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ON A THEOREM OF KLOSOWSKA
ABOUT GENERALISED CONVOLUTIONS

BY

N. H. BINGHAM (LONDON)

Generalised convolutions, with associated concepts of infinite divisibility,
stability, and domains of attraction, were introduced and studied by Urbanik
[14]. Domains of attraction were characterised in terms of characteristic
functions by the author [2]; a direct characterisation in terms of the
measures themselves was subsequently given by Klosowska [10]. The object
of this note is to show that Klosowska’s result may be proved more simply
(and somewhat extended) by using Tauberian theory.

1. Results. Let 2 be the class of probability laws on [0, o0), and o0 a
generalised convolution in Urbanik’s sense. For Pe &, define P" as the n-th
power of P under o, J, the unit mass at x, and 7; (+ > 0) the map with

[ 10T P)(d) = gf(tx)P(dx) (Pe)

for bounded continuous f. Urbanik’s key axiom postulates the existence of
constants ¢, and a measure M e 2 other than é, (the characteristic measure
of the algebra (£, o)) with

V) Ty, 01 =M (n— )

~

(weak convergence).
As in [10], we confine our attention to regular algebras, i.e. those for
which there exists a non-constant characteristic function @ (P, r) with

D(PoQ,t)=2(P,)P(Q, 1)
and weak convergence of measures P,e £ equivalent to uniform convergence
of &(P,, t) on compact t-sets. Then @ is an integral transform of Mellin-
convolution type:
D(P, 1) = [ Q(xt)P(dx) (PeP,t>0).
(4]

Here the kernel Q is continuous on [0, ), 2(0) =1, |Q(*)| <1, and 1-Q
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varies regularly at zero (with index yx, say); x is called the characteristic
exponent of the algebra. Then @ (M, t) = exp (—t*/v*) for some scale-constant
v > 0. Taking characteristic functions of (U), we get

[Q(t/c)]" — exp (—t*/v")  (n—> ).
Taking logarithms and writing c(t) for c,;, we obtain
1[1-Q(/ecm)] ~t (t— ).

As 1/[1—Q(1/1)] varies regularly at infinity with index y, this shows [6] that
c(t) varies regularly with index 1/x, and '

c(1/[1-Qu/]) ~t (t - ). _
A measure P #J, is said to be stable [14] if
7-i/a,,Q":P

for some measure Q € # and sequence (a,]; the Q which can arise belong to
the domain of attraction of P. The stable measures P are those ([14], [2])
with characteristic functions

(P, t)=exp(—ct?) (c>0,0<i<y).

We may restrict attention to ¢ =1 (which amounts to a scale<change);
A€(0, x] is the index of P. Then

[®(Q, t/a,)]" > ®(P,t) =exp (—t}) (n— )
or, writing a(t) for ay,,

1/[1-9(Q, 1/a@®)] ~t (t - ).
Here ([2], Lemma 7) a(r) varies regularly with index 1/4, whence ([2],
Proposition 1, or [6]) 1 —®(Q, 1/t) varies regularly with index 4, and
a(l/[1-0(Q, 1/N]) ~t  (t > ©).

So Q belongs to a domain of attraction (of a stable law with index 4€(0, x])
if and only if 1—®(Q, t) varies regularly with index 4 (see [2]). This may be
translated into a direct condition on the measure Q. As in [10], we shall
assume that

(1) | x*M(dx) < x,
0

which we shall need for the case 4 = y; this holds for all known examples of
generalised ‘convolution algebras.

THEOREM. Let L vary slowly: write

(2) c=if[1-QWldtt***=T1-Ag[v*| .‘("M(clx)]-l.
0 0
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Then

3) 1-®(P, ) ~ct*L(1/1) (t—0)
is equivalent to

4 1—P(x) ~ L(x)/x*  (x— x)
if 0<i<y, and to

(5) fu*P(du) ~ L(x) (x— x)
)

if .=y.
CoroLLaRY (Klosowska [10]). The measure P lies in the domain of
attraction of a stable law with index 4€(0, x) if and only if

(6) [1-P(xw)/[1=P(x)] ~u=* (x- x) forall u>0,
and of a stable law with index y if and only if
) xX[1=P(x))/{u* P(du) -0 (x— x).

0

2. Proofs.

LEMMA. The Mellin transform of the characteristic measure is regular at
least for 0 < Re s < x and is given by

8) i[Lx'M(dx) = r(1—s/p[v*s [ [1-R@O1de/e+] "
0 0

If (1) holds, then | x*M(dx) is regular for s =X
0
Proof. We have

} [1—-®(M, )]dt/t'** = } [1 —exp (—t¥/v*)]dt/e* **
()] 0 .

