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Inverse problems connected with periodé of oscillations
described by x+g(x) =0

by BARBARA ALFAWICKA (Wroctaw)

Abstract. The problem of the existence and construction of a system of differential
equations with prescribed properties is called the inverse problem. We are investigating the
problem of the existence and construction of a function g such that the periodic solutions of the
differential equation X+g(x) =0, have prescribed half-periods and periods provided half-
periods and periods are Lipschitz continuous function of half-amplitudes and amplitude,
respectively.

1. Introduction. Let g be a real-valued function defined and continuous
on the interval [by, ap], — 0 <by <0 <a, < +00. Assume g satisfies the
followmg hypothesis

(1.1) xg(x) >0, x=#0.

We define

(1.2 G(x) = [g(u)du.
0

In the theory of the differential equations of the form
(1.3) X+g(x)=0
there appear the integrals

a

dx
14 T =2 | —
" PO J Jo@—60
and
[4]
(1.5) T (b) = /EJ x ___
’ Y] V/GB)-6)

b

They determine the half-periods of the periodic solution x = x(t), max{x(¢):
—x <t< +4+o0!=a, mn{x(t): —oc <t< +00}=>, of equation (1.3).
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The numbers a > 0, b < 0 are called the positive and negative half-amplitudes
of x = x(t), respectively.

If g i1s a continuous function satisfying (1.1), then there exists a family of
periodic solutions of (1.3). Formulae (1.4), (1.5) define the positive half-period
function T, = T, (a) and the negative half-period function T,” = T,” (b),
respectively (see [10], p. 244-246, [7]). .

Assume G(a,) = G(by) < +00. By (1.1), the function G is strictly
increasing on the interval [0, a,] and strictly decreasing on the interval
[bo, 0]. Thus, for any value ae(0, ao] there exists exactly one value b
= @(a)e[by, 0) such that G(a) = G(b). The number

(1.6) A=1i[la—9p(a)]

is an amplitude of the periodic solution with half-amplitudes a and ¢(a). The
number

(1.7) T.(A) = T," (a+ T, [¢(a)]

is a period of that solution. Equality (1.7) defines the period function T,
= T;(A)a AE(O, %(ao—bo)]-

The present paper concerns the problem of the existence and
construction of a function g with a prescribed half-period functions or period
function. This 1s called the inverse problem. For constant half-period
functions and a period function this problem has been called a problem of
isochronism (see [4], p. 208-210, [8], [9], [10], p. 244-279) or the problem of
tautochronism (see [1], vol. 1, p. 340-342, [4], [7]).

Opial showed in [7] that, given functions T*, T~, there exists at most
one function g for which T,* = T* and 7,7 = T~. On the other hand, Urabe
proved in [8], [9] and [10] that given positive functions T*, T~ with
Lipschitz continuous derivatives, there exists a unique continuous function g
= g(x) differentiable at the point x =0, such that ," = T" and T, = T":
but for a given positive function T with Lipschitz continuous derivative there
exist infinitely many continuous functions g = g(x) differentiable at the point
x =0 such that T, = T. A method of construction of continuous functions g
with a prescribed constant period function has been given by Erhmann (see
[2], compare [3]), without a full formalization.

Our aim is to obtain Urabe’s results under weaker assumptions. We
assume that the half-period functions and the period function are Lipschitz
continuous (sece Theorem 3.2, 4.1). A full formalization of Erhmann’s
considerations is given by Corollary 2.2.

In Section 2 we solve the inverse problem for the half-period [unctions

-associated with energy T, = T,* (E), T,” = T, (E). We reduce this problem
to the conditions of regularity of convolution of the half-period function with
the function k(E) = \/2/_E. In Section 3, we solve the inverse problem for the
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half-period functions associated with half-amplitudes. We reduce this
problem to the problem of the existence of sufficiently regular solution of a
certain non-linear integral equation. Section 4 deals with the inverse problem
for the period function associated with the amplitude.

2. Inverse problem for the half-period functions associated with energy.
Problem of isochronism. In the subsequent discussion k will be a function
defined for E > 0 by the formula

(2.1) k(E) = \/2/E.

Let fxh denote the convolution of the summable functions f, h defined
almost everywhere in the interval [0, E,], given by the formula

E
f*h(E)={f(E-t)h(t)dt,
0
for any value E€[0, E,] for which the above integral exists.

