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On the existence and uniqueness of periodic solutions
for difference equations of second order

by ZDZISEAW DENKOWSKI (Krakéw)

1. In paper [4] A. Lasota and Z. Opial have given following two
theorems concerning the existence and uniqueness of periodic solutions
for the differential equation

(1.1) Y 4Pt Y, ¥)Y =Q(t, ¥, ).

THEOREM 1.1. Suppose that the functions P,Q: R®* - R are periodic
with respect to the first variable (with common period w) and satisfy the
Carathéodory conditions and the inequalities

()< P(t,y,2), I1P(t,y,2) <ps(t)y, 0<i<w, y,zeR,

where the functions p,, p,: [0, 0] — R are integrable and such that

pit) 20, [p(dt=0, o p(dt<16.
. 0 0

Suppose, moreover, that

w

1
Iim — sup |Q(¢, ¥, %)|dt = 0.

n—o0 N e lyl+|2l<n

Then equation (1.1) has at least one w-periodic solution.

THEOREM 1.2, If an w-periodic function p: R -~ R (p # 0) is inte-
grable over the interval [0, w] and satisfies the inequalities

[owa=0, ofpma<is,
0 )

‘then the equation ‘
(1.2) y'+p)y = q(@)

has exactly one m-periodic solution for each w-periodic function q: R - R
tntegrable over the imterval [0, w].
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The aim of this paper is to give analogues theorems for the difference
equations

(1.3) VAo, +P(i, v, Av)v; = Q(i, v, Av,), icZ
and
(1.4:) VA‘D{ +i)i'0.,' = él” 1eZ

(where P,Q: Z xR* - R, p;, g;<R for ieZ), and to consider the possi-
bility of approximating the solution (if it is unique) of differential equa-
tion (1.2) by the periodic solutions of appropriately defined difference
equations of the form (1.4).

This last problem will be solved in Section 4. In the proof of the
approximation theorem we shall use two lemmas given in Section 2 and
Lemma 1 of paper [2]. The existence and uniqueness theorems for the
solutions of difference equations are contained in Section 3. The proofs
of these theorems are based on Theorem 4.1 and Theorem 4.2 of paper [1],
which are discrete analogues suitable theorems for the continuous case
‘given in [3].

Throughout the paper we will utilize notions and notations which
are explained in detail in paper [1], [2]. '

Furthermore, we will assume in the sequel that the coefficients of
the difference equations (1.3) and (1.4) satisfy, respectively, the periodic
conditions

(1.8) PG+n,w) =P@,w), Q@+n,w)=Q(i,w), icZ, weR’,

(1-6) ﬁi+n = f’is &i+n = aiy teZ.

By a periodic solution of the difference equation (1.3) or (1.4) (with
periodic coefficients) we will mean any vector veR? whose coordinates
fulfil equations (1.3) and (1.4), respectively, and the following conditions
of periodicity:

(1.7) - Vipn =V, teZ,

Finally, the author wishes to express his heartfelt thanks to A. Lasota
for suggesting this paper and for valuable ideas.

2. We start with two lemmas. The first one is a discrete analogue
of Gronwall’s well-known inequality and the second one gives an a priori
estimation of the minimum of the periodic solution of equation (1.4)

LeEMMA 2.1. If the vector veR™*' satisfies the inequality

i—1

(2.1) il < C+ D aylygl, §=0,...,m,
j=0
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with mon-negative coefficients a;, then the estimaie
i-1
(2.2) o < C-exp (D @), i=0,...,n
=0 '
un

holds true. (We set 2 =0 if u<w)
i=vp
Proof. Notice that it suffices to consider the case of a; > 0 (¢ = 0,...
..., n) because in the remaining cases we can repeat: our reasoning
for a; =a,+¢ (6> 0,i=0,...,n) and then pass to the limit with ¢ — 0,
Setting for ¢ =0,...,n
_ -1
w; =0+ 3 vl
we have =0
Awi — a; W, < 0.

i
Multiplying both sides by exp(— 2 a,-) and using the elementary

inequality j=0
o < e —1

for t < 0,

i-1
A(wi-exp( — Z{: aj)) < 0.
j=

Since w, = C, the last inequality implies

we obtain

i-1 '
w.;-exp(—Za,)gO’, t=0,...,n,
j=0

which immediately gives the required inequality (2.2).

LEMMA 2.2. If a vector ve RZ is a periodic solution of difference equa-
tion (1.4) satisfying the conditions

(2.3) ' v, #0, ieZ :
and if the coefficients p; (i<Z) fulfil the additional inmequality

(2.4)

g

;> 0,

1

I
-

then the estimation

2 \g:|
(2.5) min [v;] < '=nl

Y &

is valid. =1
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Proof. It is evident that the coordinates of » satisfy the difference
equation
Vav, . q;

(2.6) R ket i=1,...,m.

