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Introduction. Let A be a positive self-adjoint operator on I?(MM) and let

Af = [ adEQ)

be its spectral resolution. Following a general idea of Stein [8], we say that the

Marcinkiewicz—Hormander multiplier theorem holds if for a number a and
me C*(R™)

sup A/ mP(A)| < oo

for j=0, 1, ..., a implies that
m(A) = [ m(A)dE(4)
V]
is of weak type (1, 1).

The Marcinkiewicz-Hormander multiplier theorem was proved by
A. Hulanicki and E. M. Stein for A being a sublaplacian on a stratified group
(cf. [2], pp. 208-215).

P. Glowacki studied a homogeneous convolution operator P on a general
homogeneous group, which proved to be useful especially in the cases where
there is no hypoelliptic homogeneous differential operator (cf. [4]).

E. M. Stein asked whether the Marcinkiewicz-Hormander multiplier
theorem holds for P. The answer to this question is in the affirmative, as is
shown in the present paper.

It is natural to ask about the lower bound for the number « of derivatives
required for the Marcinkiewicz-H6rmander multiplier theorem to hold. In the
case of sublaplacian, Christ showed (cf. [1]) that as in the classical Marcin-
kiewicz theorem the bound is Q/2, where Q is the homogeneous dimension of
the group under consideration. Recent results by W. Hebisch combined with
the methods we present here yield the same estimate for the number a of
required derivatives.
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Preliminaries. A family of dilations on a nilpotent Lie algebra A4~ is
a one-parameter group {,},>o of automorphisms of 4/ determined by

o.e; = the;,

where e,,...,e, is a linear basis for A", and d,,...,d, are positive real numbers
called exponents of homogeneity. The smallest d; is assumed to be 1.

If we regard A" as a Lie group with multiplication given by the
Campbell-Hausdorff formula, then the nilpotent Lie group A~ is said to be
a homogeneous group. The homogeneous dimension of A4 is the number
Q defined by

d(@,x) =t%dx, t>0,

where dx is a right-invariant Haar measure on A",
A distribution Ton A4~ which is regular, i.e., smooth away from the origin
and satisfies

(T, foo) =t <T.f>, feC(AH), t>0,

for some reR, is called a kernel of order r.

We choose and fix a homogeneous norm on A", that is, a continuous,
positive, and symmetric function x—|x| which is, moreover, smooth on
A —{0}, homogeneous of degree 1, and which vanishes only for x = 0.

Let

X;fix) = % ‘=0f(x~tej), j=1,...,n,
be left-invariant basic vector fields. If I = (i,,...,i,) is a multi-index, we set
Xf=Xe. .. Xf, =id,+...+id,.

Let us denote by S*(A4") the space of functions f such that
f, X'fe2(A4)

for every multi-index I.

Let y e CX(B,) be positive and equal to 1 in a neighbourhood of the
origin, where B, = {x: |x| < ¢}. If Tis a kernel of order r > 0, then for every
€ (0 <e<1) T decomposes as

T=T,+k,

where T= (Y0é,,) T is supported in the ball B, = B,, and k, is a smooth
function on A" (cf. [4]). Let us put

k,(x) = k,(x7Y).
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1. The semi-group generated by P". On a homogeneous group 4" let us
consider Glowacki’s distribution P defined by

fO-1x)

|x|Q+l

(1.1) (P,fy=lim |

e—0 |x|>¢

Q(x)dx,

where Q # 0 is a function homogeneous of degree 0, positive, symmetric, and
smooth on A4 —{0}. It is well known that P is a generator of a semi-group of
symmetric measures {u,} on 4. It has been shown by Glowacki [4] that this
continuous semi-group of measures has the following properties:

(1.2) du,(x) = h(x)dx, where h,e S®(A);
(1.3) 1X"h, ()] < Cp(1+]x)=27 17 M
(1.49) 18I XTh(x)| < Cr(t+|x)~2"M~4, j=1,2,...

