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Birkhoff and Smith [2] and Maier [6] defined two processes which
describe the center of a dynamical system F' defined on a compact metric
space 8 (a continuous mapping from (— oo, oo) X § onto 8 such that
if # is a number, ¥ is a number, and p is a point of S, then F(z+y, p)
= F(z, F(y, p)) and F(0, p) = p). In each of these processes, a monotonic
(perhaps transfinite) sequence W of subsets of S is defined so that the
center of F is the closure of the common part of all of the members of W.

Suppose that F is a dynamical system defined on a compact metric
space 8. If I is a subset of § and I is invariant under F, then let Q(I)
= {p: p is an w-limit point of a movement of ¥ lying in I}. The sequence
B,, B,, ... used in the process of Birkhoff and Smith is defined as follows.

Let B, = 8. Notice that cl(2(B,)) is a compact invariant subset
of B, (cf. [8], pp. 311 and 338). If ¢l(2(B,)) = B,, then B, will be the
only member of the sequence. If cl(Q(B,)) # B,, then the set B,
= cl(2(B,)). Continue this process inductively as follows. If « is an ordinal
number and there is a term of the sequence with subscript %, and cl ( Q(B,))
= B, then B, will be the last term of the sequence. If cl(2(B,)) # B,,
then the set B,,, = cl(2(B,)). Notice that B,,, is a closed invariant
gsubset of B,. If v is an ordinal number with no immediate predecessor
and, for each ordinal number w < v, there is a term of the sequence with
a subscript w, then the set B, = () B,. Notice that B, is closed and

2<Y
invariant. B,, B,, ... is a monotonically decreasing sequence of compact -

subsets of the compact metric (and, therefore, separable) space S. There-
fore, by Baire’s theorem, B,, B,, ... has only countably many members.
The common part C of all of the members of B,, B,, ... is the closed
invariant set defined to be the center of F.

The sequence M,, M,,... used in the process of Maier is defined
a8 follows. Set M, = 8. Notice that 2(M,) is an invariant subset of M,.
If Q(M,) = M,, then M, will be the only member of the sequence. If
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Q(M,) # M,, then the set M, = Q(M,). Notice that M, is an invariant
subset of M,. Continue this process as follows. If # is an ordinal number
and there is a member of M,, M,, ... with a subscript %, and Q(M,) = M,,
then M, will be the last term of the sequence. If Q(M,) # M,, then set
M, , = 2(M,). Notice that M, , is an invariant subset of M,. If v
is an ordinal number with no immediate predecessor and, for each ordinal
number w < v, there is a term of the sequence with a subscript w, then
the set M, = (" M,.

<V
For each dynamical system F, let M (F) denote the number of terms

of the sequence M,, M,, ... associated with F and let B(F) denote the
number of terms of B,, B,, ... In [7], Nemyckii shows that M (¥) < B(ZF')
and that the closure of the common part of all of the members of M,,
M,, ... is the center of . Nemyckii [7] asked if there is an example where
M(F)< B(F). In [9], an example is given such that B(F) =4 and
M (F) = 3. The purpose of this paper is to describe an example of a dyna-
mical system F defined on a compact subspace 8 of E® such that B(F) = w
and M (F) = 3.

LeMMA (1). If for each cube C in E3 and each positive integer n > 2
there is a dynamical system F defined on a closed subset of C such that B(F)
=n and M (F) = 3, then there is a dynamical system G defined on a closed
and bounded subset of E® such that B(G) = o and M(Q) = 3.

Proof. For each positive integer n > 2, let C,, denote a cube which
contains (1/n, 0, 0) and has edge length less than 1/4n and let F, denote
a dynamical system defined on a closed subset of C, such that B(F,) = n
and M(F,) = 3. Let @ denote the dynamical system such that the set
of motions of G consists of the motions of ¥F,, F,,... along with the rest
point (0, 0, 0). Notice that G is continuous, B(G) = w, and M(G) = 3.

