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1. Introduction. If (X, d) is a metric space, then a function f: X — X
is called a coniraction mapping (with respect to the metric d) if and only
if there is a real number a, 0 < a < 1, such that d(f(2),f(y)) < ad(z, y)
for all ¢, y eX. The real number a is called a Lipschitz constant for f. The
following stability result was proved in [3], Theorem 2, and extended
in [2] and [4]:

THEOREM 1.1. Let (X, d) be a locally compact metric space. Then

(v) #f fi: X — X 18 a contraction mapping with fixed point a, for each ¢ = 0,
1, 2, ... and if the sequence {f;}7>, converges pointwise to f,, then the sequence
{a;}32, converges to a,.

This result was principally motivated in [3] by my desire to determine
(see Section 2 of [3] and Theorem 2.5 in this paper) certain kinds of map-
pings of cartesian products which have fixed points. It has also been
applied to the area of stability of solutions to differential equations (see,
for example, [3]) and to various types of problems in functional analysis.

Over the past several years, I have become interested in (y) as a prop-
erty “in itself”. The purpose of this paper* is to formally consider (y)
a8 a property of spaces and to pose a number of problems concerning ().
We will state some theorems and indicate some proofs, but only when
they enhance or are related to problems which are posed.

2. We say that a metric space (X, d) has property ¢, written (X, d)
e prop(c), if and only if (X, d) satisfies (y). We point out that property ¢
is not, in general, a topological property but depends on the metric. This
is because the functions which are contraction mappings on a space may
change (even) with a change to a topologically equivalent metric. We
also point out that completeness is not an a priori requirement in order
that we consider whether or not a space has property c. The classical
result of Banach guarantees that a contraction mapping defined on a com-

* This work was partially supported by a Loyola Faculty Research Grant:
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plete space (into itself) has a (unique) fixed point; however, in determin-
ing whether a space has property ¢, we only “use” those contraction
mappings which have fixed points.

At first glance, it might not be clear that there are metric spaces
which do not have property c. However, we gave classes of Banach spaces
not having property c in [3] and we will give other examples in this paper.

Theorem 1.1 can now be restated as follows:

THEOREM 2.1. If (X, d) i8 a locally compact metric space, then (X, d)
e prop(c).

It is not difficult to construct some specific metric spaces with
property ¢ which are not locally compact. The following theorem yields
a class of such spaces:

THEOREM 2.2. Any separable metric space can be remetrized with a topo-
logically equivalent metric so as to have property c.

The basic idea in proving Theorem 2.2 is to embed the space in the
Hilbert cube and take the induced metric; the resulting space is totally
bounded. Since pointwise convergence of a sequence of contraction map-
pings in a totally bounded metric space is equivalent to uniform con-
vergence, it follows from Theorem 1 of [3] that a totally bounded metric
space has property c.

ProBLEM 2.1. Can any metric space be remetrized with a topologically
equivalent metric so as to have property c? (P 833)

Theorem 2.1 can obviously be interpreted as saying that property c
is a topological invariant for the class of locally compact metric spaces.
Since there are lots of separable metric spaces which do not have property c,
Theorem 2.2 seems to suggest that the class of metric spaces for which
property ¢ is a topological property cannot be “too large”. We have the
following

ProBLEM 2.2. For what metric spaces is property c¢ a topological
invariant? Is it true, in fact, that if a metric space has property ¢ with
every topologically equivalent metric, then the metric space must be
locally compact? (P 834)

Theorem 2.2 shows that local compactness is, for the class of all
metric spaces, an extremely strong sufficient condition for property c.
However, for the class of Banach spaces, the relation between local com-
pactness (i.e., finite dimensionality) and property ¢ seems quite different.
In [3], Theorem 3, the following result was proved:

THEOREM 2.3. A separable or reflexive Banach space s finite dimensional
if and only if it has property c.

This result leads to the following problem, which we consider to be
the most interesting problem mentioned here:
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PrOBLEM 2.3. Does property ¢ characterize finite dimensionality for
the class of all Banach spaces? Of course, in view of Theorem 2.1, this
question reduces to: If a Banach space has property ¢, must it be finite
dimensional? (P 833)

The techniques in [3] used in proving Theorem 2.3 stated above
lead to the next two questions which are auxiliary to Problem 2.3.