Glowacki also proves that for every kernel T of order » > 0 and every natural
N, N > r, there is a constant C > 0 such that

(1.5) 1T < CUAPTAI+1f1)  for feCE(A),

where Tf(x) = (T, A.f), A.f(y) = f(xy), and ||| is the [?*-norm on A". More-
over, P is essentially self-adjoint and, for every natural N, S*(A) is a core for
(PN (cf. [4], Proposition (4.13)). Therefore, for each natural N we can
investigate the semi-group {T;},> of operators on I?(4") generated by R = P".
By the spectral theorem, this semi-group can be written as

(16) Tf = | exp(—A"0dEG)S,
0

where E is the spectral resolution for P.
By the spectral theorem and (1.5), we have

(1.7) IX' T < CUPM™Tf | + I 1)
< C( H""exp(—l"t)dE(l)f" + TIfII)
0
< C .
The Sobolev estimates and (1.7) give us
(1.8) I A0) < C,lIfIl.
By (1.8), we obtain
(L9) T.f(x) = faq,(x), where g€ Z(A).

Formulas (1.7) and (1.9) imply .
(1.10) q, = Tl/zq:/zeS“’(wV)-
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Note also that

(1.11) R = PV is a kernel of order N.

Due to the homogeneity of R we have

(1.12) q,(x) =t~ ¥Ngq, (8;- ~x).

]
The following estimate, which is our main goal in this paper, is an essential step
for proving multiplier theorems for P (see Section 5 below).

(1.13) THEOREM. For every N > Q there exists a constant Cy such that
lg,(x)] < Cy(1+|x)~27N.

2. Sobolev spaces. In this section we introduce Sobolev spaces associated
with the operator P and recall some inequalities we shall need later (cf. [3] and
[4] for details).

For me N we denote by S™ the completion of S®(.4") with respect to the
norm

Iy = I+ P)"f1].
One can prove that fe S™(A") for meN if and only if
fel’(#) and (I+P)"fel?(4)

in the weak sense. .
For me N let S™™(A") be the dual space to S™(A"). It can be seen that, for
every integer m, the operator I+ P is an isometrical isomorphism from S™*!
onto S™ and
S™*=8""

For M =0, 1,... and an integer m we denote by S™™(A4 xR) the
completion of S®(A" x R) with respect to the norm

[« o
lulfgm = § 1—3)Mu(:, )lGmdt.
il ¢]
(2.1) ProOPOSITION. For every integer m there is a constant C such that
Nl my+ N2 o.m+ 3y < C(II (R +0)tsl| o, m) + 1411 0,m)
for ue S*(A xR).

(2.2) LEMMA. For every kernel T of order re N and every integer m there is
a constant C such that

1T omy < Clflgsm  Sor fES®(AH).

Remark. The proof of this lemma presented in [4] is incomplete in the
case where 0 < m < r. It can be, however, completed, as was communicated to
us by P. Glowacki. We will not go into details here.
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(2.3) LEMMA. For every @eCX(A") and every integer m there is a constant
C which depends only on |¢|c- ) where r =r(R, m) is such that

IER, M Ifllmy < Clflm+n-1)
for feS®(A), where (M f)(x) = @ (x)f(x).
By Lemma (2.3) and Proposition (2.1), we obtain

(2.4) PROPOSITION. For every ¢, € C* (A x R) such that ¢ = 1 on the support of
@ and for every ¢ € C* (AN x R) such that ¢(x, t) = ¢y(t), $o€C (R), $ =1 on
the support of ¢ there are constants C, ¢ > 0 such that

loull1,m+ loullo.m+n < C(lQull0,m+ l@(R+0)ulo.m

+ ||‘P(‘I~’“)"‘Ee||(o,m)+ l@ullo,m+n5-1))»
where R = R, +k,.
3. Fundamental solution for ,+ R. Recall that R = P, where P is defined

by (1.1), is the generator of the convolution semi-group f— f*q, with g, S*(A4").
Let '

@3.1) CH, u = [ {qu u(-, O)dt,
0

where ueC®(A xR). It is not hard to see that H is a homogeneous
distribution on 4" x R, where J,(x, t) = (6,x, rt), and the degree of homo-
geneity of H is —Q.