Definitions and notation. If p and ¢q are points of E3 and ¢ is
a positive number, then let o(p, q) denote the distance from p to ¢ and
let B(p,e) = {s: o(s,p) < e}. If H is a number set, F is a dynamical
system defined on a subspace S of E? and p is a point of S, then let F(H, p)
= {F(x, p): ve H}. F((— o0, o), p) will be denoted by ¥(p). p is a type
(1) point means that p is a rest point of F. p is a type (2) point means
that there is a type (1) point ¢ such that ¢ is the only a-limit point of the
movement of p and ¢q is the only w-limit point of the movement of p.
p is a type (3) point means that there is a type (1) point # and a type (2)
point v such that « is the a-limit point and w-limit point of the movement
of v and such that « is the only a-limit point of the movement of p and
{u} U ¥(v) is the set of w-limit points of the movement of p. A building
block is a dynamical system consisting of the three motions through such
a triple (u, v, p), see Fig. (1). Let 8,, 8, and 8, denote, respectively, the
sets consisting of the type (1), type (2) and type (3) points of S.
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LeMMA (2). If O i8 a cube in E3, d i3 a posilive integer and, for each
non-negative integer n < d, Z, 18 a collection of building blocks whose union
ts defined on the subset X, of C,

(cl("(jx,)) NnX, =0,
n—-1 §=0
UZX; < cl({q: ¢ is a type (2) point of X.,}),
$=0

a
and \J Z, forms a dynamical system F, then B(F) =d+3 and M(F) = 3.

=0 d
" Proof. Assume the hypothesis of the lemma and let § = | X;.
i=0
M, =S8.
M,=8,vU8,
.Ma -_— Slo
d
B, = U X;
i=0

d-1
By = (‘L;JOX‘) U ((8; U 83) N Xy).
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d—-2
By = (U X,) U((8, U8 N X, ) U8 N Xy).

t=0
d-3

B, = L,Jo X)) U((8,U8,) N Xy y) U (8N (‘=L:)— l;m.,)).

1 . a
B; = (on‘) U ((8; U 8y) N Xy) U (8, N (p X,)).

d
By, = X, U ((Sl U8, N Xl) v (Sl N (‘L;)sz)).
d
Baps = (81U 85) 0 Xg) U (8, N ( U X))

d
Bi,; =8; N (onXd) = 8;.

Example. Suppose that C is an open cube in E? with edge length
less than 1/2 and d is a positive integer. We will now establish the existence
of a dynamical system G defined on a closed subspace 8 of C such that
B(G@) = v and M (G) = 3 by defining a sequence Z,, Z,, ..., Z; of collec-
tions of building blocks in C satisfying the hypothesis of Lemma (2).
Notice that Z,,Z,, ..., Z; must be defined in such a way as to insure
that (1) for each non-negative integer ¢ < d, Z; is such that there is “still

d

room to fit in Z;,,” and (2) U Z; constitutes a continuous flow F.
=1

Each trajectory of F will contain a point ¢ with the property that
if ¥ is an integer and x is a number in (0,1), then F(k+x, q) =
(1L—2z)F(k, q) +2F(k+1, q). For each trajectory of ¥, exactly one such
point ¢ will be designated as a determining point of 7. The movement
through ¢ will, therefore, be described by defining F (%, q) for each integer
k. The example will be constructed (as in Fig. (1)) so that if B is a building
block of F with type (1) point u, type (2) determining point v, and type
(3) determining point p, then there is a positive integer n such that
F((— o0, —n],v) U {u} U F([n, ), v) is the straight line interval
[F(—n, v), F(n,v)] and there exists a positive integer m such that
F((— o0, —m], p) U {u} is the interval [F(—m, p), u].

