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Abstract. In this paper we prove that for any two cventually positive and bounded solutions
of the nth-order, nonlinear, forced differential equation with two middle terms, their difference is
oscillatory and tends to zero. In a more special case, we prove that the equation has at most one
eventually bounded positive solution.

1. Introduction. This paper continues the study of the nonlinear delay
equation of the type

(%) X 4 p(6) x4 q(n)x" "2+ H(r, x(g(0)) = Q(0).

It is proven that under certain conditions for any two eventually positive
solutions u(t) and v(t) of (*), the difference u(t)—v(t) must be oscillatory and
tending to zero. Under different assumptions, if g(t) = 0 and g(t) = t, we prove
that the equation has at most one eventually positive solution. These results,
with the assumptions somewhat parallel to the ones in [6] and [10], extend
(31, [4], [5] and [8], where p(t) and ¢(t) were assumed to be zero and g(t) = .
Examples are given throughout the paper.

2. Preliminaries. We denote by R the real line and by R, the interval
[0, o0). Let (E) denote an nth-order differential equation or inequality. By
a solution of (E) we mean a function x(t), te[t,, «©) < R,, which is n times
continuously differentiable and satisfies (E) on [t,, c0). The number ¢, > 0
depends on the particular solution x(t) under consideration. We say that
a property P holds eventually, or for all large t, if there exists T> 0 such that
P holds for all t > T. We denote by C"(I) the space of all n times continuously
differentiable functions f: I —R. We write C(I) instead of C°(I).

In the content of this paper we consider equation (x) where n is an even
integer, n > 4, and the functions satisfy the following conditions: - '

(A) peC*(R,), qeC(R,) where p(t) <0, q(¢) =20 and ¢q(t)—p'()/2 < 0;
(B) ye C(R,) where g(t) <t with Iimg(t) = + o0, and eventually in-

1=

creasing;
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(C) H: R, x R— R is continuous, H(t, u) > 0 for u > 0 and increasing in u;
0 .
(D) H*(t, ) = 5;” (¢, u) is continuous, nonnegative and increasing for

u>0;

(E) the equation u”+p(t)u’'+¢q(t)u = 0 is disconjugate on R, (we recall
that an nth-order diflerential equation is said to be disconjugate on an interval
I < R_ if no nontrivial solution of it has more than n—1 zeros on I);

(F) the equation

S +p(r)S" "V +q(1)S"2 = Q)
has a solution S(t) such that lim infS(¢) = 0;

{2

(G) for any t, > 0 and any positive constant k we have
[H(t, hydt = + 0.
to

We can note at this point that for example the equation
X —(1/8)x'3) 4+ 1)262)x® + (1 /1) (x (¢ — 3))* = 852t~

with t > 1 satisfies all of the above conditions. We might note that here
S(@t) = 1/t.
From Kiguradge’s paper [7] we quote

LEMMA A. Let xeC"[t,, ) be given with t, > 0. Assume further that
x"()x() <0 for t>ty, Then there exist T>=t, and an integer
m, 0 <m < n—1, such that for t > T we have

x®O)x() =0, k=0,1,..., m
(=D)"*"*x®()x() <0, k=m+1,m+2,...,n
The integer m is even if n is odd and odd if n is even.
Next, from Kosmala’s paper [9] we quote

LEMMA B. If x(t) is an eventually positive solution of (x), then either
(x-S >0,t>T,j=0,1,....,n—1, for some T>=0, or (x(t)
—S®)" 2 < 0 eventually.