Summing these equations, we obtain

N v - 4
é’ (V Av;) 2

Hence, applying the summation by parts formula (see [1], [2]),
we get, by the periodicity of v, the inequality

n

2 = 1min |v| Z'q‘l’

I<isKn

which completes the proof.
3. We now sate two theorems which are discrete analogues of Theorem
1.1 and Theorem 1.2.

THEOREM 3.1. Suppose that the functions 13, é in the difference equa-
tion (1.3) are continuous, periodic and satlisfy the conditions

3.1 llm -— su i, w)] =0 weR?
(3.1) leé»k 6, w) (weR?)
and . o _ B

(3.2) Pi1\<~P(i1-w)r [P (%, w)| < Py . (ieZ, weR?),

where the sequences {P; )iz, {Pic)icz of real numbers fulfil the inequalities

. ! n k(3
(3.3) . D=0, n)'p;<16,
i=1 i=1

 Moreover, suppose that there is an index jeZ such that Pi = 0. Then
the difference equation (1.3) has at least one periodic solution.

Proof. First of all notice that the existence problem of the periodic
-solution of equation (1.3) is equivalent to the existence problem of the
solution of the difference equation

(3.4) VAo +P (i, vy, Av)v, = Q(iy vy Avy), i =1,...,m,
satisfying the boundary condition
(3'5) : Vo = Up, V1 = Vpyrs

We can write problem (3.4), (3.5) in the vectorial form (see [1])
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(3.6) Agu; = fliyu);, 1 =1,..,mn,
(3.7) - Lu =0,
where

-2 1 2 : 2
= (u!, u?)e(RH)""?, ;= Vyy U = dv; (1 =0,...,m), Uy, =0.

The multi-index s = (s,, 8,) (8;¢{—1,1}) is of the form s = (1, —1),
and therefore :

Agu; = (Aug, Vui) (i =1,...,m), d,u, = (dug, 0), Aaun+1 = (0, 0);
the map f: {0,...,n+1} xR? - R? is given by

(u3, 0), 1 =0,
Sty uy) = (u%a_f)(i’ “i)u}'i‘Q(":"ui))’ i =1,...,mn,
(0,0), i =n+1.

Finally, the linea,r'opera,tor L: (R - R? is defined as follows: -
(3.8) ' Lu = (Ug—Up, Uy — U 1)

Side by side with equation (3.6) we consider the following equé,tion
with a multi-valued right-hand side (the contingent equation):

(3.9) ) Au;eF(i,u), i=1,...,m,

where t]fe map F: {0,...,n41} xR? - cf(R?) is given by

(uF, 0), . i=0,

{(vF,2) : pyut <2 << ppuj} i wj>0, i=1,...,n,
= = u < 0,

(0, 0), : ‘ 1 =n+1.

F(iyu) =

Here cf (R?) denotes the set of all convex and closed subsets of R2.
It is easy to observe that

(3.10) lim 2 Z sup 8(f(i, w), F(3, w)) =

lwl<k

where 8(x, B) denotes the distance from the point z to the set B.
According to the generalized Fredholm theorem (see [3], [1]) in order

to prove the existence of solutions of problem (3.6), (3.7) it is sufficient

to show the uniqueness of the solution of problem (3.9), (3.7).
Suppose w« satisfies (3.9) and (3.7). Setting '

1 » .
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we confirm that, under the notation of paper [2], the vector » is a solu-
tion of the difference equation

(3.11) V.d,v;+p;0, =0, 1ieZ,
where
—VA'U,- .
p; = hzvi - if Y, #* 0,
0 ii ’v,- —- 0
and

T = {li}iezy U =1Dh

(h denotes an arbitrary positive real number). Moreover, we have

n

n n n
2p,1<h22p1-, h22|P¢|€2P{2
i=1

=1 i=1 i=1

and consequently by assumption (3.3) and the assumption concerning

Py We-obtain
n n 16
D p=0, b Npd<—,  p#0.
i=1

f=1

These inequalities imply (see Corollary 4.1 im [2]) that » = 0 (i.e. v; = 0
for 7¢Z), which completes the proof of Theorem 3.1.
In a similar way we can prove the following

THEOREM 3.2. If the coefficients D;, q; (i< Z) of difference equation (1.4)
are periodic and salisfy the inequalities

(3.12) D B:=0, ndpl<16, P #£0,
=1

i=1
then equation (1.4) has exactly one periodic solution.

Proof. This theorem is an immediate consequence of Corollary 4.1
of paper [2].

4. We shall now consider the problem of approximating the periodic
solution of differential equation (1.2) by periodic solutions of appropriately
defined difference equations of the form (1.4).