Z, will contain only one building block B. B will contain a type (1)
point u, a type (2) point v, and a type (3) point p. Let « denote a point
of C and define u to be a rest point of F. Let v denote a point of C distinct
from u. Extend F to include a type (2) trajectory through v in such a way
that » is a determining point of F, ¥(v) « C, and u is the a-limit point
and the w-limit point of the movement of ». There will be associated with
each type (2) determining point w of F, a positive number ¢(w) and a
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sequence of positive integers N,(w), Ng(w),... which will be needed
to complete the description of ¥. Let ¢(v) denote a positive number such
that R(¥(v), e(v)) = C. Let N,(v) denote a positive integer such that

F([Nl(”)’ o), 'v) U {u} v F((—oo, — N, (9)), '0)

is a straight line interval which is a subset of R (u, ¢(v)). In Fig. (1), N, (v)
= 2. For each integer ¢ > 1, set
i—1

Ny(v) = (26—1) Ny (v)+ D (2§+1).

=1

In Fig. (1), N,(v) =9 and Ng(v) = 18. Let p denote a point of
R(v, £(v))— ({u} U ¥(v)). Extend F to include a movement of p in such
a way that p is a determining point of F, ¥ (p) = R(¥(v), &(v))—({u}u
U ¥ (v)) and, for each integer k, the following three statements are true:

(1) if —Ny(0) <k < Ny(v), then ¢(F(k, p), F(k, v)) < ¢(v);

(2) if k< —N,(v), then F(k,p) = (F(k+1,p)+u)/2;

(3) for each positive integer j, if N;(v) < k < N;,,(v), then we have
o(F(k, p), F (k—N;(v) — Ny (v) —j—1, v)) < &(v)j.

We will now define a sequence W,(B), W,(B), ... of building blocks
(called a (u, v, p, £(v), N,(v), No(v), ...) sequence) so that Z, = {W,(B),
Wy(B), ...}. For each positive integer n, W,(B) will contain a type (1)
point %, a type (2) point v,, and a type (3) point p,,, see Fig. (2). Let %,
denote a point of

R (u, £(v)) — ({u} U ¥ (v) U ¥ (p)).

Extend F in such a way that «, is a rest point of F. Let », denote
a point of

(R((0), £(v) N R(p, £(v))) — ({u} U P(v) U P(p) L {u,}).

Extend F to include a type (2) movement through v, so that v, is
a determining point of F,

¥(v,) = B(¥(v), e(v)) — ({u} L ¥(v) L ¥(p) U {u})

and, for each integer k, the following three statements are true:
(1) if —Ny(v) <k < Ny(v), then o(F(k,v,), F(k, p)) < £(v);
(2) if k< —N,(v), then F(k,v,) = (F(k+1, v,)+u,)/2;
(3) if N,(v) <k, then F(k,v,) = (F(k—1,v,)+uy)/2.
Let ¢(v,) denote a positive number less than £(v) such that

R(¥(vy), e(v,)) = R(¥(v), £(v))
and
R(¥(vy), e(v))) N R(¥(p), e(vy)) =O.

8 — Colloquium Mathematicum XXVII.1
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Let N,(v,) denote a positive integer such that N,(v,) > N,;(v) and
F([Nl(’vl), 00), 'vl) U {u,} v F(( — o0, — N, ()], "71)

is a straight line interval which is a subset of R(ul, &(v,)). For each integer

i-1

1> 1, set
Niws) = (20—1) Ny () + D) (2 +1).
i=1

Let p, denote a point of R(v,, ¢(9,))— ({us} U ¥(v,)). Extend F to
include a type (3) movement through p, in such a way that p, is a deter-

mining point of F,
¥(p,) < R(T(”lb 8(”1))— ({“1} v W("H))

and, for each integer k, the following three statements are true:
(1) if —N,(v;) <k < Ny(v,), then Q(F(k’ p1), F(k, '01)) < &(vy);

(2) if k< —N,(v), then F(k, p,) = (F(k+1, p,)+u)/2;
(3) for each positive integer j, if N;(v,) <k < N;.,(v,), then

e(F(k, 1), F(k— Ny(v;)) — Ny (o) —j —1, v,)) < &(v,)j.
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Continue this construction inductively for each positive integer
n > 1 as follows. Let u, denote a point of

R (1, 5(0,_,)) — ({u} U P (0) L ¥(p)).