3. Main results

THEOREM 1. If x(t) is an eventually bounded positive solution of the equation
(*), then

(=1 (x(—=S®)? <0 with lim(x()—S@) =0

g+ 0]

for i=0,1,...,n=2, t > T for some T=0.
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Proof. Let x(t) be a bounded positive solution of (x) for t >ty = 0. Set
u(t) = x(£)—S(¢), t > t,. Then (*x) becomes

3.D u(e)+ p()u®~ D (e)+q(t)u"~ 2 () + H(t, u(g(e) +S(g() =

By Lemma B there exists t, > t, such that u”"~2(t) <0 or u“ () > 0 for
j=0,1,..., n—1. Thus u(f) must be of one sign eventually. We observe that if
all the derivatives of u(t) are positive then u(t)— + oo as t - oo0. Since S(t) is
bounded, we would have lim x(t) = + o which is a contradiction to the

t— oo

boundedness of x(t). Hence we can only have the case that u™~?(t) < 0 for
t>t,. To show u(t) is negative eventually, we assume the contrary for
t>1t,>t,. Since n is even, we know that u'(t) > 0 for t > t; > t,, where t, is
large enough so that |S(¢)] <& for ¢t >ty and where 0 < ¢ < u(t,)/2. Since
g(t)— + oo, there exists t, > t, such that g(t) > ¢, for every t > t,. Consequent-
ly we have that u(g(t))+S(g(¢)) > u(ty)—e > 0 for t > 1.

Next we integrate (3.1) from ¢, to ¢, ¢t >t,, to obtain

w0 () +p(Ou ™2 (1) = u™ P (ey) + p(ta)u P (t)

—[(q6) =P $)u" 2(s)ds— | H(s, u(g(s)) + S(g(s)))ds

=M—f(t)— .‘[ H(s, u(g(s))+S(g(s)))ds

where M is a constant and f(¢) is the first integral above. Let z(t) = u®™~ 2 (r)
and observe that z(t) satisfies a first-order linear equation. Thus

z(t) = exp[ — j' p(s)ds] {z(t4)+j [exp j p(r)dr]

[M—f(9)- .I H(r, u(g(r)+S(g(r)))dr] ds}
Since u(g(t)+S(g(t) > u(ty)—e = k > 0 and f(¢) is positive, we have that
2(t) < jexp[—i p(r)dr] [M—j H(r, k)dr]ds.
Note that by conditior: G), thserc is an s, s:nch that

jH(r kydr > M +1.

ta

Thus we have that

z(t) < j[exp[ jp(r)dr]](M (M+1))d =—jexp[ jp(r)dr]ds — | 1ds.
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Therefore we have that limz(f) = —oc and so u™ 2(t)— —aoc. This is
11— o

a contradiction to the positiveness of u(f). Thus we can conclude that there
exists t5 > t, so that u”~2(t) < 0 and u(r) < 0 for t > t,. Therefore, there exists
an even integer m, 0 < m < n—2, such that

u()y<0, i=0,1,...,m,
(-Du?) <0, i=m+l1,...,n=2
for t = (some) T If m #£ 0, then u”(t) < 0 and u'(t) < 0 for t = T. Therefore

lim u(¢) = lim (x(6)—S(t)) = — 0.

1= [ &

Thus lim S(t) = + oo which is a contradiction to assumption (F). So m =0,

which implies that lim (x(¢)—S(t)) =0 for i =1, 2, ..., n—2. To show that
| Smdie 0]

lim u(t) = 0, we first observe that lim u(t) < 0 since u(t) <0. Now, if we

= x | ke &)

suppose that lim u(t) < 0 and recall that lim inf S(t) = 0, we can find a sequen-
ce {1}, 'sr;;:\h that ¢,— o0 as n'::ooo and lim S(t) =0, and so
lim (f}) = 4 < O which is a contradiction to the fact that () is positive. Hence
"1fnf u(t) = 0, which completes the proof.
I

We would like to note that Lemma B as well as Theorem 1 hold true even
if the equation in condition (E) is replaced by

u’'+(q(t)—p'(t)/2)u = 0.
For more on this subject we refer the reader to p. 246 in [9].
THEOREM 2. If u(t) and v(t) are two eventually bounded positive solutions of

equation (), then the difference u(t)— v(t) must be oscillatory and tending to zero,
provided that for t, > 0 we have

(3.2) [ H*(t, 0)dt = +o0.

o

By oscillatory function we mean a function which has an unbounded set of zeros.