As we have mentioned before, by (1.1), the function G = G(x) is strictly
increasing on the interval [0, a,] and strictly decreasing on the interval
[bo, 0]. Let x = x(G) and y = y(G) be the inverse functions of G on [0, a,]
and [b,, 0], respectively. Let G(a,) = G(by) = Eo. On the interval (0, E,] we
define functions T," = T," (E), T,” = T,” (E), T, = T,(E) by the formulae

(2.2) T,7 (E) = T,' [x(E)],
(2.3) T, (E) =T, [y(E)],
(24) T(E) =T, (E)+ T, (E).

If a, b are half-amplitudes of any periodic solution x = x(r) of (1.3), then
G(a) = G(b) (see [10], p. 244). Set G(a) = E. By (1.4), (2.2) and (1.5), (2.3), it
follows that

E
. dx(G)
0
E .
N 51 _4y(G)
(2.6) T (E)=-2|—=.
4 \ l\ o

o

Since x = x(G) and y = y(G) are absolutely continuous functions on thé
interval [0, E,], in the Lebesgue-Stieltjes integrals (2.5), (2.6) we have dx(G)
= x'(G)dG, dy(G) = y'(G)dG and we can rewrite (2.5), (2.6) in the form

(27) T (E) = k+x'(E),
(2.8) T (E)= —kxy(E).
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THEOREM 2.1.  Given positive functions T+, T, summable over the
interval [0, E,], let us define functions x = x(E), y = y(E) on the interval
[0, E,]) by formulae

(2.9) x(E) = ;—nk * T*(E),
(2.10) y(E) = -ik*T-(E).
2

(1) If x is an absolutely continuous function with the following properties:
(211)  x' = x'(E) is continuous and positive on the interval (0, E,],
(2.12) lim x'(E) = + o,

E-07t

then there exists a unique function g continuous on the interval [0, x(E,)] and
positive on the interval (0, x(Eo)] such that T, = T*. The function T, is
continuous on the interval (0, E,].

(ii) If y is an absolutely continuous function with the following properties:
(2.13) y' = y'(E) is continuous and negative on the interval (0, E,],

(2.19) lim y'(E) = — oo,
E-ot

then there exists a unique function g continuous on the interval [y(E,), 0] and
negative on the interval [y(Es), 0) such that T, = T~. The function T, is
continuous on the interval (0, E,].

Proof. Let x be a function satisfying our assumptions and let us note
that by definition of the convolution *, condition (2.9) implies x(0) = 0.
Hence we can define a function g on the interval (0, x(E,)] by the formula

1
(215) X = X(E), g(X) = ;ﬁ

Set g(0) = 0. It is easy to see that g is continuous on [0, x(E,)] and positive
on (0, x(Ey)].

Now we show the equality T,* = T* and the continuity of 7,*. Let us
consider the convolution with k of the both sides of (2.9). By the identity

(2.16) k+k =2m,
we obtain the equality

1+xTY = k=x.

Since k *x is an absolutely continuous function, we can differentiate it (see
[6], Theorem 6), and since x(0) =0, we get

(2.17) Tt =kxx.



Inverse problems connected with periods of oscillations 30t

Now the equality 7," = T* follows from (2.7) and (2.17). Since k and x' are
continuous on (0, E,}, we see that (2.17) implies continuity of 7;* (see [6],
Theorem 3).

It remains to show the uniqueness of the function g. Let g, be any
function continuous on [0, x(E,)], positive on (0, x(E,)] such that

(2.18) T, (Ey=T*(E), Ee(0, Eo].

Let G, be the function defined by (1.2) with g =g, and let x, be its inverse
function. Since x, is absolutely continuous on [0, E,], E; = G, [x(E,)], we
have

(2.19) T, (E)=k=*xy(E), Ee(0, E].
By (2.18) E, < E,. Now, by (2.16), equalities (2.17)«2.19) imply
2nxx,(E) =2nxx'(E), Ee€(0, E,].

Since x;(0) = 0 = x(0), this proves that x, (E) = x(E) for E€[0, E;]. Now, it
i1s easy to see that G,(x) = G(x), xe[0, x(Ey)], whence g,(x) =g(x) on
[0, x(Eg)].

Similarly one can prove part (ii). The function g is defined on [b,, 0) by
the formula

1
(2.20) x=y(E), g(x)= VB

Theorem 2.1 is a base of our method of solving the inverse problem for
the half-period functions associated with half-amplitudes. To illustrate some
other applications of Theorem 2.1, we solve the well-known problem of
isochronism (compare [8]-[10], [5] and [7])).