Extend F in such a way that «, is a rest point of F. Let v, denote
a point of

(R (T('D), 8('”)) NE (.'p7 8(’0.,,_1)))— ({u} v ¥(v) v T(p) v {“n})'

Extend F to include a type (2) movement through v, in such a way
that v, is a determining point of F,

¥(v,). ((R(Z(D), e(va0)) N B(¥(0), £(0))— ({u} L P(0) L P(p))

and, for each integer %, the following three statements are true:
(1) i —N,(0) < k< Nov), then o(F(k,v,), F(k, p)) < &(0,_,);
(2) if k< —N,(v), then F(k,v,) = (F(k+1,v,)+u,)/2;
(3) if N,(v)<Ek, then F(k,v,) = (F(k—1,v,)+u,)/2.
Let ¢(v,) denote a positive number less than &(v)/n such that

R(¥(v,), £(vs)) = (R(P (D), £(va-y)) N R(¥ (), £(v)))
and
R(¥(v,), £(v,)) 0 R(¥(p), £(v,)) =O.

Let N,(v,) denote a positive integer greater than N,(v) such that
F([-Nl('vn)7 °°)a ’0,,) U {“n} U F(( — 00, —Nl(”n)]r 'Dn)

ig a straight line interval which is a subset of R(u,, ¢(v,)). For each integer
i>1, seb '
i1
Ny(vn) = (20i—1) Ny(v,)+ D (2§ +1).
=
Let p, denote a point of R(v,, £(v,))— ({#,} U ¥(v,)). Extend F to
include a type (3) movement through p,, in such a way that p, is a deter-
mining point of F,

¥ (pa) < (R(P (vn), £(0,)) —({wa} U ¥(,,)))

and, for each integer k, the following three statements are true:

(1) if —N(v,) <k < Ny(v,), then o(F(k, P,), F(k, v,)) < &(0v,);

(2) if k< —N,(v,), then F(k, p,) = (F(k+1, p,) +uy)/2;

(3) for each positive integer j, if N,(v,) < k< N;.,(v,), then
Q(F(k’ pn)’ F(k —Nj(’vn) _Nl(/vn) _j _17 ’0,,)) < 8("’n)/.i? See Flg' (2)'

This concludes the construction of the (w, v, p, £(v), N,(v), Ny(v), )
sequence (W,(B),W,(B),...). Let Z, = {W,(B), Wy(B), ...}
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Continue the construction of Z,, Z7,, ..., Z,; inductively as follows.
Suppose that m is a positive integer less than d for which Z,, is defined.
For each building block D of Z,, (where D has type (1) point a, type (2)
determining point b, and type (3) determining point ¢), define the (a, b, ¢,
&(b), N,(b), Ny(d),...) sequence of building blocks W,(D), Wy(D),...
Now define Z,,,, to beDU {Wy(D), Ws(D), ...}. This completes the defi-

eZ

nition of the sequence Zo,mZI, veeyZy. Let

d
F = Z,.
n=0
It will now be demonstrated that F is a continuous flow.
For each integer 7 in [0, d], let X, denote the subset of ¢ upon which
Z, is defined. Let

d
8 =U X,.
n=1

Notice that S is closed. Define §,, S; and 8; as before. If r is a type
(2) or type (3) determining point and 2 is a point of ¥(r), then let ¢, be
the number such that F(t,,r) = 2, let k, denote the largest integer not
exceeding t,, and let y, = ¢t,—k,. Suppose that w is a point of § and =
is a number. We will now show that F is continuous at (z, w). There are
five cases to consider: (1) we S; and ¥y, # 0; (2) weS, and y, = 0;
(3) we 83 and y,, # 0; (4) we S; and y,, = 0; and (5) we 8,.