Proof. Let u(t) and v(t) be two bounded and positive solutions of the
equation (x) for t > t, > 0, and let w(t) = u(t)—v(t) for t > ¢,. Therefore w(t) is
bounded. From () now we can obtain

(3.3) WD) +pO) W V(1) +q(1) W P (1) + H(¢, u(g(0))— H(t, v(g(1)) = 0.

To show that w(t) is oscillatory we will assume that w(t) is eventually positive.
The negative case follows the similar steps.
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So, let us suppose that w(t) > O for ¢t > t, > t,. Since g(t) > +cc ast— =,
there exists t, > ¢, such that g(t) > r, and is increasing for every t > r,. Thus
from condition (C) we know that

H(t, u(g(0))—H{r, v(g(1)) >0, t>1,,
and so from (3.3) we have

(3.4) 'O+ p)Z (D +gqt)z(t) < 0

where z(1) = w2 (1), t > t,. We are going to show that z(r) < 0 eventually.

First, we will suppose that z(t) is oscillatory. Let z(ty) = z(t,) =0 for
ty >ty =1, and z(t) # 0 for te(t,, t,). To show that in this situation z(t) must
be positive, we assume the contrary is true. So, letting y(t) = —z(t) > 0, we
obtain from (3.4) that

Y () +p0)y () +q@)y(t) >0, tel(ts, t,).

Now, applying Theorem 3.1 of Jackson and Schrader [2], we find that there
exists a solution r(t) of

() +pt)r+qtyr=0

with r{ty) = r(t,) = 0 and O < y(t) < r(t), te(t,, t,y). This is a contradiction to
condition (E). Thus we can conclude that w""2 (1) <0 or w" () >0
eventually.

Next we observe that w'"~?(r) > 0 implies that w”~ () must be positive.
To verify this we proceed as follows. Let w" ™ !(t5) = 0 and w" ?(r) > 0 for
t>ts>=t, Then (3.3) gives

w(ts) = —q(ts) W™ D(es)—(H(rs, ulg(ts)— Hts, v(g(ts)) < 0.

It follows that w" ™ 1)(t) is decreasing at each one of its zeros. This implies that
w" = D(t) < 0 for all t > t.. So, if w"~ V() has one zero t5, it must be'negative to
the right of t,. Thus it cannot oscillate. Naturally, w" ! (t) cannot be
eventually negative, because, if it were, (3.3) would give w'”(t) < 0 eventually.
This contradicts the positiveness of w(f). Therefore we must have that
w" " (f) > 0 eventually.

We can now observe that w"~2(r) > 0 together with w"~')(¢) > 0 for all
large ¢ will imply that w(t) is unbounded which is a contradiction. Hence, we
conclude that w"~2(t) must be negative for t > t, > t,.

Since n is even, from Lemma A we know that w'(t) > 0 for t > 1, > t,. By
the Mean Value Theorem we know that

(H(t, u(g(@))—H(t, v(g))/(u(g (1) —v{g (1)) = H*(z, A(0)),

t > t, where A(r) is a continuous function lying between u(g(t)) and v(g(r)).
which are both positive. Thus for ¢ > t, we can write

H(tﬁ, u(g(t)))—H(t, v(g(t))) ='H*(t, A0 w(g (1)
= H*(t, u(g(@)) w(t,) = kH*(t, 0),
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where k = w(t,) 1s a constant. Therefore, integrating (3.3) from ¢, to ¢t > ¢, we
obtain

we D)+ p()w" 2 () = WO (e,) + plE,) w2 (e,)

— j:(q(s) —p' ()W D (s)ds— | (H(s, u(g(s))— H(s, v(g(s))))ds

=M—f(t)—| (H(s, u(g(s)))— H(s, v(g(s))))ds,

7

where M is a constant and f (¢) is the first integral. If z(t) = w"~ 2 (¢), we have as
in Theorem 1 that

(33 z()
= T E L2ty [ B M= ) [ (H(r, ulg®) —~ H(r, o(g)dr] ds]

< i [exp— j'p(s)ds] [M— _s[ kH*(r, O)dr] ds.