CoroLLARY 2.1. Given continuous function g satisfying (1.1). Functions
T." (a) = const = Ty, a€(0, ao] and T, (b) = const = Ty, be[by, 0) if and only

if
x\2
(?) X, x€[0, ao],
(2.21) g =< "\
—(71,—) x, xe[by, 0).
A

Proof. If the function g is of the form (2.21), then the equalities
T'(@=T, and T, (b) = T, follow from (1.4), (1.5).

To prove the converse, let us note that T," (a) = T, holds if and only if
T.' (E) = T,. Now, from (29) for T*(E) = T,, we obtain the equality

(2.22) x(E) = L/i %o JE.
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Now, (2.22) implies (2.21) for x€[0, a,] by Theorem 2.1 and formula (2.15).
Similarly, by (2.10) and (2.20), the constant function T,” = T,” (b) determines
g on [bg, 0).

CoROLLARY 2.2. Let g be a continuous function on the interval {b,, a,].
Assume (1.1) and that G(ao) = G(by) = E,. Let x = x(E), y = y(E) be the
inverse functions of G on [0, ao] and [bg, 0], respectively. The period function
T,(A) = const = T, on the interval (0, Ay], Ay = $(ao—by), if and only if

T
(2.23) x(E) = y(E)+> . N0 E

on the interval [0, E,].
Proof. Equalities (2.4), (2.6), (2.7) imply
(2.24) T,(E) = k+(x' = y)(E).
Assume (2.23). Then

~
12 To To

X' (E)—y'(E) = >~———= = —k(E)
27:«@ 2n

and by (2.16), condition (2.24) imply equality 7;,(E) =Ty, E€(0, E;], that
holds if and only if T,(4) = T, on (0, Aq].

To prove the converse, assume that T,(4) = T, on (0, A,]. Then 7;(E)
= T, on (0, E,]. Set T (E) = T, in (2.24). By (2.16) and the equality x(0) =
= y(0),.the convolutlon with k of the both sides of (2.24) imply (2.23).

By Corollary 2.1, it is easy to see that there exist infinitely many
continuous functions g such that T;(A4) = const = T,. For example, for any
number s€(0, 1) there exists a unique function g, such that T," (a) = sT, and
1,7 (0 =(1-9)T,, whence by (1.7), T,(4A) = T,

3. Inverse problem for the half-period functions associated with half-
amplitudes. In the subsequent discussion T will be a positive continuous
function defined on the interval [0, r]. Let us consider the following integral
equation '

3.1 X =ik *x(Tox),

2n
where k is defined by (2.1) and Tox is a superposition of the given function
T and an unknown function x. _

Let g be a function continuous on the interval [b,, a,] and satisfying
(1.1). If we put T= T," and r = aq, then there exists an absolutely continuous
solution x of (3.1) with the properties (2.11), (2.12). The function x that
satisfies (3.1) is the inverse function of G on [0, a,] (see (2.2) and (2. 9)) The
aim of Theorem 3.1 below is to prove the converse:
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THeOREM 3.1. Let T be a positive continuous function defined on the
interval [0, r]. Assume that there exists an absolutely continuous solution x of
(3.1), defined on the interval [0, Ey] and satisfying (2.11), (2.12). Then there
exists a function g continuous on the interval [0, a,], a, = x(E,), positive on
the interval (0, ap] and such that T, (a) = T(a) for ae(0, a,]}.

Proof. Let x be a solution of (3.1) with the required properties. If we
put T+ = Tox in equality (2.9), then by Theorem 2.1 there exist a function g
continuous on [0, a,], positive on (0, a,] such that T,' = T* on (0, E,].
Since T* = Tox, (2.2) implies equality 7," = T.

Now, our aim is to show that under certain assumptions on the function
T there exists a solution of (3.1) with the required properties.

Let us consider the Banach space C[0, E,] with the supremum norm
II-]l. We define a mapping S on the set X of all non-negative functions from
the closed ball B = C[0, E,] of radius r with a centre at the point x = 0, by
the formula

Sx = —l-k *(Tox).
2n

LemMMA 3.1. Ler a function T be positive on the interval [0, r] and satisfies
the Lipschitz condition with a constant L and

T
32 L<
(-2 2 /2E, + T(0)

and such that

nr

< 2E

3:3) T <

Then the mapping S is a contraction on the set X.