Let ¢ denote a positive number. Suppose (case 1) that we 8, and
Y # 0. There is a non-negative integer A and a building block ¥ of Z,
(where E has type (1) point a, type (2) determining point 8, and type (3)
determining point y) such that w = F(¢,, ). We will now demonstrate
that F is continuous at (z, w) by showing, inductively, that for each non-
negative integer N such that » + N < d, the following statement (statement
(A)) is true:

There are positive numbers 4, and A such that

(1) if ¢ is a non-negative integer less than h, then X; N R(w, Ay)

(2) F((w— Apy o+ Ay), (R(w, Ay) 0 8, 0 Xy, n) U (RB(w, 4y) 0 8 N
N X4, n)) € R(F(z, w), (4N +4)e/(4d +4)).

There is a positive number §, such that

(1) 8o < min(1/2, e/(4d + 4));

(2) if 4 is a number and o (F (i, B), w) < 8, then |i—1,| < e/(4d+4);

(3) o(w, a) > (4d +4)4,.

There is a positive number §, < §, such that if ¢ is an integer distinct
from k,, then ¢(F(i, p), F(ky, B)) > 6.

There is a positive number §, < 4,/2 such that if 6 is a point of
R(F(ky, B), 8;) and 6’ is a point of R(F(k,+1, B), 8, and z is a number
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such that (1—2)0+26’ is in R(w, d;), then 0<z<1 and |y, —2|
< e/(4d +4).

Let m, denote an integer such that

(1) N1(B) + [yl + l2] +2 < mq;

(2) &(B)/mq < 8,/2;

(3) o(F (mq, B), a) < 8.

There is a positive number d; < d, such that

R(F([—mq, mo], B), 85) N B(F((— 00, Ny (B)], 7), &) = D.

There is a positive number J, such that if j is a number with F(j, y)
¢ R(w, 8,), then there is an integer ¢ such that

1) i<j<i+l;

(2) F(i, y) ¢ R(F (kuy B), 8/2);

(3) F(i+1, y)e R(F(ky+1, B), 85/2).

If h < d, then let U,, U,, ... denote the (a, B, p, £(B), N,(B), Na(B) ...)
sequence of Z,,, and, for each integer ¢, let a; denote the type (1) point
of U,, let B; denote the type (2) determining point of U;, and let y; denote
the type (3) determining point of U, and let §; denote a positive number
less than ¢(B,,).

If h = d, then let d; = €(B)/m,. There is a positive number 4, such
there are no type (1) points in R(w, J).

Let 4, = min(é8,, 0;, 8,, 83, 84, 5, &). Since A4, < e(B), we infer
that if ¢ is a non-negative integer less than A, then X; n R(w, 4,) = O.

Let t denote a number in (x — 4,, z+ 4,). Suppose that ¢q is a point
of 8;,NnX,nNn R(w, 4,). Since 4,< ;< ¢(f), we infer that ge ¥ (B).
Since 4,< d,, we have [i,—1,]| <e/(4d+4). Since ve (x— 4y, 2+ 4,),
we infer that

(2 —7) + (t, — )| < 2¢/(4d +4)
and, therefore, since the edge length of C is less than 1/2, we have
o(F(T+14 B), F (8 — 1+t —1gy F(v+1, B))) < 2¢/(4d+4)

which says that
e(F (v, 9), F (2, w) < 2¢/(4d+4).

Let 4, = A,. Suppose that r is a point of X, N §; N R(w, 4,).
Since 4,< 85 < ¢(B), we infer that re ¥(y). Since 4, < 8, it follows
that F(t,, y)e R(w, é,) and, therefore,

F(k,; )€ R(F (kyy B), 6/2) and F(k,+1,y)e B(F(k,+1,B), 6/2).