ProBLEM 2.4. I8 it enough to consider affine maps to determine if
a Banach space has property ¢? (P 836) By an affine map we mean a trans-
lation, by a vector, of a linear map of the Banach space.

PrOBLEM 2.5. Determine whether or not, for every infinite dimensional
Banach space, there is a sequence of linear functionals of norm one which
is weak * convergent to the zero linear functional (P 837).

If there are always such linear functionals, then the methods in [3]
can be used to solve Problems 2.3 and 2.4 affirmatively. We wish to men-
tion that Professor R. B. Fraser, Jr., and Professor Dorothy Stone have
communicated to the author some examples of non-separable, non-reflexive
Banach spaces for which there is such a sequence of linear functionals.

Problem 2.3 can clearly be restated for the more general class of metric
linear spaces. However, we do not even know the answer when the metric
linear space is separable. In particular, let (s, ¢) denote the countable
product of real lines, where

1 | — Y4l
w — —_—
o, y) —‘-El 2 14 T

for each z = (2y, 3y ...)y ¥ = (Y1, Y2y +..) €8.
ProBLEM 2.6. Does (8, ¢) have property ct (P 838)

Since s is a product space, Problem 2.6 suggests a more general
problem. Take as the metric for a finite or countably infinite cartesian
product of metric spaces any one of the standard product metrics. Then
we have

ProOBLEM 2.7. Does the cartesian product of two or of countably
infinitely many metric spaces with property ¢ have property c¢? Does
the countably infinite product of locally compact metric spaces have
property c? (P 839)

We do not even know if the cartesian product of a metric space
with property ¢ and a locally compact metric space has property ¢. We
do have the following result:

THEOREM 2.4. The cartesian product of a complete metric space (X, d,)
with property ¢ and a compact metric space (Y, d,) has property c, provided
the metric d chosen for the cartesiam product satisfies
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(a) dl((w7 z)) < d((w, Y), (2, w)) Jor all (z,y), (2,w)eX X ¥,

(b) d((“’" Y), (2, ?/)) < dy(z,2) for all (z,9),(2,y)eX X X.

Now we turn to property c as it relates to subspaces. Using Lipschitz
extensions of contraction mappings, it is not difficult to prove that a dense
subspace (with the inherited metric) of a complete metric space with
property ¢ has property c; this result has been proved, independently
of the author, by Professor Norman Rehner. Again, using Lipschitz
extensions, together with appropriate modifications of the proof of Theo-
rem 2 in [3], it follows that any subspace of a locally compact metric
space has property ¢ (the fact that a totally bounded metric space has
property c can be viewed as a special case of this; cf. the lines immediately
following Theorem 2.2).

Several questions on the relation of spaces, subspaces and property ¢
arise.

(1) If a subspace of a (complete) metric space has property ¢, does
its closure? In particular, does the completion of a metric space with
property ¢ have property c?

(2) If A and B are two subspaces of a metric space and if A eprop(c)
and Beprop(c), then must (4UB)eprop(c)?

(3) If a metric space has property c, then does every subspace?

We now give an example which shows that the answer to questions
(1), (2) and (3) is no.

Example 2.1. Let H be the Hilbert space of all square summable
sequences of real numbers with the usual distance d. Let 6 be the zero
vector in H (i.e.,, 6 =(0,0,...,0,...)) and, for each n =1,2,..., let
e, =(0,0,...,0,1,0,...), where the 1 appears in the n-th coordinate,
and let J, = {t-¢,: 0 <t<1}. We write z < y for # and y in a given J,,
provided the n-th coordinate of z is less than the n-th coordinate of y.
Now, for each n =1,2,...,let X, c J,, X, = {0 = 2} < a7 < ... < gy,
= ¢,}, be a finite number of points “contracting out” towards e, (i.e.,
(@}, 1, Thy) < d(af, 27y,) for all j =1,2,..., k(n)—2) such that d(0, «7)
< 1/n. Let

with the metric for X obtained by restricting d; we denote the restricted
metric for X again by d. The metric space (X, d) does not have property c.
To see this, first let a;: X — X;and f;: X; > X, for each 4 = 1,2, ... be
given by