(3.2) Remark. In addition, if N is sufficiently large, H is square-integrable in
every strip A4 x (—k, k), where k > 0. In fact, it is sufficient to observe that, by
(1.12),

gl = llg, e~ 92", ¢>0.

It is also easy to check (cf, e.g., [2], Proposition (1.68)) that H is the
fundamental solution for J,+R, ie,

(3.3) @,+R)H = 5.

4. Proof of Theorem (1.13). The proof goes along the example of [4]. Let ¢,
@ be smooth functions on 4" x R with compact support contained in 4" x R
—{(0, 0)} and such that @ = 1 on the support of ¢. Let ¢ be a smooth function
on A" x R such that @(x, t) = @,(t), §o€ C(R), @ =1 on the support of ¢. In
virtue of (3.3) and by the choice of ¢, we get

@.1) (R+8)H = 0.

Now, by iterating Proposition (2.4) (since convolution with k, is a smoothing
operator, cf. [4]) and applying (3.2), (4.1), (1.5), and the Sobolev inequality, we
obtain

4.2) @HeS (A x R) = () S*™N x R),

6 — Colloquium Mathematicum 58.1
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which implies that, for every I,
4.3) X'He L% (U),
4.4) 0X'HeL}. (U),

where U = A x R—{(0, 0)}.
As a consequence of (4.3), (4.4), and again the Sobolev inequality, we have

@4.5) X'HeC(U).
By homogeneity of X'H, (1.10), and (4.5), we get
4.6) IX'H(x, )| < C,t+|x)"¢~ "  for xeN', t > 0.

Similarly as in [4], by the fact that f— g,*f is a family of uniformly bounded
operators on I?(A4") with respect to te(0, s), s > 0, we can prove that, for every
I and every natural m,

4.7) sup | X'R™g,|| < 0.
t>0
Since 9, and X' commute, Rq, = —d,q, for t > 0, by (3.1), (4.5), (4.7) we get
lg.(x)| < Ct

in {(x, )e#" xR: 1 <|x] <2, te(0, 1]}. Now the argument of Folland and
Stein (cf. [2], Proposition (8.11)) establishes the theorem.

5. Final remarks.
(5.1) For a natural N let us denote by E,(w) the spectral resolution for R = P¥.
The resolutions E, and E = E, are related by
E(w) = Ey(@w") for Borel w = R*

and, consequently,
[mOVEQS = | m@GIMdE,(f
0 (4]

for me L°(R*) and feI?(.¥).

It is now easy to see that if the Marcinkiewicz-Hormander multiplier
theorem holds for P with the bound a for the number of derivatives, then it
holds for P with the same bound.

(5.2) Now, if we take N sufficiently large and use Theorem (1.13), the estimates
by Hulanicki [7], the method of Hulanicki and Stein ([2], pp. 208-215), and
Remark (5:1), we get the Marcinkiewicz-Hormander multiplier theorem for P,
but the number of required derivatives a is pretty large.

(5.3) In his recent paper, Hebisch [5] gives precise estimates for the number o of
derivatives required in a very general theorem of Marcinkiewicz-H6rmander
type, which applied to R = P¥ yield

ay > (Q/2+Q/2N)-21912N 4 ¢
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where ¢y < 1/2, and [Q/2N] is the integer part of Q/2N.
(5.4) Note that in the case where N =1, ie., R =P, we get
a, > Q21924 1/2.

(5.5) It is also proved by Hebisch [5] that ey —»0 when N tends to infinity.
Therefore, by letting N — co and by Theorem (1.13), Remarks (5.1) and (5.3), we
have the Marcinkiewicz-H6rmander multiplier theorem for P with the critical
number of derivatives o > Q/2.
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