But (1—v,)F(k,,y)+y,F(k,+1,y) =r and re R(w, §;), therefore,
|yw_yrl < 8/(4d—|—4).
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Since |k,|+ x|+ 2 < my, we have F(k,,y)e R(F([_moa m,), B), 63)
and, therefore, k,> N, (B). There is a positive integer j>m, such
that N;(B) < k, < N;.,(B).

o(F(k,, ), P (k,— N;(B) — N1(B)—i—1, B) < e(B)/i < e(B)/mo < 8,2
and
Q(F(kr’ V) B (Kyy ﬂ)) < 4,/2,
therefore,
o(F(kwy B); F (k,— N;(B)— N1(B)—j—1, B)) < 6,

which implies that
kr_Nj(ﬂ)_-Nl(ﬂ) _j_'l = ky.

By combining this equality with the equality N, ,(8) = N,(B)+
+2N,(8)+2j+1 and the inequality |k,|+ |z|+2 < my<j, we obtain
the following

Ni(B) < ky— 0| —2 < k,+ [#] +2 < N1 (B).

Let ¢ denote the integer such that ¢ <z-+y, <t?+1. Both |{| and
[¢41| are less than |#|+2 and, therefore, both %,+¢ and %k,4+441 are
between N;(B) and N, ,(B). This gives us the inequality

o(F(k,+14, ), F(k,+i—Ny(B)— N1 (B)—j—1, B)) < e(B)/j
which says that

o(F (5, F(kyy v))s F (s F (K, B))) < e(B)fj < e[(42+4).
Similarily,

e(F(i+1, F(k, ), F(i+1, F(ky, B))) < e/(4d+4).
Therefore,

o(F 2+ Yurr F (kyy 9))s F (@ +Yur B (Ky B))) < €/(4d+ 4).
But this says that

o (F(2+Yp+kyy 7), F(w, w)) < ¢/(4d+4).

But since |y,—v, <e/(4d+4) and [z—t| <e[(4d+4) it follows
that

and since the edge length of C is less than 1/2, we infer that
e(F(@+ Y+ )y F(E+y,+ Ky, 7)) < 2¢/(4d+4).

Combining this with o(F(2+¥,+k,.,y), F(z, w)) <e/(4d+4) we
infer that
e(F(t, ), F(z, w)) < 3e¢/(4d+4).
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This completes the proof that statement (A) is true for ¥ = 0.
There is a positive integer m, > m, such that &(8)/m, < 4,/(4d + 4).
There is a positive number 4, < §, such that

R(F([—my, my]), B), &) 0 R(F((— o0, Ny (B)], )y &) = O.

There is a positive integer m, > m, such that ¢(f)/m; < &,. There
is a positive number J; such that

mo
R(P(B), &) N (}_Jl R(¥P(B:), £(B) = 2.

Let A, = min(d4,/(4d+4), 6;, d5). Suppose that ¢’ is a point of
83N X, , 0 R(w, 4,) and ' is a number in (#— 4,,x+ 4,). There is
a positive integer n such that ¢'e« ¥(B,). Since 4, < &, we infer that
n > m, and, therefore,

e(a,a,) < 8 and  o(F(—N,(B), Ba)y F(—Na(B), 7)) < 65
Therefore,
F((— o0, —Nu(B), B) = R(F((— 00, N, (8)], ¥), 63).

But R(w, 4,) = R(F([—m,, m,], B), 6,). These two facts along with
the definition of 8, imply that

F((_ 00, _-Nn(lg):b ﬂn) N R(w, 4,) =90.