Proof. For any x€ X, the [unction Sx is continuous since T is bounded
on [0, r] (see [6], Theorem 3), and non-negative since k and T are positive.
By inequality (3.3), we have as estimation

—

1 /2E
I1Sxl} < 5 llk *(To )| <>HiT <,
T T

hence S(X) = X. Making use of the Lipschitz condition and inequality (3.2),
for any x,, x,€X, we have consequently

L /2E,

L
[1Sx; —Sx,|| < 2_1t“k *1xq — x| < [y — x5l < FlIx; —x,l,

that completes the proof.
LeMMA 3.2. Let [ be a non-negative function, summable over the interval

5 — Annales Polonici Mathemalici XLIV. 3.
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[0, E,]. Let X be a set of all functions x which are absolutely continuous on
the interval [0, E;] and such that

(3.4) X' () <f() ae in [0, E,].

Then X is a closed subset of the Banach space C[O0, E,].
Proof. Let |Y| denote the Lebesgue measure of a set Y. Then

Ve>036>0 (Y| <d=[f()dr <e).
Y

For any numbers 0<s, <t; <5, <1, < ... <5,<t,<E, and for any
function xe X we infer by (3.4) that the following inequalities hold

‘_L Ix(t)—x(s) < Y [Ix@lde<s | f(odr.

i=1 S,' n

U Ispt;)
i=1
Now, it is easy to see that

(35 Ve>036>0VxeX (i (t;—s) <= i [x () — x(s;)] < &).
i=1 i=1

Let x;eX,j=1,2,..., and let lim ||x;—x|| = 0. By (3.5), for given ¢ > 0 and
T i~
0<s, <t <5, <1, < ... <5, <, <E; if ) (;—s)<6 we have

S

_Zl [x(t)—x(s)| = lim z lx; () — x;(s)l < &,

JPoi=1

hence x is an absolutely continuous function. It remains to prove that x
t

satisfies (3.4). Let \/ x denote variation of a function x in the interval [s, t].
s

For any absolutely continuous function x there holds the equality
t t

(3.6) \/ x = [Ix'(u) du.
s s

By (3.4) and (3.6), for j=1, 2, ..., holds

t t

\/x; < [f(t)dr.

E )
Since
4

t
\/ x < liminf\/ x;,
s

j—oo s
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for any numbers s, te[0, E;], s <t, we then have the inequality

[Ix'(lde < ff(0)dt,

which proves (3.4).

LeEMMA 3.3, If function T satisfies assumptions of Lemma 3.1, then there
exists a unique absolutely continuous solution x of (3.1) satisfying (2.11) and
such that

T(O
3.7 x’=£k+0(l).
2n

Proof. Let X, be the set of all non-negative absolutely continuous
functions x from the closed ball B = C[0, E,] of radius r with a centre at
the point x = 0 satisfying inequality

T(0)

(3.8) X (O < 1+ =k ae. in [0, E,].

We shall show that S(X,) < X,. Since T is Lipschitz continuous, for
any function xe X,;, Tox is an absolutely continuous function. Hence the
function Sx is absolutely continuous too, and the following equality holds

1 T
(3.9) (Sx) = —k=(To x)’+L)k
2n 2n

(see [6], Theorem 6). Moreover, by inequality (3.4) and identify (2.16) for any
function xe€ X, the following inequalities hold

(3.10) |tk #(Toxy|| < Lk *|x| < L(1 xk+ T(0)) < L(2\/2E, + T(0)).
Inequalities (3.2), (3.10) imply
(3.11) Ik *(Tox)|| <,

which, together with (3.9), proves that Sx satisfies (3.8). This completes the
proof of the inclusion S(X,) c X,.

By Lemma 3.2, X, is a closed subset of the Banach space C{0, E,] and
by Lemma 3.1, S is a contraction on X,. Hence there exists a unique
solution xe X, of (3.1). By (3.9), equality Sx = x implies the formula

, 1 , T(0)
(3.12) x —ﬂkt(Tox)+ o k.

Since k is continuous on (0, E,], property (2.11) follows from (3.8), (3.11),
(3.12) (see [6], Theorem 3), while property (3.7) follows immediately from
(3.9) and (3.11).
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Lemma 3.4. Given a positive number c, the following equality holds
C’I;+ = 'T;t zg.

Proof. This equality is an immediate consequence of the formula (1.3).

Now we are ready to prove our main theorem.