=T (1=A/x[A*]"
By HRubini’s theorem, the left-hand side is

[ 1=de [ [1- Q)] M(dx) = | x M(dx) { [1- Q0] duju +*
0 0 0 0

for 0 < A < yx; the result for 0 < Re s < x follows by analytic continuation.
When (1) holds, Klosowska ([10], Lemma 1) shows that

[1-Q(x)])/x*>A>0 (x—0),

1/4 = j'x’M(dx).
0
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Then I'(1—s/x) has a simple pole of residue 1 at s = y, and the integral
[[1-Q()]dt/t'**
0
has a simple pole at s = x of residue — A. Thus the right-hand side of (8) is
regular at s = x (with an appropriate choice of branch of v*, unless we fix v
=1 by choice of scale). Then [ x*M(dx) is regular at s =y (and, in
0

particular, is defined in some open strip containing s = y).
Proof of the Theorem. Define P*e 2 by

P*([a, b]) = P([a'%, b"/7)).

By Fubini’s theorem, we have

[ @ (P, vts*™ M(dr) = [ M(ds) [ R(vts"* x) P(dx)
1] o 0

P(dx) aj? Q(vts'* x) M (dx)
(W]

Qb 8§ Oty §

exp (—sx*) P(dx) = | exp (—sx) P*(dx),
0

the Laplace-Stieltjes transform p*(s) of P*. So

9) [ [1—@(P, o1s')] M(dt) = 1 —p*(s)
(V]

(cf. [14], proof of Theorem 8). That P((x, o)) ~ L(x)/x* and

e o}

1-®(P, t) = | [1-2(xt)] P(dx)

0
imply

1—®(P, )~ {A [ [1-Q(w)]duju'**}*L(1/1) (¢ —>0),
0
i.e. that (4) implies (3) in the case 0 < 4 < g, follows by Abelian results for
Mellin-Stieltjes convolutions as in [5], Section 2. In the reverse direction,

Abelian arguments as in Section 1 of [5] and [1] show that (3) for 0 <A <
implies

afﬁl —@(P, vxt'] M (dx) ~ [1 - (P, tV5]* } x* M (dx)
0 S o

~ ct¥X L(1/tV%)* | x* M (dx)
0
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as t =0, and similarly for 4 =y when (1) holds. Then, by (9),
(10) 1—p*(1) ~ ct¥* L(/t" %) 0* [ x* M(dx) (¢ > 0).
0

If 0 < A <y, then Karamata’s Tauberian theorem for Laplace-Stieltjes trans-
forms ([17], XIII, Sections 5 and 6) shows that (10) is equivalent to

(11) 1—P*(x) ~ cx™ 42 L'(x”’) v? ]E x* M (dx)/T (1—4/y),
0

which is (4) by the Lemma and the definition of P*. If A = x, then (10) is
equivalent to

x

fuP*(du) ~ L(x) (x— )
0
([4], Theorem A; n=0, a = =1), i.e. to (5) by the definition of P*.
In the case 0 < A <y an alternative procedure is available using the

Wiener Tauberian theory. The lemma shows that fx’M (dx) converges for
- V]

0 < Re s <y; this and the non-vanishing of I'(1—s/x) prove that the Wiener
condition

[[1-Q@1d/i* £0 (0<Res<y)
0

holds. If (4) holds (we may take 1—P(x)= L(x)/x*), then
1-®(P, 1/t) = — ojs [1-Q(x/t)]d(1 - P(x))
]

X

= — [ [1-2(x/0)]d {L(x)/x*}.

0

Abelian results as in. [5], Section 2, give
1-®(P, 1/) ~t"*L(0)A j [1-Qw)]u *du/u (t = o)
o

proving (3); the converse holds by Tauberian results as in [5], Section 5.

Proof of the Corollary. By the above, P lies in a domain of
attraction if and only if (10) Bolds for some slowly varying L and 1€(0, x]. If
0 < A < g, then (10) gives (11), whencé (6). For 4 = y, recall ([7], VIII, (9.16))
that if '

V(x)=1-P*(X), U(x)= I'uP‘ (du),
0



then

xV(x)
=—1+
U(x) T )j 0y
As above, (10) with A=y is U(x) ~ L(x). By Karamata’s theorem ([7],
VIII. 9, Theorem 1, and [13], Theorem 2.1) this holds for some slowly varying
L if and only if

tU“IUM@*l (x = ),

i.e. if and only if xV(x)/U(x)— 0 (x — 00), which is (7).