Therefore, t, > — N,(p).
Suppose that i, > N,(). Then ¢’ is in [F(N,(B), B.), a,] Notice
from the definition of the trajectory of y that

e(F (NalB), ¥)s F (Na(B) — NuerB) — N1(B)— (n—1)—1, B)) < &(B)[(n—1).
So,
e(F (Na(B), ¥} F(N1(B)+n—1, ) < e(B)/(n—1) < &(B)/mq < b
Combining this inequality with the inequalities

o(F (N1(B)+n—1, B), a) < o(F(mq, B), a) < &,

o(F (¥ a(B)y ¥)s F (Nu(B), Ba)) < &(Ba—s) < 80y

and

we get that
oo, F(No(B), B)) < 36,

But ¢(a,, a) < §,, therefore, both F(N,,(ﬂ), ,9,,) and a, are in R(a, 34,)
and ¢’ is in [F (N,,(,B), ﬂ,,), an]. Therefore, o(q’, a) < 3d,. But ¢(¢’, w) < 4,,
80 go(a, w) < 46, which contradicts the definition of §,. Therefore, — N, (8)
<ty < N,(B), and so

0(F(tgs Ba)y Fltyy 7)) < &(Bna1) < &(Bm) < do/(4d+4).
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But o(F (g Ba)y W) < 4, < Ao/(4d+4) and, therefore, F(ty,y)
e R(w, 4,).

As we have seen, there is an integer j’ > m, such that N; () < k,—
— | —2 < ky+ 2]+ 2 < Ny, (). Therefore, there is no integer ¢ such
that N,(B) is between ?,—|z|—1 and ;4 |o[|41. Therefore, #,4 7’
< N,.(B)-

Let u be the integer such that u <ty+41v" < u+1. Since —N,(B)
<p< p+1<N,(B), we infer that

Q(F(Fy Br)y F(u, 7)) < &(Pp_1) < &(B)/m, < 4o/(4d+4)
and

e(F(p+1,B8,), Flu+1,y)) < Ao/(4d+4).
Therefore,

o(B(ty+7'y By Fty+7'y 7)) < Aof(4d+4) < e/(4d+ 4).
Since F(t,, y)e BE(w, 4,), we infer that
o(F(tg+ 75 7), F (2, w)) < 3e/(4d +4).
Therefore,
e (F(T” q), F(x, 'w)) < 4e/(4d+4).

There is a positive integer my > m, such that &(8)/my < 4,/4. There
is a positive number 8, < 4,/2 such that

R(#(B) 8) n (U (R B, (1)) = 9.

Let A4; = é,. Suppose that »' is a point of X, , N 8 N R(w, 4;).
There is a positive integer j such that »' = F(i,, ;). Since ¢ R(w, &),
it follows that j > m,. Suppose that #, < N,(f;). The inequalities

o(F(—:(8)), B), ) < £(By) < £(B)ma< 8, < 8,
and

o(P(—N.1(8y); Bi)s B(—N1(8y), 73) < e(B)) < &,
imply that
Q(F(—N1(ﬂj)7 Yih aj) < 28,.

But since t, < —N,(f;), we infer that 7'e[ay, F(—DN,(B), ;)]
and, therefore, ¢(a;, ') < 268,. But ¢(aq;, a) < e(fy_,) < 6, and o(r', w)
< 4, < 8,, therefore, o(w, a) < 48,. But this contradicts the definition
of 8,, so we infer that ¢, > — N, ().

Either ¢, < N,(B;) or else there is a positive integer 4 such that
N:(By) <ty < Ny, (By). In the first case,

—NiB) <kp— 2| —2 < k,+|2|+2 < N,(B)).
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In the second case, there is a positive integer ¢ such that

NBy) < kp— | —2 < Ep+ 2| +2 < Nena(By)-
In the first case, let

z = F(ly, B).
In the second case, let

& = F(tr’—Ni(pj)_Nl(ﬂj)—i_17 Bi)-
In either case, notice that

e(2,7") < &(fy) < &(B)/my < 4,/2
and

e(F('y2), F(v', 7)) < ef(4d+ 4).

