the relation for the moments about the mean of the negative binomial
distribution in the form

1 r—1 .
(3.25) #e(8) = n%[(E—i— E) Ho (8—1)—ur..1(8)]

where u, being the moment of the distribution (2.35) for m = 1.
The substitutions cited on page 31 give the formula for the mo-
ments of the Polya-Eggenberger distribution

(3.26) ur(8) = A{[E+ 1+ "pg(s—1)—p, ,(3)}.

where yu; (s) denotes the incomplete moment about the mean of the dis-
cussed distribution with the respectively changed parameter (evaluating
ur (8) we put A+7 in place of 1 in u,(s)). We reach this modified distri-
bution from (2.35) by the mentioned substitutions.

In the case of » =1 or A = 5 we get the relations for the moments
of the geometric distribution

(3.27) (s) = %[(E+ %) i (8—1)—#”(8)]
or
(3.28) () = (LB (L )T i (5= 1) — sy (8)).

The formulae (3.27) and (3.28) have a formal character. In order
to reach u)(s—1) from u,.(s—1) we must keep the rule of substitution
n =1byn =2 or A = 5 by 24 which is apparently easier to realize direct
by making use of the relations (3.25) or (3.26).

If we put s = 0 in the above given relations we get the formulae
for the complete moments about the mean of the discussed distributions.



3. The relations for the moments about the mean of the Pdlya distribution 41

3.3. The third method. The third method of reaching the relation

for the moments about the mean of the Pdlya distribution depends on
the use of the formula (1.11) for the summation by parts where

fo = (k—npY™", g = (k—np)II(k)

and /7(k) is the probability function (2.18) of the discussed disti'ibution.
The formula (3.6) allows to state that

i3

9 = (8) = 8[g+(n—s)alll(s),

Lol
I
@

n n

9i— 2 9

=8 i=k+1
slg+(n—s)alll(s)—(k+1)[¢+(n—k—1)a]lI(k+1).

Then in accordance with (1.11)

M N
8
0

..
1
©
-
I

n—1

po(8) = s[g+ (n—s)allI(s)f,—s[g+ (n—s)alI(s) D Afy+

k=8

+ D e+ 1)[g+ (n—k—1) a1 1T (k+1) Af..
k=8

Note that

n-1

fn_ 2 Afk an_ [(fa+l_fs)+(fs+2—fs+l)+ o +(fn_fn—l)]
=fu—(fu=T) =Js

and
(3.29) f, = (s—npy",
(k+1)[gq+(n—k—1)a]ll(k+1)
= (k+1)[g+ (n—k—1)a] i plitt —al gln— (k1) —al
! (k+1)E![n— (k+1)]! 1(n—a]
= n—1\ (p+ a)s—clgin-1-k —al
= np[q+(n—k—l)a]( k ) (14 a)rL-a

= np[qg—(k—n+1)a]ll*(k) ,
IT* (k) being defined as formerly by (2.19). Then we have

#r(8) = 8[q+ (n—8)alll(s)f,+npg D IT*(k) Af,—
k=8

n—1

—npa ) (k—n+1)IT* (k) Af,.

k=8
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We find that

k—n+1=k—a +(n ;:{1;_*_) —n+1
— k—a* 1-mn -1 .
) =k—atei o 4=1-p
r—1
afy = Y77 ) k—npy i
i=1
o, o« (m=1)(pta) ., qua—(p+a)
k—np =k—a;+ ita =k—a,+ ita .
Denoting
1—n
(3.30) b=gq Ta’
(3.31) o = qm’%@:”
we obtain
n—1r-1
1,(8) = i (9)f+ 1P 2 2( ) oot oy 10" ) -
k=81=1

n-1r-1

—npa 3} B k—al+0)("7") (ki oy I )

—m(s)fs+npq2( ) (E4o) 'y (5)—

i=1

—npaz‘[( 1)(E+ Y112 (8) 4+ b(E+4 eyt Lp*(s)]
—ﬂ1(8fa+np[q ab) Z( )(E+o’ g (8)—

—aZ( Y (@4 oyrt *(s)]

We have then the following theorem:

THEQREM 3.4. The incomplete moment about the mean u.(s) -of r-th

order of the Pdlya distribution defined by (2.18) is expressed by the recur-
rence relation

(3.32) #f(8)=.u1(8)f,+np{(q—ab) D7) 1o e)-

~a(E+c)'-""*pr(s)]}, r=1,2,3,...
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where ¢ = 1—p and the incomplele moment u,(s) being defined by (3.6),
1, by (3.29), b and ¢ by (3.30) and (3.31) respectively and wo (8) and i (8)
denote the incomplete moments of the Pdlya distribution (2.19) of order 0
and 1 respectively, i.e.

n—1 n—1
ue(8) = DI (K),  gi(s) = D (k—a})IT* (k).
k=8 k=8

If s =0 we get the relation for the complete moments about the
mean of the Pélya distribution

~1

ﬂ( )[(E+c)’ it g (Btey “]},

1=

(3.33) 4, = np {(q— ab)

r=2,3,...

Substituting a = —1/N we get the relation for the incomplete
moments about the mean of the hypergeometric distribution

(3.34) . (8) = m(s)fs+npq

N 1 )[(E+c Y1 ()

1 .
+F(E+cl)r_l—1ﬂl (3)“7 r=2,3,..

where
l - pN qn
N—1 '

and 71(s) is defined by (1.4) for k = s and uj (), x4 (¢) denote the incom-
plete moments about the mean of this distribution in which » must be
replaced by n—1 and p by (Np—1)/N

If a = 0 we get from (3.32) the relation for the incomplete moments
of the binomial distribution

(}l =

4 () = ;, (Ng+s—n)11(s)

(3.35) w8 =q[sﬂ(s)f,+np'E(T;‘) (B—py *<a)]

where /1(s) is defined by (1.2) for k¥ = s and u, (s) denotes the moment
of this distribution after replacing » by n—1.
In the case of limnp = 4 we get the relation for the incomplete

n—>00

moments about the mean of the Poisson distribution

(3.36) py(8) = sn(s)(s—z)'-‘w_}j(’;l) b1 ().

The relation (3.36) is identical with (1.61).
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The analogous treatment to the one described above allows us to

establish the recurrence relation for the incomplete moments of the
negative binomial distribution (1.20) in the form

(3.37) ,(8) = —17( 2( )( )""pzm

where u; (s) denotes the moment of the distribution (2.35) for m = 1.
The relation for the moments of the Pélya—Eggenberger distribution

r—1 _l i
(338) o) = @+ n)[sl@+2 ) () By i o]
i=1
may be derived from (3.32) by using the limit theorem quoted on page
22 or from (3.37) by using the substitutions given on page 31.
Putting » = 1 in (3.37) or A = 5 in (3.38) we obtain the relations
for the moments of the geometric distributions

r-1

_ & r—1 4 AL
@39 ww = i@ (7 ) (=~ q) u o),

(3.40)  p(s) = (1+'7)[8178)+'12,( Ngtnrt ).

The remarks made for the formulae (3.27) and (3.28) in 3.2 hold
good for (3.39) and (3.40) as well, i.e. in practice the moments of the
geometric distribution are obtained easier from (3.37) and (3.38).

It is possible to obtain the recurrence relations for the complete
moments about the mean immediately from the above given relations
by the substitution ¢ = 0.
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