V] if T X‘,

b i < k(4
(@) = . and  fi(af) =1 Y ! ('.)’
v if veX,, T, ) = k(2).
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It is easy to verify that, for each ¢ =1, 2, ..., d(a;(2), & (¥)) < d(w, y)
for all #, ¥ eX, and B; is a contraction mapping. Hence, letting f; = ;0 o;
for each ¢ =1,2,..., we see that each f; is a contraction mapping with
fized point @y = ¢;. Let f,: X —X be given by fo(z) = 6 for all » «X.
Since {r3};., converges to 0, it is not difficult to see that the sequence
{f:}i~, converges pointwise to f,. From this we infer that (X, d) does
not have property ec. Since X — {6} is locally compact, (X — {6}) eprop(c).
The negative answer to questions (1) and (2) above-mentioned follows
now easily. To see that question (3) has a negative answer, we add some
points to X to obtain a new space Y with property ¢. We will only describe
how to form the space Y, leaving all other details to the reader. For each
n=1,2,...,let Y, be a finite number of points in J, such that Y, o X,
and the points in Y, “contract in” towards 0. Let

o
¥Y=U 7Y,
n=1

(with the metric for H restricted). Note that, since X is a closed subspace
of Y, property c is not hereditary for closed subspaces.

ProBLEM 2.8. What conditions, besides local compactness, imply
that every (closed) subspace of a metric space with property ¢ has pro-
perty c? If every subspace of a metric space (X, d) has property ¢, then
what must be true about the space (X, d)? (P 840) We point out that
(X, d) need not be locally compact.

As mentioned in the introduction, the principal motivation for prov-
ing Theorem 2 of [3] was to determine certain kinds of mappings of
cartesian products which have fixed points. Recall that a space is said
to have the fixzed point property if and only if every continuous self-map
has a fixed point. The same proof as that given for part (2) of Theorem
4 in [3] proves the following more generally stated result:

THEOREM 2.5. Let (X, d,) be a complete metric space, let (Y, d,) be
a melric space with the fixed point property, and let f be a continuous function
from X X Y into X X Y, where the metric d for X X Y satisfies (a) and (b)
of Theorem 2.4. If (X, d,) has property ¢ and if f i8 a contraction mapping
in the first variable, then f has a fixed point. '

We remark that this result, in general, would be false without the
requirement that (Y, d,) have the fixed point property (see [3]). However,
we do not know the answer to the following problem which was posed
to the author by Professor R. B. Fraser, Jr. (}):

PrOBLEM 2.9. Let (X, d,) and (Y, d,) be compact metric spaces and
let d be a metric for X x Y which satisfies (a) and (b), with respect to

(1) Some progress on the problem has recently been made by Professor Haskell
Cohen (added in proof).
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both d, and d,, of Theorem 2.4. If f: X Xx Y>X X Y is a contraction
mapping in each variable separately, then does f have a fixed point?

Of course, if either of the coordinate spaces has the fixed point prop-
erty, then the question has an affirmative answer by applying Theo-
rem 2.5. R. B. Fraser, Jr., has pointed out that if the metric d for the
product space is taken to be the “taxi cab” metric (i.e., d((a:, Y), (2, w))
= d,(x, 2)+d,(y, w)), then the question has an affirmative answer because
the conditions on f imply, in this case, that f is contractive [1] and a result
due to Edelstein (see 3.1 of [1]) can be applied.

Theorem 1.1 of this paper remains valid if the word “contraction”
is replaced by the word “contractive” (see Theorem 1 of [2]). Let us say
that a metric space has property ¢’ if and only if it satisfies (y) for the
more general contractive mappings. The problems mentioned in this
paper are also unsolved with property ¢’ replacing property c. In addition,
we have the following problem: '

ProBLEM 2.10. Is there a metric space with property c¢ which does
not have property c¢’'? If so, then for what classes of metric spaces are
these two properties equivalent? (P 841)

We conclude this paper with a problem not involving property c. In [5],
Smart observed that if a compact metric space has the property that the
identity mapping is a uniform (or, what is equivalent, pointwise) limit of
contraction mappings, then every non-expansive mapping has a fixed point.

ProBLEM 2.11. If a compact metric space (X, d) has the property that

(*) the identity mapping is a pointwise limit of contraction mappings,
then must ﬁ”(X , Z) = 0 for all n (where I:I”(X , Z) denotes the n-th Cech
cohomology group of X over the integers Z)? (P 842)

We point out that a compact metric space satisfying (*) must be
connected.
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