But since po(r', w) < 4'; < 4,/2, it follows that ¢(z, w) < 4, and,
therefore, ¢(F (%', 2), F(x, w)) < 4¢/(4d+4). Therefore,

o(F (7', 7'), F(x, w)) < Be|(4d +4).

This completes the proof that statement (A) holds for N = 1.

Suppose that N is a positive integer such that #+ N < d and state-
ment (A) holds for each non-negative integer n less than N. There is
a positive integer m, > m, such that ¢(B)/m, < Ay_,/2. There is a positive
number 8,, < d,/2 such that

R(Z(B), 8 0 (U (R(Z (80, 2(80) = .

Let 45 = min(8,,, 4y_1/2). Suppose that ¢’ is a point of S, N X, »
N R(w, 4y) and "’ is a number in (# — 4y, 2+ Ay). There is a building
block E' of Z,,x_, (where a’ denotes the type (1) point of E', 8’ — the
type (2) determining point of E’,y»’ — the type (3) determining point
of B, U,, Uy, Uy, ... — the (a'r B'yy'y €(B)y N1(B')y, No(B'), ) sequence
of Z,,~ and, for each positive integer i, a; — the type (1) point of U, f;
— the type (2) determining point of U;, and y; — the type (3) determining
point of U;) and a positive integer n such that ¢'’ ¢ ¥(8,).

Notice that —N,(8') < kyp—|o|—2 < kp-+ 1| +2 < N,(f'). There-
fore,

; o(F(ty, ¥'), F(Ty, B)) < e(B') < e(B)/my < Ay_,/[2

an

e(F(ty+7",9") Flty+ 7"y Ba)) < Ay_1/2 < e/(4d+4).

But since o(F(t,-, B), w) < Ay_,/2, it follows that ¢(F(ty,y'), w)
< Ay_, and, therefore,

e(F(ty+",9'), F(z, w)) < 4Ne/(4d+ 4).
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Therefore, we infer that
o(F (tg+ 7"y Bu)y F (2, w)) < (4Ne+1)/(4d+4)

which says that
Q(F(T"y q’), F(x, 'w)) < (4Ne+1)/(4d+4).

There is a positive integer m; such that ¢(f)/m; < Ay/2. There is
a positive number J,; such that

R((B), 8) 0 (U (R(Z(0, (80)) = 0.

Let Ay = min(6,,, 45/2). Suppose that »’ is a point of 83 N X, x O
N R(w, Ay). There is a building block E” of Z,,, (where a’’ denotes
the type (1) point of E''; " — the type (2) determining point of E”,
and y'’ — the type (3) determining point of E”) such that "¢ ¥ (y").

Either — N,(8) < k,» — |#| —2 < k,»+ |@| +2 < N,(B’') or else there
is a positive integer ¢ such that N,(8") <k,—|v|—2 <k, + |@|+2
< N1 (B7).

In the first case, let

2 =F(t,p").
In the second case, let
2 = F(tr"—Ni(.BN)"‘N1(A3")—’5—1’ ﬂ”)-
In either case,

o(2, ") < e(B”) < e(B)/ms < Ay[2
and
o(F (", 2'), F(z", 1)) < e](4d +4).

But since o(r"’, w) < Ay/2, we infer that®p(2’, w) < 4,. Therefore,

e(F(z" 2'), F(w, w) < (4Ne+1)/(4d +4)
and
o(F(z"y 1), F (2, w)) < (4Ne+2)/(4d +4).

This completes the proof of continuity for case (1). Notice that in
cases (2)-(5), F can be shown to be continuous at (z, w) by using arguments
which very closely parallel the argument for continuity in case (1).

Consider the following related questions which are still open:

Is there a dynamical system G defined on all of E* such that B(Q)
= o and M (@) = 3 ? In particular, can the F of this paper be extended
to such a G? Could one find a differential equation corresponding to
such a G % (See [10].) Is there a dynamical system H defined on a closed
subset of E* such that B(H) > » and M(H) = 3% (P 825)
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