3. Examples.
1. Ordinary convolution. Here the convolution is given by

;I:f(x)(POQ)(dx) - [ £ (x+) P(dx) Q(dy).
0

Since 6] = 4, the characteristic measure M is d, ; the characteristic exponent
is x = 1, and the kernel is 2(x) = e~ *. The operation arises in the addition of
independent non-negative random variables. The Tauberian theorem (due to
Karamata, above) gives the equivalence of

1-P(x) ~L(x)/x* (x>, 0<i<])

and

1- ije""P(dx) ~T(1=A*L(1/t)  (t—-0).
0

We can pass from exp (—x*) to e”* by a change of variable, and the
equality

(12 DP(M, vt) = }Q(vtx)M(dx) =exp (—1t%)
0

shows that exp (—t¥) lies in the closed convex hull of the functions Q(ct),
¢ >0, where Q is the kernel of an arbitrary generalised convolution. We
summarise this by saying that ordinary convolution is subordinate to an
arbitrary (regular) generalised convolution.

2. Cosine transforms. Here the convolution is given by

if(;c)(POQ)(dx) - sg L4304/ (x= 3D Pl Q).

That the characteristic measure M is the truncated normal law

M(dx) = /2/n exp (—ix?)dx
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expresses the central limit theorem for the law 4(é, +6_,). The operation
arises in the addition of independent symmetric random variables. Here
x =2, Q(x) =cos x, and the Mellin transform is given by

21— 1s)
2T(3+%s)

s ¢ . lw
1- dx = — | sin xdx =
x”‘g( cos x)dx x‘;[ i

The Tauberian theorem giving the equivalence of

1-P(x) ~ L(x)/x* (x> ,0<4i<2),
o | /2 r(l %A) i (
l—i‘;COS IXP(dX)‘\m L ) (f—’O)

is due to Pitman [12].
3. Hankel transforms. The convolution given for v > —4 by

| f () (PoQ)(dx)
0
__re+y 72 1 ) DUV e 12
T | I SO+ 20y )1 a2 P 0 (dy)

was introduced by Kingman [9]. It arises in the addition of independent
spherically symmetric random vectors (in Euclidean n-space with n = 2(v+1)
when this is an integer). The characteristic measure M is a Rayleigh law

M(dx) =2(v+ 1) x2* L exp (—(v+ 1) x?)dx/T (v+1)

and arises in Kingman’s central limit theorem for random walks with
spherical symmetry [9]. We have y =2 and

Q(x) = A,(x) = T'(v+ 1 J,(x)/(}x)";

the Mellin transform is given by

s:f[l—/lv(X)]dJC/xl+s =T(1+vI(1-3s)/[2°T(1+v+1s)]
0

([15], p. 45 and 391). The limiting case v = —1} reduces to the cosine
transform above: A,(x) = cos x as v - — } (we write A_,,,(x) = cos x). Then
(12) reduces to

[J,(2x)x**! e dx = §t" e

o

([15], p. 394). The Tauberian theorem here was given by the author [3].
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By Sonine’s first finite integral for the Bessel function ([15], p. 373), for
u>v=—14 we have

r(u+1) ¢ 5 2yu-v-

w11 —u?)*"""1A,(ux)du,

F(V+1)F(u—V)£ ( ) ()

and so the Kingman convolution with parameter u > v is subordinate to that

with parameter v (in particular, ordinary convolution is subordinate to each
Kingman convolution, which is subordinate to cosine convolution).

A, (%) =

4. Kucharczak-Urbanik convolution. For n =1, 2, ... the function ©(x)
= (1 —x)% is the kernel of a generalised convolution [11]; here y = 1, M(dx)
=x"""2 exp(—1/x)dx/n!, and

s }9 [1-Q(x))dx/x'** =n! F(1—s)/T (n+1-5).
)

The Tauberian theorem here is treated in [5], Section 6.4.
The case n = 1 is relevant to work of Kendall ([8], p. 371) on stationary
random closed sets; here the convolution is given by

}J f(x)(PoQ)(dx) = Z } [1—min (u/v, v/u)] f (max (u, v)) P(du) Q (dv)+
o 0

T

| x73f(x)dxP(du)Q (dv).

max(u,v)

N

+2§ fuv
00
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