From condition (3.2) we know that there exists s, large enough so that

M — [ kH*(r, 0)dr < 0,
ty
t

and since exp(— | p(s)ds) > 1 we conclude that the expression in line (3.5) tends

ty
to —oo and thus lim z(t) = — oo. This implies that lim w"~2(f) = — o0 which
1o t— o
is a contradiction to the positiveness of w(t). It follows that w(t) is oscillatory.
Moreover, since from Theorem 1 we have that O <u(t) < S(t) and

0 <v(f) < S(t) with lim(u(t)—S(t)) =0 = lim(v(t)—S(1)), it is clear that
t—w t—
lim w(t) = 0, and so the proof is complete.

t— o

At this point we would like to note that assumption (G) is not equivalent
to condition (3.2). For example, the function

H(t, u) = (= 1)/(>+1)
satisfies assumptions (C), (D), and (G) but not (3.2). However,
H(t,u) = e ""—14+e "(1 - 1/(1+ue")
satisfies (3.2), assumptions (C), (D) but not (G).

THEOREM 3. If we assume that S(t) is bounded and that

(3.6) f " H*(t, k)dt < + o0

fo
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for any k > 0 and t, > 0 constants, then equation (*) has at most one eventually
bounded positive solution, provided that ¢(t) =0 and g(t) =t.

Proof. Let u(t) and v(t) be two bounded positive solutions of (x) for
t>1t,20, and let w(t) = u(t)—o(t). Therefore, w(t) is bounded and tends to
zero (follows from Theorem 1). Since w(r) and S(t) are bounded and (3.6) is
satisfied, we can find t; > ¢, such that

w(t,)l = sup |w(r)

lE[f[.m)

and
3.7 j(t—tl + )"V H*(t, kyde < 1
1

for any k > 0 constant, in particular the one where |S(¢)] < k when t > ¢,.
Next we write (x) as

(3.8) w?(t)+p()w" " D)+ H(t, u(t))— H(t, v(t)) = 0.

But, by the Mean Value Theorem, as in the proof of Theorem 2, there exists
A(t), a continuous function lying between u(t) and v(t) such that

H(e, u()—H(t, v(t) = H*(t, A))w(2).
Thus (3.8) becomes
w(0)+ p()w" = D)+ H*(t, A()) w(t) = 0,
which can be written as
%[W‘"‘ D(t)(exp "f p(s)yds)] = — H*(t, A(t))w(t)exp ;' p(s)ds
which yields

w D(r)exp 3' p(s)yds—w" V()= — i H*(u, A(u))w(u)(exp } p(s)ds)du.

ty 1 n

Next we observe that lim w™~1)(t) = 0, for otherwise we get a contradiction to

t— oo

the fact that lim w(t) = 0. Hence, by taking limits of the above expression we
t—=x
obtain
(3.9) w® () = [ H*(u, A(w)) w(u)(exp | p(s)ds)du.
1 151

Since we can replace t; by any t where t > t,, we have

we (@) = [ Rwdu, >t
t
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where R(u) is the integrand in (3.9). Next we integrate above from ¢, to
t, t > t,, using the integration by parts, to get

w2 (1) = w‘"'l’(t1)+f th R(u)duds

i1 s

_ w‘"‘z’(t,)+t ]‘ R(u)du—1, } R(u)du+st(s)ds

t n
= w‘”_z’(tl)+1j: (t—s)R(s)ds+ } (s—t,) R(s)ds.
t t
Again we take limits as t— o to obtain
0= w‘"'z’(tl)-l—}(s—tl)R(s)ds.
8]
As before we replace ¢, by ¢, t > 1, to get
w2 (1) = ]:(t—s)R(s)ds, t=>1,.