The existence of w-periodic solution of differential equation (1.2)
is equivalent to the boundary value problem

(4.1) y'+pMy =4q@), ¥(0) =y(w), ¥ (0)=y(w).
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Consider the sequence (n =1, 2, ...) of the boundary-value problems
of the form:

(4.2) VAR +hpio? = hag?, i=1,...,n,
(4.3) Vg = Vp, VI = Vpiny
where

(4.4) h,=w/n, f =ih,, p7=p{) & =q) (i<Z).
Let us put
(4.5) Py = hapt, @ = hagl.

We are now in a position to prove.

THEOREM 4.1. If the continuous functions p,q: R — R are periodic
(with w-period) and the function p (p # 0) satisfies the inequalities

(4.6) [pa>o0, ofp@a<is,
0 0

then

1° for sufficiently large n there is exactly one solution v"¢R? of prob-
lem (4.2), (4.3),
2° lim |of -yl =0 (37 = y(&)),
n—>o00
where y denotes the unique periodic solution of the differential equation (1.2).
The convergence in condition 2° is uniform with respect to 1.

Proof. Note that the functions p,q satisfy the assumptions of
Theorem 1.2; so there is exactly one periodic solution of differential
equation (1.2).

It is also easy to see that the coefficients p7, g7 fulfil (for fixed n)
the periodicity condition (1.6) and, for sufficiently large », inequalities
(3.12). .
Indeed, the integral inequalities (4.6) imply (for sufficiently large =)
the following inequalities for approximation sums of suitable integrals.

n n
(4.7) ha D 2> 0,  nhl D'ipH <16,
i=1

i=1

which imply in turn inequalities (3.12). Thus, for such n, problem (4.2),
(4.3) has by Theorem 3.2 exactly one solution and the proof of 1° is
completed. Now we pass to the proof of 2°.

By the mean-value theorem from (1.2) we have

(4.8) Vay; = —ﬁ?y?+&?+h§,6}", i=1,..,mn,
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where (for ¢ =1, ...,n)

8 = (P(EN Y (N —p Y (D) +(a(E) —q (1)
and

& e(tiiy, 7).
It is casily seen that

(4.9) . lim 6:" =0
and
(4.10) 8p =08  (icZ).

Subtracting equation (4.8) from (4.2) and setting
@411) B —of—y? (=1,..,n), .= (iZ),
we obtain the equation _
(4.12) VAZR 425 = —RL 6P, ieZ,
which in view of Theorem 3.2 has exactly one periodic solution. Setting

z!—min |2}| if min 2] =2, for some k,

1<i<n 1<jisn
(413) =+ =1., . ivm c i~ e
'+ min |gf| i min |g]'| = —2, for some k,
1<i<n 1<i<n

end changing the numberiﬁg, if necessary, we obtain the difference equa-

tion

(4.14) VA +plel = Berl, ieZ

(where 77 = -+ p} min [?}'| — 6}) such that for its (unique) periodic solu-
1<j<n

tion we have

(4.15) =0, 2#£0.

It easily follows by Lemma 2.2 that

n
> 1831
Pl < max p ()] — 14}
[0, h n
oxe
and in consequence, by (4.9), we get
(4.16) lim 77 = 0.

n—-o00

We now consider a piece-linear function ¢,: R — R which has as
its graph on plane R* the polygonal line with points .(t?, 27) as vertices.
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It is easy to see (compare the proof of Theorem 1 in [2]) that ¢, has
at least one zero in the interval (i,,¢,). Denote by t;‘n the smallest zero
of ¢, in (¢,,?,) and suppose that

’
tkﬂ‘(tz,,—n l’c‘ﬂ)

(by (4.15) it has to be k, > 1). We extend the net 7, = {t{'};.z (with &
given by (4.4)) adding t}cn, so that the extended net is of the form

v = {t}iez)

where
i i< k,—1,
' t':' = t;cn t = kn’
., 1>k, +1.
Setting
P t=1,...,k,—1,
ﬁi =10 i = kn’
P, i =k,+1,...,m,
and
T? i=1’ .o-,k’._l’
;1’ =10 i = kn!
and

s n n n n
Z =(20y 0y 2,1y 0,25 5.0y 23),y
we easily confirm that the vector
' = (4 .oy 2 _1, 0) e RFnY1

(considered as the vector of R? with the remaining coordinates equal
to zero) is a solution of the difference equation

Vol oo tpa—7 =0, 4=1,..,k—1,
atisfying by (4.15) the condition
ii=0, 3 =o.
Similarly, the vector
2" = (0,2 ..., 20) R nt?

is a solution of the difference equation

Vol +D —1, =0, & =Fko+1,...,0,
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satisfying, by the periodicity of 2" and (4.15), the condition

27

Zrr )
4, =0, 2, =2 =0.