TueoreM 3.2. Given a positive function T satisfying the Lipschitz
condition on the interval [0, r], there exists a unique continuous function g
defined on the interval [0, a,], a, < r, positive on the interval (0, aq] and such
that T,' (a) = T* (a) for ac(0, a,]. Moreover,

n
T (0)

2

(3.13) g(x) =< ) x+o(x), as x—0.

Proof. By Theorem 3.1 it is sufficient to prove that equation (3.1) with
T= T* has an absolutely continuous solution x satisfying (2.11) and (2.12).
By Lemma 3.4 we can assume that the function T= T™ satisfies (3.2), (3.3).
Now by Lemma 3.3, equation (3.1) has an absolutely continuous on the
interval [0, Ey] solution x satisfying (2.11) and (3.7). Since (2.12) is an
immediate consequence of (3.7), the first part of Theorem 3.2 is proved.

Now we prove equality (3.13). Since x(0) = 0, the integration of both
sides of (3.7) over the interval [0, E] gives us .

(3.14) .r(E):LQL(—())\"E+O(1)E.
By (2.15) and (3.7) we have
1 n/2E
3.15 E)] = = A .
r—
n/2E

Since x —» 0 if and only if E -0, from (3.14) and (3.15) we obtain

L (R VEvomE)rroromVE) L
im g = lim . LN 2E T

This proves (3.13) and completes the proof of Theorem 3.2.

Remark. The class of half-period functions contains that of positive
Lipschitz continuous functions as a proper subset. For example, if g(x)
= csgnx, ¢ being a positive constant, then T," (a) = 2\/_2a—/c vanishes for
a =0 and is not Lipschitz continuous.

Similar conclusions are true for the negative half-period function. We
state them without proofs. '
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THeoreM 3.3. Given a positive funcrion T~ satisfying the Lipschitz
condition on the interval [r,, 0], there exists a unique continuous function g
defined on rthe interval [by, 0], ry < by, negative on [b,, 0) and such that
T, (b) = T~ (b) for be[b,, 0). Moreover,

T 2
(3.16) g(x)= —(m) x+o(x), x—->0.

4. Inverse problem for the period function associated with amplitude. Now
we solve the inverse problem for the positive and Lipschitz continuous
period function T, = T,(A). The proof of Theorem 4.1 below is based on
results of Section 2 and Theorems 3.2, 3.3.

THeoreM 4.1. Given a function T, positive and Lipschitz continuous on the
interval [0, r], there exist infinitely many continuous functions g defined on
intervals [by, ap), where by, <0 < a,, satisfying (1.1) and such that T,(A)
= T(A) for Ae(0, Ay], Ao =3(bog—ay). Moreover, there exist positive
constants ¢, c, satisfying the equality ¢, +c, = T(0) and such that

.

(4.1) g(x) = (n/c)? x +o(x), x—-0, x>0,
(4.2) - g(x) = —=(n/cy))*x+0(x), x—-0,x<0

Proof. Let ¢ be any continuously differentiable function defined on
[0, r] such that ¢’ < —c, c being a positive constant. Then the function ¢
maps the interval [0, r] onto a certain interval [r,, 0], r; <0 and formula
(1.6) defines a continuously differentiable function A = A(a). Hence, for any
positive Lipschitz continuous function T* = T* (a) defined on [0, r] and
satisfying the inequality

T*(a) < T[A(a)]

the function T~ = T~ (b) defined on the interval [r,, 0] by the formula
T~ (b)=T(A(e ' ®)-T" (0" )

is both Lipschitz continuous and positive. By Theorem 3.2, there exists a
unique function g, continuous a certain interval [0, a,], a, > 0, positive on
(0, a,1, 9,(0) =0, and such that T} (a) = T" (a) for ae(0, a,]. By (3.13),
condition (4.1) holds with g = g,, ¢, = T* (0). By Theorem 3.3 there exists a
unique function g, continuous on a certain interval [b,, 0], b; < 0, negative
on [b,,0), g,(0) =0 and T (b) = T~ (b) for be[b,, 0). Formula (4.2) holds
for g =¢g,, c, =T (0). If we set g =g, on [0, a,]}, g =g, on [b,, 0) and
choose a, > 0, by, < 0 such that G(a,) = G(by), then the function g = g(x),
x€[bg, ag] has all the required properties and T,(A4) = T(A) for Ae(0, A,],
Ao = 3(bg—ay).
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