1

Thus, we can obtain expressions

w™ () = [((t—s)" """ "n—m—1))R(s)ds. m=0,1,2,....,n—1,

~ e, W

fort>1,.
From the above expression we have that

Iw(t) [(t—s)"" " R(s)lds

[(s—ty" " R(s)lds < | (s—t, + 1" ' |R(s)lds

| <
< i
= [(s—t, + 1) (exp [ p(o)dv)|H*(s. i(s))| Iw(s)|ds.

Hence, we have

Iw(r ) < fw(e) 45 (t—1t,+ 1) (exp | p(s)ds) [H* (¢, A())| dt

< W)l [ (E—t, + 10~ [H*(, k)d,

1

t
which is true because exp j p(s)ds < 1 and A(t) < S(t) < k since A(t) is between

t
u(t) and v(t) and they both are less than S(t) by Theorem 1. Therefore in view of
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(3.7) we have that |w(t,)| < |w(¢,)], which is true only if sup |w(r)] = 0. This
te{ty. x:)
proves the result.

We can observe that assumption (G) is not equivalent to condition (3.6).
For example the function H(t, u) = (" —1)/(t* + 1) satisfies assumptions (C).
(D) and (G) but not (3.6), whereas the function H(t, u) = —1+exp(ue )
satisfies (3.6), assumptions (C) and (D) but not (G). Furthermore observe that
the integral in (3.2) is that of (3.6) with n =1 and k = 0, it 1s clear that these
conditions are distinct. Further, since H*(t, u) is increasing in u, it follows that
H*(t, 0) < H*(t, k) for k > 0. Hence, if (3.2) is satisfied, then (3.6) cannot hold,
and conversely, if (3.6) is satisfied, then (3.2) must fail. As respective examples
we have the functions H(t, u) = exp(tu)— 1 and H(r, u) = exp(ue™"). Note also
that the function H(t, u) = exp(ue™’) satisfies (3.6) and assumptions (C),
(D) and (G).

In contrast, if H(t, u) = f(t)g(u), then assumption (G) and (3.2) are
equivalent since assumption (G) becomes

g(k) Ojof(u)du = + o0,

lo

and (3.2) is changed to
g'(0) [ f(wdu = + 0.
to

Here we should note that H*(z, u) being nonnegative and increasing with
respect to u (u > 0) forces ¢'(0) # 0. We also see that (3.6) is reduced to

g'(ky f o7t fuydu < + oo
Thus we see that in this situation assumption (G) precludes (3.6).

To conclude, we would like to point out that one can verify the result
which states that: if the equation

(3.10) x4+ p()x" "V + H(t, x(9(1)) <0
has an eventually positive solution, then so does the equality
(3.11) x4 p(0)x" "+ H(t, x(g(1))) = 0.

(Papers [1], [3] and [8] can help the reader in verifying this statement.) Now, if
in the above theorems we were to assume that equation (3.11) is oscillatory, the
results would be true for all the solutions, not just the bounded ones. For
observe that, for example, in Theorem 1 in the case where u"~2)(t) is positive
we had a contradiction due to the boundedness. However, if we were to note
that

u" () +p(O)u"~ V(O +H(t, wlg(0)+S(g(1) < —g(u"" (1) <0,
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and thus
u™(0)+p(Ou~ V() + H(t, u(g(t) —e) < 0,

we can come up with the positive solution v(t) = u(t)—e¢ to inequality (3.10).
Thus (3.11) has a positive solution which yields a contradiction. In order to
obtain the conditions for the oscillation of (3.11), we refer the reader to [10].

Finally, the appreciation goes to the referee for all his helpful comments.
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