Hence, by Lemma 1 of paper [2] (formula (3.3) in the case of vector 7
and formula (3.4) in the casc of vector z’’), we obtain

Kp—1

(4.17) g =h, D) Tln(bg;—7), 4=1,..,k—1,

. ji=1 .

‘ i n .

(4-18) Fptr1—i = hn 2 P:-:-ll—jkﬁﬂ 1(pn+1-—3 n+1—4 n+1—j)1
I=kp+1

i =1,oon"n/_kno
Since
<3, —%)y Initisfma i< Hepn—t,)

(see (3.6) in [2]), we easily get from (4.17) and (4.18) the following esti-
mations:
k-1

e, —1
(4.19) max || < h, —2—° ( max Iznlz lp5 | + Z |75 l)
1<t<ky 1 4 1<i<ky—1

n—1 n—1

t,— 1 .
(4.20)  max |z;'|<h,,~"—"( max [ §I|p;‘|+ S‘p-;q),

kp<i<n-1 4 kp<ism—1 o J?k/

- 'n ~—*n

Let us observe now that the second ineguality in (4.6) implies that there
is a positive number ¢ such that

(7]

o [ Ip(t)dt < 16—,
0

and in consequence for sufficiently large » we have

n
nhl D |p}l < 16—5/2.
n=1

Thus, for such =, at least one of the inequalities

ky, n
(421)  kuhy DIPFI <4—8/8, (n—k)hn D' Ipfl<4-3/8
i=1 i=kp+1

is fulfilled. Without any loss of generality we may assume that the
first one is true for each sufficiently large n.
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Under this assumption, using the obvious inequality

b, —to < Kn* by,
we obtain from (4.19)

kp k,
4,22 max |2% < %k, Rl MI1—1% B2 n\-1
( ) 1<ig<k, -1 11\% n ”;lfl( 1k, njgl ijl)

In order to estimate [2}| for ¢ = k,, ..., » we shall use Lemma 2.1,
To this and observe that from (4.14) it follows that the vector

(%5 y «eny Zp) e R

(as the vector of R? with the remaining coordinates equal to zero) is
a solution of the difference equation

V.d, 2} +pia =i, i=1,...,n—1.

Therefore its coordinates are given (see formula (2.5) in [2]) by

-1

(4.23) g =+ (—s)h A2+ B, D (—p}d+1])(E—]),

Jmg+1
where s denotes a fixed index of the set {0,...,n—1}, i =8,...,n—1,
Assume that in (4.15) we have
2r >0

(the case of 2] < 0 is similar) and that for some index s, of {1, ..., k,—1}

%y = max [Z].
1<i<ky—1

Then we have
Afz:o < 0’

and we may write, by (4.23) (with s = s,) and (4.22), the following esti-
mation:

(4.24) |7
-k kp i-1 i—1
< dlalin 3171 (1 —dkaBl D) 171)7 0k 3N F 1+ nk, 1971
=1 J=1 J=1 J=1

for ie{k,,..., n} such that 2 > 0.
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However, for te{l1, ..., n} such that 27 < 0 we obtain by (4.23) (with
¢ = 0) and (4.15) (with 2z, > 0) the estimation

(4.25) 7 <k} 2 771+ nh, 2 FAAR

j=1

Thus, setting

n kn n
O = Yuby Y171 ( 1~ 1k ki 3T 1DFI)" + by 3717,
F=l Jm1 Jm1
we have the inequality
i-1
21 < Cut D n2 B3I, 4 =1,...,n,

J=0

which immediately implies, by Lemma 2.1 (a discrete analogue of Gron-
wall’s inequality), the following estimation:

(4.26) 27 < Gexp(nh”le,l) it =1,...,Mm.

7=0
But from (4.4), (4.16) and from the assumption that the first of the ine-
qualities of (4.21) is valid for sufficiently large m, we obtain
lim C, =0,

n—=0
i-1

hm exp (fmh2 ZIPH) exp(wf Ip(2) ldt)

g0 by (4.26) we confirm that
(4.27) lim |¢7] =0,

fi—=00
and this convergence is uniform with respect to i.
Finally, from Lemma 2.2 it follows that

n
min |27| < (B2 S‘w | )t
1<i<n ( )(g ‘)
for # given by (4.11).

This implies by (4.9), (4.4) and (4.6) that

n

lim (min [3*)) < (lim -“12|a;=|)fp(t)dt —0.
n—oo 1<i<n no0 M = 5
Hence, by (4.13) and (4.27), we immediately obtain part 2° of the
theorem. Thus the proof of Theorem 4.1 is completed.
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